JPS61110806A - Combustion and heat exchanging method and facility thereof in combined-cycle facility for fluidized bed combustion - Google Patents

Combustion and heat exchanging method and facility thereof in combined-cycle facility for fluidized bed combustion

Info

Publication number
JPS61110806A
JPS61110806A JP23275884A JP23275884A JPS61110806A JP S61110806 A JPS61110806 A JP S61110806A JP 23275884 A JP23275884 A JP 23275884A JP 23275884 A JP23275884 A JP 23275884A JP S61110806 A JPS61110806 A JP S61110806A
Authority
JP
Japan
Prior art keywords
fluidized bed
bed combustion
combustion
gas turbine
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23275884A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kikuzawa
菊沢 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP23275884A priority Critical patent/JPS61110806A/en
Publication of JPS61110806A publication Critical patent/JPS61110806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To obtain the optimized thermal efficiency value in performing desulpherization in the fluidized bed by a method wherein a flue-gas temperature at the entrance of a chimney is to be lowered as much as possible, and the flue-gas temperature at a outlet of freeboard is adjusted. CONSTITUTION:Without providing a combustion chamber and the second coal feeder system, a waste heat boiler 30 having an evaporator 27 and a feed water pre-heating tube 28, is provided adjoining the fluidized bed furnace 26, and an exhaust pipe of gas turbine 4 is connected to the bottom of the fluidized bed combustion furnace 26 for both purposes of fluid and combustion. On the other hand, another exhaust pipe 40 is connected to a freeboard 36 for the purpose of two stage combustion, further, the other exhaust pipe is also connected to the waste heat boiler 30 to recover the exhaust gas heat. As countermeasures to increase the temperature of the outlet at the freeboard 36, either change of particles size of solid fuels or installing of the insulating material member for convertible to take-off to cover the freeboard 36, comprising of water cooled wall 37 to absorb heat, which is used on-off basis of fixing and removing, thereby the exhaust temperature at the exit of the freeboard may be adjustable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、石炭焚き流動床燃焼装置、ガスタービンおよ
び蒸気タービンからなる流動床燃焼複合サイクル装置に
おける燃焼・熱交換方法およびその装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a combustion/heat exchange method and apparatus for a fluidized bed combustion combined cycle apparatus comprising a coal-fired fluidized bed combustion apparatus, a gas turbine, and a steam turbine.

従来の技術 一般に、ガスタービンと蒸気タービンとを組み合わせて
複合サイクル装置として熱効率を上げる場合、流動床燃
焼を取り入れた方式としては、第2図に示すような複合
サイクル装置が考えられている。
2. Description of the Related Art In general, when combining a gas turbine and a steam turbine to increase thermal efficiency as a combined cycle device, a combined cycle device as shown in FIG. 2 is considered as a system that incorporates fluidized bed combustion.

第2図において、コンプレッサ1にて圧縮した空気を流
動床空気加熱器2へ導き、所定温度に加熱した後、燃焼
器3でLNG、灯油などの燃料(クリーン7ユーエル)
を燃焼させさらに温度を上げ、ついでガスタービン4へ
通し膨張仕事をして発電機5で有効仕事を発生させる。
In Fig. 2, air compressed by a compressor 1 is guided to a fluidized bed air heater 2, heated to a predetermined temperature, and then fed to a combustor 3 using fuel such as LNG or kerosene (clean 7 UEL).
is combusted to further raise its temperature, then passed through a gas turbine 4 to do expansion work, and a generator 5 to generate effective work.

