JPS61110511A - Granulation of water-soluble polymer gel - Google Patents

Granulation of water-soluble polymer gel

Info

Publication number
JPS61110511A
JPS61110511A JP23356184A JP23356184A JPS61110511A JP S61110511 A JPS61110511 A JP S61110511A JP 23356184 A JP23356184 A JP 23356184A JP 23356184 A JP23356184 A JP 23356184A JP S61110511 A JPS61110511 A JP S61110511A
Authority
JP
Japan
Prior art keywords
polymer gel
water
polymer
polymerization
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23356184A
Other languages
Japanese (ja)
Other versions
JPH032042B2 (en
Inventor
Akira Yada
明 矢田
Shusaku Matsumoto
修策 松本
Yoshihiro Kawamori
河盛 吉宏
Takao Saito
孝夫 斎藤
Tadashi Nishiyama
西山 正
Seiji Adachi
足立 誠次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP23356184A priority Critical patent/JPS61110511A/en
Priority to CA000494151A priority patent/CA1253833A/en
Priority to FR858516383A priority patent/FR2572671B1/en
Priority to FI854352A priority patent/FI84448C/en
Priority to CN85109717A priority patent/CN1007796B/en
Priority to US06/795,263 priority patent/US4690788A/en
Priority to DE19853539385 priority patent/DE3539385A1/en
Priority to GB8530862A priority patent/GB2184054B/en
Publication of JPS61110511A publication Critical patent/JPS61110511A/en
Publication of JPH032042B2 publication Critical patent/JPH032042B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/10Conditioning or physical treatment of the material to be shaped by grinding, e.g. by triturating; by sieving; by filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/06Conditioning or physical treatment of the material to be shaped by drying
    • B29B13/065Conditioning or physical treatment of the material to be shaped by drying of powder or pellets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/04Making granules by dividing preformed material in the form of plates or sheets

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To make solubility of a water-soluble vinyl series polymer easy, by a method wherein the water-soluble vinyl series polymer is made to retain for more than 3min, pulverized and made into a fine particle in a sphere of a vertical cutting machine constituted with a stationary blade and rotating blade. CONSTITUTION:A polymer obtained by polymerizing a water solution of a water-soluble vinyl series monomer is pulverized into the diameter of 3-5mm by a vertical cutting machine circumscribing a screen 4 provided on the external circumference along the circumference in which rotating blade 1 rotates and a sphere having the identical diameter with the circular arc of the screen 4 and having a retention sphere of more than 3min. Then cut-off polymer gels, having diameter smaller than that DS of a hole of the screen 4, among those being moved within a sphere (a) are splashed in an external direction through centrifugal force, passed through the hole of the screw 4, discharged from the sphere (a) and separated from the bulky polymer gels. The polymer gels can be pulverized and made into fine particles.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は水溶性重合体ゲルを細粒化する方法に関する。[Detailed description of the invention] [Industrial application field 1 The present invention relates to a method for refining water-soluble polymer gels.

さらに詳しくは、水溶性ビニル糸車一体水溶液の重合に
よってえられた水溶性重合体ゲルを破砕したのち、さら
に固定刃と回転刃から構成された竪型切i機により細粒
化する方法に関する。
More specifically, the present invention relates to a method in which a water-soluble polymer gel obtained by polymerizing an aqueous solution of a water-soluble vinyl spinning wheel is crushed and then further refined into fine particles using a vertical cutter comprising a fixed blade and a rotating blade.

[従来の技術] 従来より、アクリルアミドの単独重合体、アクリルアミ
ドを主体とし、これと他の重合性単量体との共重合体ま
たはそれらのアルカリ加水分解物は、紙力増強剤、増粘
剤、土壌改良剤、原油回収用薬剤、廃水処理剤などとし
て広く利用されている。
[Prior Art] Conventionally, acrylamide homopolymers, copolymers mainly composed of acrylamide with other polymerizable monomers, or alkaline hydrolysates thereof have been used as paper strength agents and thickeners. It is widely used as a soil conditioner, crude oil recovery agent, wastewater treatment agent, etc.

それらアクリルアミド系水溶性重合体の製法には、塊状
重合法、懸濁重合法、乳化重合法、溶液重合法などがあ
るが、本質的に高分子塵の重合体を製造することが重要
とされるため、通常水溶液重合法を採用するばあいが多
い。
Methods for producing water-soluble acrylamide polymers include bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization, but it is important to produce a polymer that is essentially a polymer dust. Therefore, aqueous solution polymerization method is usually adopted in many cases.

水溶液重合法によって分子量が非常に高く、かつ良好な
水溶解性を有する重合体をつるにtよ、重合反応段階に
おける架橋を防11する7Cめにも、比較的低い濃度で
重合を実施(る必要がある。
In order to obtain a polymer with a very high molecular weight and good water solubility using the aqueous solution polymerization method, polymerization is carried out at a relatively low concentration to prevent crosslinking in the polymerization reaction stage. There is a need.

しかしながら近年、運搬]スト、保管コス1−などの#
l演性が重視されるため、液状製品よりも粉末製品が生
産の主流を占めるにいたり、低濃度で水溶性重合法を採
用するばあいには、えられた重合体を粉末化する際に多
量の水を揮散させ、乾燥しなければならず、粉末化のた
めの]−ティリティーコストが増大する欠点を有してい
る。
However, in recent years, transport] strikes, storage costs, etc.
Because performance is important, powder products are now the mainstream of production rather than liquid products, and when water-soluble polymerization is used at low concentrations, it is difficult to powder the resulting polymer. It has the disadvantage that a large amount of water must be volatilized and dried, and the cost of powdering is increased.

かかる欠点を排除するため、できる限り^い単量体濃度
で重合させ、粉末化段階におけるコーティリティーコス
トの軽減をはかる研究が行なわれ、多数の特許出願がな
されている。
In order to eliminate such drawbacks, research has been conducted to reduce cotality costs in the powdering stage by polymerizing at the highest possible monomer concentration, and numerous patent applications have been filed.