ガスタービン4を出た排ガスの一部は流動床空気加熱器
2の燃焼兼流動空気となり、排ガスの残部は流動床6の
上側の燃焼室7にて燃料を燃焼させる空気として使用さ
れる。燃焼後の排ガスは蒸発管8、過熱管10、給水子
熱管11に熱を与えながら冷却され、集じん器12、誘
引7アン16を通り暖房用ヒータ14に熱を供給した後
、排煙脱硫装置15で脱硫された後、煙突16から大気
へ放出される。17は蒸気タービン、18は発電機、2
0は第1給炭系統、21は第2給炭系統、221よ風箱
、23は復水器、24は給水ポンプである。
A part of the exhaust gas exiting the gas turbine 4 becomes combustion and fluidizing air for the fluidized bed air heater 2, and the remainder of the exhaust gas is used as air for burning fuel in the combustion chamber 7 above the fluidized bed 6. The exhaust gas after combustion is cooled while giving heat to the evaporator tube 8, the superheating tube 10, and the water supply heating tube 11. After passing through the dust collector 12 and the induction tube 16 and supplying heat to the heating heater 14, the exhaust gas is desulfurized. After being desulfurized in the device 15, it is released into the atmosphere from the chimney 16. 17 is a steam turbine, 18 is a generator, 2
0 is a first coal feeding system, 21 is a second coal feeding system, 221 is a wind box, 23 is a condenser, and 24 is a water pump.

発明が解決しようとする問題点 ここで第2図を簡略化した第3図に示す複合サイクルの
熱効率について、ガスタービン排気のラインで燃料を助
燃することの得失を考察してみる。
Problems to be Solved by the Invention Regarding the thermal efficiency of the combined cycle shown in FIG. 3, which is a simplified version of FIG. 2, let us consider the advantages and disadvantages of auxiliary combustion of fuel in the gas turbine exhaust line.

ボイラ25の出口排ガスの温度Tgは理想的な値にまで
下げられたと仮定して、Tg一定にて助燃の影響を見る
。ガスタービン発電出力N8、ガスタービン燃焼器での
燃料熱量f8、ガスタービン排気温度To、比熱Op、
流量Go、ボイラでの助燃熱量ft1ボイラ出口排ガス
温度Tg、比熱Op、  蒸気タービンプラントの熱効
率ηatとすると、ボイラでの助燃ありの場合の複合サ
イクルの熱効率A工は、 f、=0のときは、 I A8とA、の大小を比較するため、差をとると、ここで
一般に、N1=j−(0,2〜0.25) f、、ls
t中0.3〜0.4、Ge0p (To−Tg)中0.
5〜0.6程度の値になるので、常にA1(A、となる
。すなわち、ボイラ排ガス温度Tgが一定の場合は、助
燃がない場合が最も熱効率が高いことになる。
Assuming that the temperature Tg of the exhaust gas at the outlet of the boiler 25 has been lowered to an ideal value, the influence of auxiliary combustion will be examined with Tg constant. Gas turbine power generation output N8, fuel heat amount f8 in the gas turbine combustor, gas turbine exhaust temperature To, specific heat Op,
Assuming that the flow rate Go, the amount of heat for auxiliary combustion in the boiler ft1, the exhaust gas temperature at the boiler outlet Tg, the specific heat Op, and the thermal efficiency of the steam turbine plant ηat, the thermal efficiency A of the combined cycle with auxiliary combustion in the boiler is: When f, = 0, , I To compare the magnitude of A8 and A, we take the difference, and here, in general, N1=j-(0,2~0.25) f,,ls
0.3-0.4 in t, 0.3 in Ge0p (To-Tg).
Since the value is about 5 to 0.6, it is always A1 (A). That is, when the boiler exhaust gas temperature Tg is constant, the thermal efficiency is highest when there is no auxiliary combustion.

しかしながら一般には、ガスタービン排気は熱量がかな
り多くて蒸気サイクルの水および蒸気で冷却するには限
度があるのが通例であり、第4図に示すピンチポイント
ΔTでボイラ排ガス温度Tgの下限が決まってしまう。
However, in general, gas turbine exhaust has a considerable amount of heat and there is a limit to how much it can be cooled with water and steam in the steam cycle, and the lower limit of boiler exhaust gas temperature Tg is determined by the pinch point ΔT shown in Figure 4. I end up.

これを解決するには、助燃によってガスタービン排気温
度Teを上昇させ、第4図のToまで助燃によって温度
を上げて排ガス温度をプgまで下げてやるのが、最も排
ガスの熱回収量が多く、その結果、複合サイクル装置の
熱効率が最大となる。
To solve this problem, increasing the gas turbine exhaust temperature Te through auxiliary combustion, raising the temperature to To in Figure 4, and lowering the exhaust gas temperature to Pg is the best way to recover the most heat from the exhaust gas. , resulting in maximum thermal efficiency of the combined cycle device.

以上の原理により、第2図に示す既存の複合サイクル装
置を考察すると、暖房用ヒータが利用できてそこで熱回
収を図れる場合に、複合サイクルが成立していると考え
ることができ、暖房用ヒータなどのさらに低温での排ガ
スの熱量を利用できない場合は、上記の考察の通りボイ
ラでの助燃は、プgまで排ガス温度が下がった状態でと
めるのが最も熱効率が良くなる。
Based on the above principle, when considering the existing combined cycle equipment shown in Figure 2, it can be considered that a combined cycle is established when a heating heater can be used and heat can be recovered there. When it is not possible to utilize the calorific value of the exhaust gas at even lower temperatures, as discussed above, the best thermal efficiency is achieved by stopping auxiliary combustion in the boiler when the exhaust gas temperature has fallen to Pg.

本発明は上記の諸点に鑑みなされたもので、フリーボー
ドに新たな助燃系統を設けずに、上記の排ガス温度を7
1gまで下げた状態にすることができる流動床燃焼複合
サイクル装置における燃焼・熱交換方法およびその装置
の提供を目的とするものである。
The present invention was made in view of the above points, and the above exhaust gas temperature can be reduced to 70% without installing a new auxiliary combustion system on the freeboard.
The object of the present invention is to provide a combustion/heat exchange method in a fluidized bed combustion combined cycle device that can reduce the amount of heat to 1 g, and a device for the same.

問題点を解決するための手段および作用本発明の装置は
、図面に示す番号を用いて説明すれば、流動床6内にガ
スタービン空気予熱用の空気加熱器2を設けた石炭焚き
流動床燃焼装置26と、ガスタービン4と、蒸気タービ
ン17とからなり、ガスタービン排ガス管を流動床燃焼
装置底部および流動床燃焼装置の流動床上側に接続し、
第1給炭系統20.20aを流動床燃焼装置に接続し、
第2給炭系統21を流動床燃焼装置下流側の燃焼室7に
設けた流動床燃焼複合サイクル装置において、流動床燃
焼装置に隣接して蒸発管および給水子熱管を有る廃熱ボ
イラ60を設け、ガスタービン排ガス管を流動床燃焼装
置底部、流動床燃焼装置の流動床上側および廃熱ボイラ
に接続し、燃焼室および第2給炭系統を設けないように
したことを特徴としている。
Means and Effects for Solving the Problems The apparatus of the present invention will be described using the numbers shown in the drawings. The device is a coal-fired fluidized bed combustion system in which an air heater 2 for preheating gas turbine air is provided in a fluidized bed 6. It consists of a device 26, a gas turbine 4, and a steam turbine 17, and the gas turbine exhaust gas pipe is connected to the bottom of the fluidized bed combustion device and the upper side of the fluidized bed of the fluidized bed combustion device,
Connect the first coal feeding system 20.20a to the fluidized bed combustion device,
In a fluidized bed combustion combined cycle device in which the second coal feeding system 21 is provided in the combustion chamber 7 on the downstream side of the fluidized bed combustion device, a waste heat boiler 60 having an evaporation pipe and a water supply condenser tube is provided adjacent to the fluidized bed combustion device. , the gas turbine exhaust gas pipe is connected to the bottom of the fluidized bed combustion device, the upper side of the fluidized bed of the fluidized bed combustion device, and the waste heat boiler, and a combustion chamber and a second coal feeding system are not provided.