しかしながら、アクリルアミド、アクリル酸などのビニ
ル系単量体は、本質的に架橋して3次元化する傾向がき
わめて強く、したがって必然的に架橋を防止するため、
緩和な条件、とりわi−J III M1体濃度に関し
ては、たとえばアニオン系またはノニオン系のばあいに
は、高々的20〜30%(重量%、以下同様)という比
較的低い濃度に保持したままで重合させなければならな
い。
However, vinyl monomers such as acrylamide and acrylic acid inherently have a very strong tendency to crosslink and become three-dimensional, so crosslinking is inevitably prevented.
Under mild conditions, especially regarding the concentration of i-J III M1, for example, in the case of anionic or nonionic compounds, the concentration can be maintained at a relatively low level of at most 20 to 30% (wt%, the same applies hereinafter). must be polymerized.

前記のようなm度のアクリルアミドまたはアクリルアミ
ドを主体とした単層体溶液を重合させると、流動性の全
くない、かたいまたは弾力14の大きいゲル状物かえら
れる。それゆえ、たとえばそのゲル状重合体の塊やシー
ト状物を機械的に粗砕することなしに、そのまま含有さ
れている水を揮散ゼしめようとすると、非常に長時間、
高温下に放置しなければならず、その結果、折角えられ
た高分子量重合体の分子量が低下したり、重合体の熱変
化に伴う架橋が促進され、商品価値が著しく低下するこ
とになる。したがって、一般的にはえられた重合体ゲル
の塊やシート状物を何らかの機械的手段によって粗砕し
て小塊粒子としたのち、加熱により乾燥せしめて水を除
去する方法が採用されている。一般的には、重合によっ
てえられた重合体ゲルを肉挽機のごとき、押出成形機を
用いてストランド状に成形したのち加熱乾燥する方法が
広く採用されている。しかしながら、肉挽機のごとき押
出成形機を使用するばあい、とくに重合体ゲルが著しく
かたいばあいには、機械壁面の摩擦が大きく、機械能率
の損失をおこすばかりか、重合体ゲル自身が摩擦熱や物
理力などにより劣化をうけ、分子切断などによる分子量
低下をもたらすので、あまり好ましい方法とはいえない
When m-degree acrylamide or a monolayer solution mainly composed of acrylamide as described above is polymerized, a gel-like material having no fluidity and having a hard or high elasticity 14 is obtained. Therefore, for example, if you try to volatilize the water contained in a mass or sheet of gel-like polymer without mechanically crushing it, it will take a very long time.
It is necessary to leave the product under high temperature, and as a result, the molecular weight of the high molecular weight polymer that has been carefully prepared decreases, and crosslinking of the polymer due to thermal changes is promoted, resulting in a significant decrease in commercial value. Therefore, the commonly used method is to coarsely crush the obtained polymer gel lumps or sheets by some mechanical means into small agglomerated particles, and then dry them by heating to remove water. . Generally, a method is widely adopted in which a polymer gel obtained by polymerization is formed into a strand shape using an extruder such as a meat grinder, and then heated and dried. However, when using an extrusion molding machine such as a meat grinder, especially when the polymer gel is extremely hard, the friction on the machine wall is large, causing a loss of machine efficiency, and the polymer gel itself This is not a very preferable method because it is subject to deterioration due to frictional heat and physical forces, resulting in a decrease in molecular weight due to molecular cleavage.

本発明者らは、水溶性ビニル系単量体水溶液の重合によ
ってえられた重合体ゲルの破砕方法として、分子量の低
下の伴わない、かつ細片状に破砕した重合体ゲルが相互
に付着しにくい方法の開発を行ない、昭和59年11月
6日付で特許出願(発明の名称[水溶性重合体ゲルの破
砕方法」、以下、へ出願という)している。
The present inventors proposed a method for crushing a polymer gel obtained by polymerizing an aqueous solution of a water-soluble vinyl monomer, which does not involve a decrease in molecular weight and in which the crushed pieces of polymer gel adhere to each other. The company developed a method that was difficult to use, and filed a patent application on November 6, 1981 (title of the invention: ``Method for crushing water-soluble polymer gel'', hereinafter referred to as the application).

しかしながら、前記出願による方法によってえられる細
片状の重合体ゲルは、3〜20uの角状の比較的大きい
重合体ゲルであり、このままの状態で加熱乾燥しようと
しても、重合体ゲル内部に存在する水分の揮散がなかな
かおこりにくい。その結果、乾燥時間が良くなり、乾燥
に必要な容積(以下、乾燥容量という)の増加がさけら
れない。
However, the strip-shaped polymer gel obtained by the method according to the above application is a relatively large angular polymer gel of 3 to 20 u, and even if you try to dry it by heating in this state, there will be some particles inside the polymer gel. It is difficult for moisture to evaporate. As a result, the drying time becomes shorter, and an increase in the volume required for drying (hereinafter referred to as drying capacity) is unavoidable.

乾燥容量を減少させるには、乾燥前の重合体ゲル粒子を
できる限り小さくし、乾燥時間を短くすることは容易に
推察しつるが、従来から用いられている破砕機の1つで
ある肉挽機のごとぎ押出成形機では、前記3〜205m
の大きさの角状になるまで重合体ゲルを細粒化すること
は判読できない。
It is easy to infer that in order to reduce the drying capacity, the polymer gel particles before drying should be made as small as possible and the drying time should be shortened. In an extrusion molding machine like a machine, the above 3 to 205 m
It is indecipherable to refine the polymer gel until it becomes angular in size.

[発明が解決しようとする問題点] 本発明は前記のごとき破砕された重合体ゲル、好ましく
は3〜20iuiの角状に切断された重合体ゲルをさら
に細粒化して乾燥させることにより、重合体ゲルが粗大
なばあいには熱乾燥が容易でないという問題点を解決す
るためになされたものである。
[Problems to be Solved by the Invention] The present invention solves the problem by further reducing the size of the crushed polymer gel, preferably the polymer gel cut into squares of 3 to 20 iui, and drying the crushed polymer gel. This was done to solve the problem that heat drying is not easy when the combined gel is coarse.

E問題点を解決するための手段] 本発明者らは重合体ゲルを細粒化するに際し、細粒化し
た粒子の相互付着を防止する方法として、■水溶性ビニ
ル系単量体の水溶液をできる限り^濃度に保ちつつ重合
させること、■細粒化する際に、必要により粘着防止剤
を使用したり、冷風を送風すること、■破砕形式を変更
すること、などについて鋭意検討を重ねた結果、本発明
に到達した。
[Means for Solving Problem E] When refining a polymer gel, the present inventors have developed an aqueous solution of a water-soluble vinyl monomer as a method for preventing the refined particles from adhering to each other. We conducted extensive research on the following: 1. Keeping the concentration as high as possible during polymerization, 2. Using an anti-blocking agent or blowing cold air when making particles into fine particles, and 2. Changing the crushing method. As a result, we have arrived at the present invention.

すなわち本発明は、水溶性ビニル系単量体の水溶液を重
合させてえられた重合体ゲルを破砕したのち、固定刃と
回転刃からから構成され、粉砕されるべき重合体ゲルが
滞留する領域を有し、かつ平均粉砕滞留時間が少なくと
も3分間以−トとなる竪型切断機により破砕された重合
体ゲルをさらに切断し、細粒化することを特徴とする水
溶性重合体ゲルの細粒化方法に関する。
That is, in the present invention, after crushing a polymer gel obtained by polymerizing an aqueous solution of a water-soluble vinyl monomer, a region consisting of a fixed blade and a rotating blade, in which the polymer gel to be crushed remains. A fine particle of a water-soluble polymer gel, characterized in that the crushed polymer gel is further cut into fine particles by a vertical cutter having an average crushing residence time of at least 3 minutes or more. Regarding the granulation method.

[実施例] 本発明に用いる水溶性ビニル系単量体としては、たとえ
ばアクリルアミド、メタクリルアミド、アクリル酸、メ
タクリル酸、ビニルスルホン酸、アクリルアミド−メチ
ルプロパンスルホン酸、イタコン酸などの水溶性ビニル
単量体またはそれらの塩類、(メタ)アクリル酸ジアル
キルアミノアルキルエステル類、その塩もしくは酸性塩
類またはその4@化物類、ジアルキルアミノアルキルア
クリルアミド類、その塩もしくは酸性塩類またはその4
級化物類、ジアリルアミン酸性塩、ジアリルジアルキル
アンモニウム塩などのジアリルアミン類などがあげられ
るが、これらに限定されるものではない。これらは単独
で用いてもよく、2種以上混合して用いてもよい。
[Example] Examples of water-soluble vinyl monomers used in the present invention include water-soluble vinyl monomers such as acrylamide, methacrylamide, acrylic acid, methacrylic acid, vinylsulfonic acid, acrylamide-methylpropanesulfonic acid, and itaconic acid. (meth)acrylic acid dialkylaminoalkyl esters, salts or acidic salts thereof, or 4@ compounds thereof, dialkylaminoalkylacrylamides, salts or acidic salts thereof, or 4
Examples include, but are not limited to, diallylamines such as graded compounds, diallylamine acid salts, and diallyldialkylammonium salts. These may be used alone or in combination of two or more.

前記水溶性ビニル系単量体には、えられる重合体が水溶
性になるような範囲で水に本質的に不溶性の単量体、た
とえばアクリロニトリル、(メタ)アクリル酸エステル
類、酢酸ビニル、スチレンなどの疎水性単量体を配合し
てもよい。
The water-soluble vinyl monomers include monomers that are essentially insoluble in water to the extent that the resulting polymer is water-soluble, such as acrylonitrile, (meth)acrylates, vinyl acetate, and styrene. Hydrophobic monomers such as these may also be blended.

水溶性ビニル系単量体を重合させる方法にはとくに限定
はなく、たとえば公知の過硫酸塩またはアゾ系開始剤な
どのラジカル重合開始剤を用いる熱重合法、公知の過硫
酸塩/アミン類または過硫酸塩/亜硫酸塩などのレドッ
クス重合開始剤を用いるレドックス重合法、ベンゾイン
またはベンゾインアルキルエーテルなどの光重合開始剤
を用いる光重合法あるいは放射線重合法などの通常の方
法などがあげられる。通常、このような方法により、水
溶性ビニル系単量体の所定の濃度の水溶液が自由に流動
しなくなるまで重合せしめられる。前記のごとき水溶性
ビニル系単量体の水溶液の重合を紫外線照射によって行
なうと、とくに該水溶液を薄膜状にして紫外線照射によ
って行なうと、重合の誘導時間が非常に短かく、かつ重
合に要する時間が他の−8一 方法に比して短かくてすむ。その結果、重合に必要な装
置がコンパクトとなり、設備費用が小さくてすむ。また
可動式支持体にJ:り連続、がつ薄層状に重合体かえら
れると、以降の破砕および細粒化を連続にしうるなどの
利点を有しており好ましい。
There are no particular limitations on the method of polymerizing the water-soluble vinyl monomer, such as thermal polymerization using a radical polymerization initiator such as a known persulfate or an azo initiator, a method using known persulfates/amines, or Common methods include a redox polymerization method using a redox polymerization initiator such as persulfate/sulfite, a photopolymerization method using a photopolymerization initiator such as benzoin or benzoin alkyl ether, or a radiation polymerization method. Usually, by such a method, an aqueous solution of a water-soluble vinyl monomer of a predetermined concentration is polymerized until it no longer flows freely. When polymerizing an aqueous solution of a water-soluble vinyl monomer as described above by irradiating ultraviolet rays, especially when the aqueous solution is formed into a thin film and irradiating it with ultraviolet rays, the induction time for polymerization is very short, and the time required for polymerization is very short. is shorter than the other -8 methods. As a result, the equipment required for polymerization is compact and equipment costs are low. Furthermore, it is preferable to transfer the polymer in a continuous, thin layer to the movable support, since this has the advantage that subsequent crushing and pulverization can be carried out continuously.

水溶性ビニル系単量体を使用してえられた重合体ゲルは
、できるだけ^濃度であることが生産性向上という点か
ら好ましく、また破砕時の粘着性を低減し、破砕物の相
互付着を防止する点からも好ましい。一般に、アクリル
アミドあるいはアクリル酸を使用してえられるノニオン
系あるいはアニオン系重合体のゲルは、20〜60%、
望ましくは30〜45%である一方、ジアルキルアミノ
アルキルアクリレートあるいはその酸性塩、4級塩を使
用するカチオン系重合体ゲルのばあいには、50〜90
%、望ましくは60〜80%である。
It is preferable that the polymer gel obtained using a water-soluble vinyl monomer be as concentrated as possible from the viewpoint of improving productivity, and also to reduce stickiness during crushing and prevent crushed materials from adhering to each other. It is also preferable from the viewpoint of prevention. Generally, nonionic or anionic polymer gel obtained using acrylamide or acrylic acid has a content of 20 to 60%,
It is preferably 30 to 45%, while in the case of a cationic polymer gel using dialkylaminoalkyl acrylate or its acid salt or quaternary salt, it is 50 to 90%.
%, preferably 60 to 80%.