また本発明の方法は、煙突入口排ガス温度を極力下げ得
るように、第2給炭系統から燃焼室7への給炭を行うこ
となく、ガスタービン排ガスの一部と給水、および蒸気
ドラムからの気液混合物とを熱交換させるとともに、第
1給炭系統20から供給する流動床燃焼用燃料の粒径を
変えるか、または/および7リーボード66での熱吸収
量を断熱材の取付け、取外しにより変化させることによ
り、フリーボード出口排ガス温度を調整することを特徴
としている。
Furthermore, in order to reduce the temperature of the exhaust gas at the smoke inlet as much as possible, the method of the present invention allows a portion of the gas turbine exhaust gas, water supply, and steam drum to be used without feeding coal from the second coal feeding system to the combustion chamber 7. In addition to exchanging heat with the gas-liquid mixture, the particle size of the fuel for fluidized bed combustion supplied from the first coal feeding system 20 is changed, and/or the amount of heat absorbed by the 7 Lee board 66 is adjusted by installing or removing a heat insulating material. The feature is that the freeboard outlet exhaust gas temperature is adjusted by changing the temperature.

実施例 以下、本発明の実施例を第1図に基づいて説明する。2
6は石炭焚き流動床燃焼装置で、流動床6内にガスター
ビン空気予熱用の空気加熱器2を有している。4はガス
タービン、17は蒸空タービンである。流動床燃焼装置
に第1給炭系統20.20aが接続されている。第2図
に示す従来の装置においては、流動床燃焼装置の流動床
上側の燃焼室7に第2給炭系統21が接続されていたが
、本発明の装置においては、この燃焼室および第2給炭
系統を設けないようにする。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIG. 2
Reference numeral 6 denotes a coal-fired fluidized bed combustion apparatus, which includes an air heater 2 for preheating gas turbine air within the fluidized bed 6. 4 is a gas turbine, and 17 is a steam turbine. A first coal feeding system 20.20a is connected to the fluidized bed combustion apparatus. In the conventional apparatus shown in FIG. 2, the second coal feeding system 21 was connected to the combustion chamber 7 above the fluidized bed of the fluidized bed combustion apparatus, but in the apparatus of the present invention, this combustion chamber and the second Do not install a coal feeding system.

流動床燃焼装置26に隣接して、蒸発管27および給水
子熱管28を有する廃熱ボイラ30を設け、ガスタービ
ン排ガス管を流動兼燃焼用の目的で流動床燃焼装置底部
へ接続し、2段燃焼用として流動床燃焼装置の流動床上
側のフリーボード36へ接続し、さらに余剰排ガスの熱
量を熱回収する目的で廃熱ボイラ30にも接続する。3
1は蒸気ドラム、62は蒸発管、36は給水子熱管、6
4は流動床排ガス対流部、65は過熱管、36はフリー
ボード、67は→リーボード水冷管、68はガスタービ
ン余剰排気系統、40)ま流動床2段燃焼系統、41は
流動床流動・燃焼空気系統である。他の番号は第2図の
場合と同様である。
A waste heat boiler 30 having an evaporator tube 27 and a water heating condenser tube 28 is provided adjacent to the fluidized bed combustion device 26, and a gas turbine exhaust gas pipe is connected to the bottom of the fluidized bed combustion device for the purpose of fluidization and combustion. It is connected to the free board 36 above the fluidized bed of the fluidized bed combustion apparatus for combustion, and is also connected to the waste heat boiler 30 for the purpose of recovering the heat amount of excess exhaust gas. 3
1 is a steam drum, 62 is an evaporation tube, 36 is a water supply heating tube, 6
4 is a fluidized bed exhaust gas convection section, 65 is a superheating pipe, 36 is a free board, 67 is a →Lee board water cooling pipe, 68 is a gas turbine surplus exhaust system, 40) is a fluidized bed two-stage combustion system, 41 is a fluidized bed fluidized This is a combustion air system. Other numbers are the same as in FIG.

流動床燃焼炉では一般に、供給する燃料の粒径およびフ
リーボードの熱吸収量を変えてやることにより、フリー
ボード36出ロガス温度が変わることが知られている。
In a fluidized bed combustion furnace, it is generally known that the temperature of the log gas exiting the freeboard 36 can be changed by changing the particle size of the supplied fuel and the heat absorption amount of the freeboard.