重合体ゲルの形態は、たとえばA出願明細書に記載のご
とき互いにかみあう方向に回転する1対のローラー型カ
ッターで効率よく切断されるためには、円滑に重合体ゲ
ルを該ローラー型カッターにくい込ませなくてはならな
いので、重合体ゲルの厚さは2〜30an+、望ましく
は5〜15uのごとき薄層状にすることが好ましい。た
とえば皿型、平板型、トレイ型などの容器または可動式
のベルトなどを用いて水溶性ビニル系単量体水溶液を重
合させると、薄層状にすることができる。可動式ベルト
上で薄層状に重合する方法は、以降の破砕工程とも連続
化しつるので好ましい方法である。
In order to efficiently cut the polymer gel with a pair of roller-type cutters rotating in mutually interlocking directions as described in the A application specification, the polymer gel must be smoothly embedded into the roller-type cutters. Therefore, the thickness of the polymer gel is preferably 2 to 30 an+, preferably 5 to 15 u, in the form of a thin layer. For example, when a water-soluble vinyl monomer aqueous solution is polymerized using a dish-shaped, flat-plate-shaped, or tray-shaped container or a movable belt, it can be formed into a thin layer. A method in which polymerization is carried out in a thin layer on a movable belt is a preferable method because the subsequent crushing process is continuous.

本発明においては、上記のようにしてえられた重合体ゲ
ルが、たとえばA出願明細書に記載のごとき、第4図〜
第5図に一実施態様を示すような破砕機を用いて破砕、
好ましくは3〜201の角状に破砕される。
In the present invention, the polymer gel obtained as described above is used as shown in FIGS.
Crushing using a crusher as shown in one embodiment in FIG.
It is preferably crushed into 3 to 201 square pieces.

破砕されたものの大きさが平均粒径20i1をこえると
、つぎの工程の竪型切li機での切断能力が低下してい
く傾向があり、無理に20ffllをこえる粗大すぎる
平均粒径の重合体ゲルを、過剰に竪型切断機に供給する
と切断不良がおこり、切断機内で重合体ゲルの団塊が生
じ、同時に粘着性による摩擦熱が発生し、望ましくない
悪循環をひきおこすことになる。
If the size of the crushed material exceeds the average particle size of 20i1, the cutting ability of the vertical cutter in the next step tends to decrease, and the polymer with an average particle size that is too coarse, exceeding 20ffll, tends to decrease. If too much gel is supplied to the vertical cutting machine, poor cutting will occur, and agglomerates of polymer gel will form inside the cutting machine, and at the same time frictional heat will be generated due to stickiness, creating an undesirable vicious cycle.

重合体ゲルは、たとえば第4図に示す破砕機の上方から
破砕機に供給される。供給された重合体ゲルは、第4図
および第5図に示す破砕機を上方から見た図面である第
6図に示すローラー型カッター(13)、(14)によ
り切断され、たとえば短ざく状のストランドにされる。
The polymer gel is fed to the crusher from above the crusher as shown in FIG. 4, for example. The supplied polymer gel is cut by roller type cutters (13) and (14) shown in FIG. 6, which is a top view of the crusher shown in FIGS. 4 and 5, for example, into short pieces. It is made into strands.

ローラー型カッター(13)、(14)の表面には、そ
れぞれ第6図、より詳しくは第7図に示すように互いの
凹凸がかみあうように凹凸の形状にカッターの刃が形成
されている。この互いにかみ合うローラー型カッターは
、たとえば向じ\1法を持ち、同じ回転速度でかみ合う
方向に回転する。かみあうように形成された刃の凹凸の
巾、深さ、^さは、破砕された重合体ゲルに所望される
大きさ、すなわち平均粒径3〜2011mになるように
決定すればよく、たとえば第8図において巾(X+ )
が2〜10mm程度、刃の凹部の深す(X4 ) カ1
0〜15+am程度、凸部の高さく×5)が10〜15
11程度で、凹部と凸部とが最も深くかみあったばあい
でも、切断された重合体ゲルが通過するのに必要な間隙
(第8図における(X3 ))が10〜25mm程度あ
くように通常は形成される。このような形状にローラー
型カッター(13) 、  (14)表面の刃を形成し
、第6図のようにローラー型カッターの回転軸f8) 
、+91を用いて2つのローラー型カッター(13)、
(14)を第5図(第4図のc−c′断面図)に示すよ
うに回転させ、−上方から供給された重合体ゲルをかみ
こんで切断して下方に供給するようにすることにより、
重合体ゲルの切断が容易に行なえ、たとえばストランド
状にすることができる。
On the surfaces of the roller type cutters (13) and (14), cutter blades are formed in a concave and convex shape so that the concave and convex portions engage with each other, as shown in FIG. 6, more specifically, FIG. 7. These mutually meshing roller type cutters have, for example, a direction\1 direction and rotate in the meshing direction at the same rotational speed. The width, depth, and size of the unevenness of the blades formed to interlock with each other may be determined so that the crushed polymer gel has a desired size, that is, an average particle size of 3 to 2011 m. In figure 8, width (X+)
The depth of the concave part of the blade is about 2 to 10 mm (X4) F1
Approximately 0 to 15 + am, height of convex part x 5) is 10 to 15
11, and even when the concave part and the convex part are most deeply engaged, the gap ((X3) in Figure 8) necessary for the cut polymer gel to pass through is usually about 10 to 25 mm. is formed. The blades on the surface of the roller cutters (13) and (14) are formed in this shape, and the rotation axis f8) of the roller cutter is formed as shown in Fig. 6.
, +91 with two roller type cutters (13),
(14) is rotated as shown in Fig. 5 (cross-sectional view taken along line c-c' in Fig. 4), - the polymer gel supplied from above is caught and cut, and the polymer gel is supplied downward; According to
The polymer gel can be easily cut into strands, for example.

なおローラー型カッター(13)、(14)に重合体ゲ
ルを供給するのに、可動式支持体、たとえばエンドレス
ベルトの他端より重合体ゲルを連続的に取出し、ローラ
ー型カッターにくい込ませる方法などを用いて連続的に
行なうと、■−13−、−。
In order to supply the polymer gel to the roller type cutters (13) and (14), there is a method in which the polymer gel is continuously taken out from the other end of a movable support, such as an endless belt, and then inserted into the roller type cutter. When performed continuously using , ■-13-, -.

程を連続化することができ、生産効率を向上させること
ができる。
The process can be made continuous and production efficiency can be improved.

互いにかみ合う方向に回転するローラー型カッター(1
3)、(14)により、たとえば短ざく状に切断された
重合体ゲルのストランドは、第5図に示す<L(15)
、(16)の上端のエツジで第7図に示すローラー型カ
ッターの刃(A)の外周部より剥離され、<シ(15)
と<L、(16)との間を下降し、<L(16)の下端
に設けられた固定刃(12)の位置に到達する。通常ロ
ーラー型カッターの外刃(B)に重合体ゲルのストラン
ドがひっつくことはない。固定刃(12)の位置に到達
し、該位置より下方に出た短ざく状のストランドは、第
4図および第5図の(刀を回転軸とする回転体(10)
の外周部に設けられた回転刃〈11)と固定刃(12)
と0間に働らく切断力により切断され、細片状、好まし
くは平均粒径3〜20nvの角形の細片状にされる。
Roller-type cutters (1) that rotate in the direction of mutual engagement
3) and (14), the polymer gel strands cut into short pieces, for example, have <L(15) shown in FIG.
, (16) is peeled off from the outer periphery of the roller cutter blade (A) shown in FIG.
and <L, (16), and reaches the position of the fixed blade (12) provided at the lower end of <L (16). Normally, the polymer gel strands do not stick to the outer blade (B) of a roller type cutter. The short strand-like strands that reach the position of the fixed blade (12) and protrude downward from that position are similar to those shown in FIGS.
Rotating blade <11) and fixed blade (12) provided on the outer periphery of
and 0, and are cut into strips, preferably rectangular strips with an average particle size of 3 to 20 nv.

短ざく状のものの横中方向の断面形状は、ローラー型カ
ッター(13)、(14)の組立後の機減寸法、すなわ
ち第8図における刃の凹凸の巾(×1)、かみ合いの深
さくX2 ) 、高す(x4)、(Xs ) 、および
ローラー型カッター(13)、(14)の回転速度によ
り決定される。そして短ざく状の長手方向の形状は、ロ
ーラー型カッター(13)、(14)の回転速度とそれ
に同調する速度で回転する回転体(10)の回転速度お
よび回転体く10)上に設けられた回転刃(11)の数
(第5図においては6枚)を調節することにより、細片
状に切断される長さを決定することができる。
The cross-sectional shape of the short piece in the horizontal direction is determined by the reduced dimensions of the roller cutters (13) and (14) after assembly, that is, the width of the unevenness of the blade (×1) in Fig. 8, and the depth of engagement. X2), the height (x4), (Xs), and the rotational speed of the roller type cutters (13) and (14). The short strip-like longitudinal shape is provided on the rotational speed of the rotary body (10) and the rotational body (10) which rotates at a speed synchronized with the rotational speed of the roller type cutters (13) and (14). By adjusting the number of rotary blades (11) (six in FIG. 5), the length to be cut into strips can be determined.

つぎに破砕された重合体ゲル、好ましくは3〜2(ha
mの角状に破砕された重合体ゲルを細粒化するのに用い
る切1lFi機およびその方法について説明する。
Next, the crushed polymer gel, preferably 3 to 2 ha
A cutting 1lFi machine and a method thereof used to finely granulate a polymer gel crushed into squares of m size will be described.

第1図は、本発明に用いる破砕された重合体ゲルを細粒
化するのに用いる竪型切断機の要部を上からみた概略説
明図であり、第2図および第3図は断面図である。
FIG. 1 is a schematic top view of the main parts of a vertical cutter used for finely pulverizing the crushed polymer gel used in the present invention, and FIGS. 2 and 3 are cross-sectional views. It is.

第1図において(1)は回転刃、(2)および(2−)
は各々1番目および2番目の固定刃、(3)はブリカッ
ター、(4)はスクリーン、(5)は回転刃(1)の回
転軸、(6)は底面、(7)は排出孔である。
In Figure 1, (1) is a rotating blade, (2) and (2-)
are the first and second fixed blades, (3) is the buri cutter, (4) is the screen, (5) is the rotating shaft of the rotary blade (1), (6) is the bottom, and (7) is the discharge hole. be.

第1図に示す本発明に用いる竪型切断機の特徴は、回転
刃(1)の回転する円周に沿って外周囲に!iQi!さ
れたスクリーン(4)と、その円弧と同一の径(DO)
をもつ領域に外接し、しかも上方から見ると半月状で、
3分間以上の滞留が可能なる滞留領域(C)を有し、駆
動回転軸(第1図、第2図における回転刃の軸(5))
が垂直F方を向いている、すなわち竪型の点にある。
The feature of the vertical cutting machine used in the present invention shown in FIG. iQi! screen (4) and the same diameter (DO) as its arc
It circumscribes the area with , and when viewed from above, it has a half-moon shape.
It has a retention area (C) where retention is possible for 3 minutes or more, and has a drive rotating shaft (rotary blade shaft (5) in Figures 1 and 2).
is facing the vertical direction F, that is, it is a vertical point.

第3−1図において、供給される3〜20mmの角状の
重合体ゲルのうち、第1図に示されるように、竪型切断
機本体内部に設置されている回転刃(1)の軸(5)に
固定されたプリカッター(3)の先端部のカッティング
刃の回転によって、上記3〜20s−の角状重合体ゲル
のうちの内径10〜20mmという比較的大きな寸法の
重合体ゲルが破砕される。
In Fig. 3-1, among the angular polymer gels of 3 to 20 mm to be supplied, as shown in Fig. 1, the axis of the rotary blade (1) installed inside the vertical cutting machine main body is By rotating the cutting blade at the tip of the pre-cutter (3) fixed to (5), a relatively large polymer gel with an inner diameter of 10 to 20 mm is cut out of the 3 to 20 seconds square polymer gel. Shattered.