本発明ではこれを積極的に利用し、ガスタービン排ガス
の一部をガスタービン余剰排気系統68により廃熱ボイ
ラ60に導入して給水、および蒸気ドラム31からの気
液混合物と熱交換させるとともに、廃熱ボイラ30の出
口ガス温度と給水子熱管28人口の給水温度との差を第
4図に示すピンチゲイントΔTに等しくすべく選定でき
るように、フリーボード出口ガス温度を上昇させてやる
手段として、流動床6への供給燃料の粒径を変えるか、
または水冷壁67で作つたフリーボード36での熱吸収
量を断熱材の取付け、取外しによって変化させるか、ま
たは両方の手段を講じることによって、フリーボード出
口排ガス温度を調整する。
In the present invention, this is actively utilized, and a part of the gas turbine exhaust gas is introduced into the waste heat boiler 60 through the gas turbine surplus exhaust system 68 to exchange heat with the water supply and the gas-liquid mixture from the steam drum 31. As a means for increasing the freeboard outlet gas temperature so that the difference between the outlet gas temperature of the waste heat boiler 30 and the water supply temperature of the water supply child heat tube 28 population can be selected to be equal to the pinch gain ΔT shown in FIG. Either change the particle size of the fuel supplied to the fluidized bed 6, or
Alternatively, the temperature of the freeboard outlet exhaust gas is adjusted by changing the amount of heat absorption in the freeboard 36 made of the water-cooled wall 67 by attaching or removing a heat insulating material, or by taking both measures.

なお対流部64と廃熱ボイラ30は、場合によっては排
ガスを混合させて廃熱ボイラとすることもあるが、一般
にはガスタービン余剰排気はクリーンガスであるので、
充分な排熱回収を行っても腐食の心配がないので、第1
図に示すように分離型とした方が利点がある。
Note that the convection section 64 and the waste heat boiler 30 may mix exhaust gas to form a waste heat boiler in some cases, but in general, the excess exhaust gas of the gas turbine is clean gas, so
There is no risk of corrosion even if sufficient waste heat is recovered, so
It is advantageous to use a separate type as shown in the figure.

発明の詳細 な説明したように、本発明においては、フリーボードで
燃料を追い焚きしないので、流動床の特徴である脱硫が
流動床内で行える。このため、排ガスラインに排煙脱硫
装置を設置する必要はなくなり、しかも流動床燃焼の本
来の特徴を活がしながら、複合サイクル装置の熱効率を
最適値にすることができるという効果を奏する。
As described in detail, in the present invention, since the fuel is not reheated in a freeboard manner, desulfurization, which is a characteristic of a fluidized bed, can be performed within the fluidized bed. Therefore, there is no need to install a flue gas desulfurization device in the exhaust gas line, and it is possible to optimize the thermal efficiency of the combined cycle device while taking advantage of the original characteristics of fluidized bed combustion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する装置の一例を示すフロ
ーシート、第2図は従来の流動床燃焼複合サイクル装置
を示すフローシート、第3図は第2図に示す装置を簡略
化したフローシート、第4図は第3図に示す装置におけ
る温度分布の一例を示す説明図である。 1・・・コンプレッサ、2・・・流動床空気加熱器、3
・・・燃焼器、4・・・ガスタービン、5・・・発電機
、6・・・流動床、7・・・燃焼室、8・・・蒸発管、
10・・・過熱管、11・・・給水子熱管、12・・・
集じん器、13・・・誘引ファン、14・・・暖房用ヒ
ータ、15・・・排煙脱硫装置、16・・・煙突、17
・・・蒸気タービン、18・・・発電機、20.20a
・・・第1給炭系統、21・・・第2給炭系統、22・
・・風箱、26・・・復水器、24・・・給水ポンプ、
25・・・ボイラ、26・・・流動床燃焼装置、27・
・・蒸発管、28・・・給水子熱管、30・・・廃熱ボ
イラ、61・・・蒸気ドラム、32−・・蒸発管、63
・・・給水子熱管、64・・・流動床排ガス対流部、6
5・・・過熱管、36・・・フリーボード、37・・・
フリーボード水冷壁、68・・・ガスタービン余剰排気
系統、40・・・流動床2段燃焼系統、41・・・流動
床流動・燃焼空気系統 出 願 人 川崎重工業株式会社 第3図 第4図 ]υ
Fig. 1 is a flow sheet showing an example of an apparatus for carrying out the method of the present invention, Fig. 2 is a flow sheet showing a conventional fluidized bed combustion combined cycle apparatus, and Fig. 3 is a simplified version of the apparatus shown in Fig. 2. Flow sheet, FIG. 4 is an explanatory diagram showing an example of temperature distribution in the apparatus shown in FIG. 3. 1... Compressor, 2... Fluidized bed air heater, 3
... Combustor, 4... Gas turbine, 5... Generator, 6... Fluidized bed, 7... Combustion chamber, 8... Evaporation pipe,
10... Superheating tube, 11... Water supply heating tube, 12...
Dust collector, 13... Induction fan, 14... Heater for heating, 15... Flue gas desulfurization device, 16... Chimney, 17
...Steam turbine, 18...Generator, 20.20a
...First coal feeding system, 21...Second coal feeding system, 22.
...Wind box, 26...Condenser, 24...Water pump,
25...Boiler, 26...Fluidized bed combustion device, 27.
... Evaporation tube, 28 ... Water supply heating tube, 30 ... Waste heat boiler, 61 ... Steam drum, 32 - ... Evaporation pipe, 63
... Water supply heating element tube, 64 ... Fluidized bed exhaust gas convection section, 6
5... Overheating tube, 36... Free board, 37...
Freeboard water cooling wall, 68...Gas turbine surplus exhaust system, 40...Fluidized bed two-stage combustion system, 41...Fluidized bed fluidized/combustion air system Applicant: Kawasaki Heavy Industries, Ltd. Figure 3 Figure 4 】υ