このとき3〜20g1iの角状の重合体ゲルは回転刃の
軸(5)の軸線上から回転刃の軸(5)をめがけて、供
給(落下)されることが本発明の方法の第1の要点であ
る。こうすることによって、粗大な径をもつ重合体ゲル
を選択的に、まず径3〜51の範囲に収れんさせること
ができる。かくして供給された3〜20+amの角状の
重合体ゲルは、3〜5mmにまず揃えられる。このよう
にして3〜5++vの範囲に切断された重合体ゲルは、
竪型切断機本体内に第1図のごとく組立てられた1番目
の固定刃(21と、回転する回転刃(1)との1−以下
の間隙にはさみこまれ、くい込まれると同時に切断され
る。切断された重合体ゲルは上から見ると円弧状のスク
リーン(4)と回転する回転刃(1)の外周端および1
番目の固定刃(2および2番目の固定刃(2−)とで囲
まれる領域(a)を回転刃(1)の回転する方向に沿い
2番目の固定刃(2′)まで移動する。
At this time, the first method of the present invention is to supply (drop) 3 to 20g1i of angular polymer gel from above the axis of the rotary blade shaft (5) toward the rotary blade shaft (5). This is the main point. By doing so, the polymer gel having a coarse diameter can be selectively converged to a diameter in the range of 3 to 51 mm. The 3-20+ am angular polymer gel thus supplied is first aligned to 3-5 mm. The polymer gel cut in the range of 3 to 5++v in this way is
The first fixed blade (21) assembled in the main body of the vertical cutting machine as shown in Fig. 1 is inserted into the gap of 1- or less between the rotating rotary blade (1), and is cut at the same time as it is inserted. .When viewed from above, the cut polymer gel has an arc-shaped screen (4), the outer peripheral edge of the rotating rotary blade (1), and 1
The area (a) surrounded by the second fixed blade (2) and the second fixed blade (2-) is moved along the rotating direction of the rotary blade (1) to the second fixed blade (2').

本発明の方法の第2の要点は、領域(a)内を移動しつ
つある切断された重合体ゲルの内、スクリーン(4)の
孔径(Ds)より小さい径をもつ重合−16一 体ゲルは遠心力により外方向に飛散し、スクリーン(4
)の孔を通過し、領域(a)から排出孔+71へ排出さ
れ、スクリーンの孔径(O5)より粗大な重合体ゲルと
分離されることである。
The second point of the method of the present invention is that among the cut polymer gels moving in the region (a), the polymerized-16 integral gel having a diameter smaller than the pore size (Ds) of the screen (4) is Due to centrifugal force, it scatters outward and forms a screen (4
), and is discharged from region (a) to the discharge hole +71, where it is separated from the polymer gel, which is coarser than the pore size (O5) of the screen.

一方、領域(a)を移動しつつある切断された重合体ゲ
ルの内、スクリーン(4)の孔径(O5)より大きい径
をもつ重合体ゲルは、第1図に示すように、再び2番目
の固定刃(2′)ど回転刃(1)にはさまれ、切断され
たのちスクリーン(4)と同一の径の円弧の描く円周と
回転刃(1)とで囲まれる領14 (b)内に回転刃(
1)の回転方向に沿って入り込む。そして、領域(b)
を移動する重合体ゲルは再び1番目の固定刃(2)と回
転刃(1)との間隙にはさみ込まれ、切断され、以後、
同様の切断が繰り返される。
On the other hand, among the cut polymer gels moving in the area (a), the polymer gels with a diameter larger than the pore size (O5) of the screen (4) are again placed in the second position as shown in FIG. The area 14 (b) is sandwiched between the fixed blade (2') and the rotating blade (1), and after being cut, the area 14 (b ) has a rotating blade (
It enters along the rotation direction of 1). and area (b)
The moving polymer gel is again caught in the gap between the first fixed blade (2) and the rotating blade (1) and cut.
Similar cuts are repeated.

このようにして、竪型切断機の回転軸(5)の軸線上か
ら下方にある回転軸(5)を目がけて供給(落下)され
た重合体ゲルの3〜20mmの径1ま、竪型切断機の排
出孔(力よりスクリーン(4)の孔径(口S)より小さ
いものに分別されて、連続して枡出され、所望の切断が
可能となる。このとさ、スクリーン(4)の孔(¥より
大きいしのは、1jホのように2番目の固定刃(2−)
と回転刃(1)とにより切断され、重合体ゲルの径を減
するが、第3fi目に重要なことは、こののち領域(b
)に入り込んだ切断された重合体ゲルが滞留領域(C)
に停滞することである。そののら、滞留領域(C)にお
いて平均的に少なくとも3分間滞留する重合体ゲルは、
回転刃の回転により固定刃(2)、(2−)および回転
刃(1)によりもう一度切断され、−ト述の切断過程を
繰り返す。その平均の滞留時間は少なくとも3分間をこ
え、しかも、滞留領域(C)に滞留している重合体ゲル
が回転刃(1)の遠心力により、非常にはげしい混合、
撹拌による造粒作用を受G−J、まるみを帯びてくる結
果、乾燥を経た粉末製品中の粒子形状は望ましい球状に
近づくことになる。
In this way, the diameter 1 of the polymer gel of 3 to 20 mm, which is supplied (dropped) from above the axis of the rotating shaft (5) of the vertical cutting machine to the rotating shaft (5) located below, is cut vertically. The discharge hole of the mold cutting machine (by force) is separated into pieces smaller than the hole diameter (portion S) of the screen (4), and is continuously screened out, making it possible to cut as desired. hole (for holes larger than ¥, use the second fixed blade (2-) like 1j ho)
and the rotary blade (1) to reduce the diameter of the polymer gel, but what is important in the 3rd fi is that after this, the area (b
) where the cut polymer gel that has entered the area remains (C)
It is to become stagnant. Then, the polymer gel, which resides for an average of at least 3 minutes in the retention zone (C),
As the rotary blade rotates, the fixed blades (2), (2-) and the rotary blade (1) cut again, and the cutting process described above is repeated. The average residence time exceeds at least 3 minutes, and the polymer gel staying in the residence area (C) is mixed very vigorously due to the centrifugal force of the rotating blade (1).
As a result of being rounded by the granulation effect caused by stirring, the shape of the particles in the dried powder product approaches the desired spherical shape.

このように本発明の方法では、破砕された重合体ゲルを
細粒化するのみにとどまらず、細粒子化された重合体ゲ
ルの形状を球状に近づけるという望ましい効果をも有づ
るものである。
As described above, the method of the present invention has the desirable effect of not only refining the crushed polymer gel but also making the shape of the refined polymer gel closer to a spherical shape.

本発明に用いる竪型切Ii機は、市販の代表的C1一般
的な粉砕機、たとえばフJザーミル、フィツミルなどと
異なり、被粉砕物の平均粉砕滞留0.1間を3分間以上
に保持することができるので、重合体ゲルが多数の切断
を受けることなく極めて少ない回数の切断で構出される
ため、均一な細粒状ゲルがえられる。そして、前記切断
機の構造の特徴はモの内部に竪り向に設問されている竪
型の固定刃(2)、(2′)と回転刃(1)との間隙を
調整すること、篩目の孔径(Ds)を変更すること、そ
して直列に複数台の竪型切断機を配置Jることによって
、すなわち該切li機を2〜数回通過させることによっ
て粉砕の滞留時間の1,111111を可能ならしめ、
たとえば1111φ以tのごとき小さな粒径の重合体ゲ
ルにまで馴することが容易になる点にある。そして11
1φ以下のごとき小さな粒径の小合体ゲルの形状が球に
近づくという望ましい効果を有している点にもある。か
かる構造を有する竪型切断機による破砕された重合体ゲ
ルの細粒化技術は、従来確立されていなかったものであ
る。
The vertical cutter II machine used in the present invention differs from commercially available typical C1 general pulverizers, such as Fuzer Mill and Fitz Mill, in that it maintains an average pulverization residence time of 0.1 for the material to be pulverized for 3 minutes or more. As a result, the polymer gel is constructed with a very small number of cuts without undergoing multiple cuts, resulting in a uniform fine-grained gel. The structure of the cutting machine is characterized by adjusting the gap between the vertical fixed blades (2), (2') and the rotary blade (1), which are installed vertically inside the cutting machine. By changing the hole diameter (Ds) and by arranging a plurality of vertical cutters in series, that is, by passing the cutter two to several times, the residence time of crushing can be reduced to 1,111111 make it possible,
For example, it is easy to adapt to polymer gels with small particle diameters such as 1111φ or smaller. and 11
Another point is that the shape of a small coalesced gel with a small particle size of 1φ or less has the desirable effect of approaching a sphere. A technique for refining crushed polymer gel using a vertical cutting machine having such a structure has not been established in the past.

たとえば第1段階として、3ii+φのスクリーンをセ
ットした切断機を用いて切断すると、約3illφ以下
に統一された細粒化重合体ゲルをうろことができる。つ
いで、第2段階として2■園φのスクリーンをセットし
た切断機により細粒化し、第3段階として111φのス
クリーンをセットした切断機を用いて細粒化すると、約
illφ以下に揃い、かつ丸味を有する微細粒子かえら
れる。このように目的とする粒径にあわせたスクリーン
を選定することによって目標の粒径のものがえられる。
For example, in the first step, when cutting is performed using a cutting machine equipped with a 3ii+φ screen, a finely divided polymer gel having a uniform particle size of about 3illφ or less can be obtained. Then, as a second step, the grains are finely divided using a cutting machine equipped with a screen of 2 mm diameter, and as a third step, the grains are refined using a cutting machine equipped with a screen of 111 diameter. Fine particles with In this way, by selecting a screen that matches the target particle size, the target particle size can be obtained.

なお本発明の方法を採用すると、本質的に湿式状態であ
る重合体ゲルを細粒化する段階において粉塵の発生がほ
とんどなく、粒子径の均一な、いわば単分散に近い粒径
分布のものかえられる。
Furthermore, when the method of the present invention is adopted, almost no dust is generated during the step of refining the polymer gel, which is essentially in a wet state, and the particle size distribution can be changed to a uniform particle size distribution that is close to monodisperse. It will be done.

重合体ゲルを破砕し、細粒化するばあいに、切断効率を
高くし、かつえられた細片状の重合−20一 体ゲルおよびさらに細粒化された重合体ゲルの再付着を
防止するために、切断時の重合体ゲルの温度をできるだ
【ノ低くたもつことが好ましい。
In order to increase the cutting efficiency when crushing the polymer gel and making it into fine particles, and to prevent the re-adhesion of the obtained fragment-shaped polymerized-20 integral gel and the further fine-grained polymer gel. In addition, it is preferable to keep the temperature of the polymer gel as low as possible during cutting.

重合体ゲルの温度を低くする方法としては、細片状に破
砕するばあいには重合段階において冷却を充分行なう方
法、重合によりえられた重合体ゲルを破砕機で破砕する
以前に冷風などにより強制的に冷却する方法などによっ
て達成されるが、通常10〜30℃、好ましくは20℃
以下に調整することが好ましい。
Methods for lowering the temperature of the polymer gel include cooling sufficiently during the polymerization stage when crushing it into small pieces, and cooling the polymer gel obtained by polymerization by blowing cold air etc. before crushing it with a crusher. This can be achieved by forced cooling, but usually 10 to 30°C, preferably 20°C
It is preferable to adjust as follows.

また破砕時に冷風、好ましくは25℃以下の冷風を通じ
たりして破砕工程を冷却しながら、たとえば短ざく状に
したもののストランドを製造し、ついで該ストランドを
さらに細片状に切断すると、切断時の摩擦熱、ローラー
型カッターなどの駆動熱などにより、重合体ゲルがべと
ついたり、切断された重合体ゲルの細片同士が相互付着
してブロック状になったりすることを軽減することがで
きる。
Furthermore, if the crushing process is cooled by passing cold air, preferably cold air of 25°C or less, during the crushing process, for example, a strand of short pieces is produced, and then the strand is further cut into small pieces. It can reduce the possibility that the polymer gel becomes sticky due to frictional heat or the driving heat of a roller cutter, etc., or that the cut pieces of polymer gel stick to each other and form blocks. .

また細片状にした重合体ゲルをさらに細粒化するばあい
には、細片状にするばあいと同様、細粒化する破砕され
た重合体ゲルを前もって強υ1的に冷却したり、細粒化
する際に冷風、好ましくは25℃以下の冷風を通じたり
して細粒化工程を冷却しながら行なうと、細片状にする
ばあいと同様の効果かえられる。
In addition, when the polymer gel that has been made into fine particles is further made into fine particles, the crushed polymer gel to be made into fine particles may be strongly cooled in advance, as in the case where the polymer gel is made into fine pieces. If the granulation step is carried out while cooling the particles by passing through cold air, preferably cold air at 25° C. or lower, the same effect as in the case of forming into small pieces can be obtained.