Claims (1)

【特許請求の範囲】 1 流動床内にガスタービン空気予熱用の空気加熱器を
設けた石炭焚き流動床燃焼装置と、ガスタービンと、蒸
気タービンとからなり、ガスタービン排ガス管を流動床
燃焼装置底部および流動床燃焼装置の流動床上側に接続
し、第1給炭系統を流動床燃焼装置に接続し、第2給炭
系統を流動床燃焼装置下流側の燃焼室に設けた流動床燃
焼複合サイクル装置において、煙突入口排ガス温度を極
力下げ得るように、第2給炭系統への給炭を行うことな
く、ガスタービン排ガスの一部と給水、および蒸気ドラ
ムからの気液混合物とを熱交換させるとともに、第1給
炭系統から供給する流動床燃焼用燃料の粒径を変えるか
、または/およびフリーボードでの熱吸収量を断熱材の
取付け、取外しにより変化させることにより、フリーボ
ード出口排ガス温度を調整することを特徴とする流動床
燃焼複合サイク装置における燃焼・熱交換方法。 2 流動床内にガスタービン空気予熱用の空気加熱器を
設けた石炭焚き流動床燃焼装置と、ガスタービンと、蒸
気タービンとからなり、ガスタービン排ガス管を流動床
燃焼装置底部および流動床燃焼装置の流動床上側に接続
し、第1給炭系統を流動床燃焼装置に接続し、第2給炭
系統を流動床燃焼装置の下流側の燃焼室に設けた流動床
燃焼複合サイクル装置において、流動床燃焼装置に隣接
して蒸発管および給水子熱管を有する廃熱ボイラを設け
、ガスタービン排ガス管を流動床燃焼装置底部、流動床
燃焼装置の流動床上側および廃熱ボイラに接続し、燃焼
室および第2給炭系統を設けないようにしたことを特徴
とする流動床燃焼複合サイクル装置における燃焼・熱交
換装置。
[Claims] 1. A coal-fired fluidized bed combustion device comprising an air heater for preheating gas turbine air in the fluidized bed, a gas turbine, and a steam turbine, the fluidized bed combustion device including a gas turbine exhaust gas pipe. A fluidized bed combustion complex that is connected to the bottom and the upper side of the fluidized bed of the fluidized bed combustion device, the first coal feeding system is connected to the fluidized bed combustion device, and the second coal feeding system is provided in the combustion chamber downstream of the fluidized bed combustion device. In a cycle device, heat exchange is performed between part of the gas turbine exhaust gas, feed water, and the gas-liquid mixture from the steam drum without feeding coal to the second coal feed system, in order to reduce the exhaust gas temperature at the smoke inlet as much as possible. At the same time, by changing the particle size of the fuel for fluidized bed combustion supplied from the first coal feeding system and/or changing the amount of heat absorption in the freeboard by installing or removing heat insulating material, the exhaust gas at the freeboard outlet can be reduced. A combustion/heat exchange method in a fluidized bed combustion combined cycle device characterized by temperature adjustment. 2. Consisting of a coal-fired fluidized bed combustion device with an air heater for gas turbine air preheating installed in the fluidized bed, a gas turbine, and a steam turbine, the gas turbine exhaust gas pipe is connected to the bottom of the fluidized bed combustion device and the fluidized bed combustion device. In a fluidized bed combustion combined cycle device, the first coal feeding system is connected to the upper side of the fluidized bed, the first coal feeding system is connected to the fluidized bed combustion device, and the second coal feeding system is provided in the combustion chamber on the downstream side of the fluidized bed combustion device. A waste heat boiler having an evaporator tube and a water supply heating tube is provided adjacent to the bed combustion device, and a gas turbine exhaust gas pipe is connected to the bottom of the fluidized bed combustion device, the upper side of the fluidized bed of the fluidized bed combustion device, and the waste heat boiler, and the combustion chamber and a combustion/heat exchange device in a fluidized bed combustion combined cycle device, characterized in that a second coal feeding system is not provided.
JP23275884A 1984-11-05 1984-11-05 Combustion and heat exchanging method and facility thereof in combined-cycle facility for fluidized bed combustion Pending JPS61110806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23275884A JPS61110806A (en) 1984-11-05 1984-11-05 Combustion and heat exchanging method and facility thereof in combined-cycle facility for fluidized bed combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23275884A JPS61110806A (en) 1984-11-05 1984-11-05 Combustion and heat exchanging method and facility thereof in combined-cycle facility for fluidized bed combustion

Publications (1)

Publication Number Publication Date
JPS61110806A true JPS61110806A (en) 1986-05-29

Family

ID=16944289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23275884A Pending JPS61110806A (en) 1984-11-05 1984-11-05 Combustion and heat exchanging method and facility thereof in combined-cycle facility for fluidized bed combustion

Country Status (1)

Country Link
JP (1) JPS61110806A (en)

Similar Documents

Publication Publication Date Title
JP3213321B2 (en) Combined cycle thermal power plant combined with atmospheric circulating fluidized bed boiler and gasifier
US4205630A (en) Steam air preheater for maintaining the flue gas temperature entering dust collection equipment
US3884193A (en) Vapor generating system and method
KR910009058B1 (en) Integrated gas turbine power generation system and process
JP2004502065A (en) Combined cycle power plant and method of operating such a plant
US5236354A (en) Power plant with efficient emission control for obtaining high turbine inlet temperature
JPS6153530B2 (en)
JPH0126447B2 (en)
US6035628A (en) Pressurized fluidized bed combustion system including control of temperature of flue gases entering a high temperature filter
CA1079126A (en) Boiler start-up air heater
RU93058484A (en) GASPAROTURBINE INSTALLATION
US4465021A (en) Steam generator with a main boiler and a fluidized bed furnace
JPH06511061A (en) Method for generating electrical energy in an environmentally compatible manner and equipment for implementing this method
JPS61110806A (en) Combustion and heat exchanging method and facility thereof in combined-cycle facility for fluidized bed combustion
PL179698B1 (en) Fluidised bed furnace for performing heat treatment of waste materials
JPH0617741B2 (en) Control method of primary air temperature at pulverized coal machine outlet for boiler
JPH0128286B2 (en)
JPS6375406A (en) Pressurized fluidized combustion method
CA1119007A (en) Process and arrangement for operating a steam power station
JPH06511060A (en) Method for environmentally compatible generation of energy in combined gas-steam power installations and equipment for carrying out this method
JPH0323807B2 (en)
JPH09287416A (en) Operation control method for recycle power generating system
JPS58102008A (en) Starting of fluidized bed boiler
JPS5512336A (en) Fluid bed boiler
JPH0612161B2 (en) Heat recovery device for boiler exhaust gas