なお破砕、細粒化T稈において、必要によりポリエチレ
ングリ」−ル、非イオン系界面活性剤、アニオン系界面
活性剤などを破砕機や竪型切断機に投入したり、重合体
ゲル表面や破砕重合体ゲル表面に塗布したりして、細片
状の重合体ゲルや細粒化した重合体ゲルの再付着を防止
したりしてもよい。
In addition, when crushing and refining the T culm, polyethylene glycol, nonionic surfactants, anionic surfactants, etc. may be added to the crusher or vertical cutting machine as necessary, or the surface of the polymer gel or crushed It may also be applied to the surface of the polymer gel to prevent re-adhesion of the fragmented polymer gel or finely granulated polymer gel.

本発明の方法を行なうに際して、水溶性ビニル系単愚体
の水溶液を、たとえばエンドレスベルトなどの可動式支
持体上で薄膜状に重合させて重合体ゲルをえ、ひきつづ
いて連続的に3〜2(h+vの角状に破砕し、ついで竪
型切Ii機により平均粒径03〜31−程度に細粒化す
ると、■程全体を連続化することができる。さらに重合
に紫外線照射法を採用すると、短時間に重合体ゲルがえ
られることとなり、また破砕、細粒化時に25℃以下の
冷風を通じながら行なうと、破砕効率、細粒化効率を向
トさせることができる。
In carrying out the method of the present invention, an aqueous solution of a water-soluble vinyl monomer is polymerized into a thin film on a movable support such as an endless belt to obtain a polymer gel, and then continuously (By crushing into h+v square shapes, and then fine-graining to an average particle size of about 03 to 31- by a vertical cutter Ii, it is possible to make the whole part continuous as in ■.Furthermore, if an ultraviolet irradiation method is used for polymerization, A polymer gel can be obtained in a short time, and if the crushing and pulverization are carried out while passing cold air at 25° C. or lower, the crushing efficiency and pulverization efficiency can be improved.

本発明の方法は本質的に湿式状態である重合体ゲルを細
粒化する方法であるので、本発明の方法を採用すると、
一般に用いられている乾式状態下での細粒化方法、つま
り乾燥工程をへた重合体を乾式状態で粉砕するばあいく
以下、乾式粉砕という)にみられるような■粉塵発生に
よる微粉の発生、■粉砕時に発生する粉砕熱、■粉砕熱
に起因する分子量の低下、水不溶性物質の生起のごとき
欠点を克服することができる。
Since the method of the present invention is a method of refining a polymer gel that is essentially in a wet state, when the method of the present invention is adopted,
Generation of fine powder due to dust generation, as seen in the generally used dry pulverization method (in other words, when the drying process is completed, the polymer is pulverized in the dry state, hereinafter referred to as dry pulverization). It is possible to overcome drawbacks such as (1) crushing heat generated during crushing, (2) reduction in molecular weight due to crushing heat, and generation of water-insoluble substances.

より詳しく述べれば、本発明に用いる竪型切断機は平均
粉砕滞留時間が少なくとも3分間で、かつ竪型の構造を
持つため、一般に採用されている乾式状態で使用される
粉砕機などのように、粉砕滞留時間の短かいばあいと異
なり、湿式状態において微細化される重合体ゲルに含有
される水分の助IJによって微粉末の発生を防11ツる
ことができ、かつ充分な切断時間を与えられることによ
って粒子形状を均一に保ちえるまで微細化できる。
More specifically, the vertical cutting machine used in the present invention has an average crushing residence time of at least 3 minutes and has a vertical structure, so it is not as effective as a commonly used crusher used in a dry state. Unlike the case where the grinding residence time is short, the generation of fine powder can be prevented by the water content contained in the polymer gel that is atomized in the wet state, and the cutting time is sufficient. By providing this, it is possible to refine the particle shape until it can be kept uniform.

本発明の方法によってえられる細粒化した粒子の粒子径
の分布は、はぼ単分散に近く、かかる特異なすぐれた分
布は、従来の方法では決してえられなかったものである
The particle size distribution of the fine particles obtained by the method of the present invention is almost monodisperse, and such a unique and excellent distribution has never been obtained by conventional methods.

本発明のごどき湿式状態下での1.II断のばあいには
、乾式粉砕のばあいと異なり、切断・粉砕時に発生する
熱の多くは、重合体ゲルの保有りる豊富な水分(たとえ
ば30〜IO%)の蒸発潜熱に置換されてしまい、粉砕
濃度の著しい上層をもたらすことはない。この粉砕温度
の抑制効果によって重合体品質の劣化、たとえば分子量
の低下、水不溶性物質の生起などが防止できる。
1. Under wet conditions as in the present invention. In the case of II cutting, unlike in the case of dry grinding, much of the heat generated during cutting and grinding is replaced by the latent heat of vaporization of the abundant water (for example, 30 to IO%) held by the polymer gel. This will not result in a significant upper layer of grinding concentration. This effect of suppressing the grinding temperature can prevent deterioration of polymer quality, such as a decrease in molecular weight and the formation of water-insoluble substances.

このように品質劣化防止の点で本発明の方法は格段に優
れた利点を有している。それゆえ一般に用いられている
乾式粉砕と比較すると、粉砕時に発生する熱量は重合体
ゲルが含有する充分な量の水の蒸発潜熱に置換されるの
で、望まし=  24 − くない水準にまで粉砕温度を^めることを防11するこ
とができる。その結果、重合体品質の劣化、たとえば分
子量の低下、水不溶性物質のl[起などの品質ト好まし
くない現象を排除しうる。
As described above, the method of the present invention has a significantly superior advantage in terms of preventing quality deterioration. Therefore, compared to commonly used dry grinding, the amount of heat generated during grinding is replaced by the latent heat of vaporization of the sufficient amount of water contained in the polymer gel, reducing the grinding to an undesirable = 24 - undesirable level. It is possible to prevent the temperature from dropping. As a result, undesirable phenomena such as deterioration of polymer quality, such as reduction in molecular weight and formation of water-insoluble substances, can be avoided.

つぎに本発明の方法を実施例にもとづき説明する。Next, the method of the present invention will be explained based on examples.

実施例1 ヂッ索ガスで密閉しつる箱型の小さな室内にジ11ケッ
i・付重合装置(縦200IIIID、横300m5 
Example 1 A polymerization device with 11 cages (length 200IIID, width 300m5
.

^さ50111の角型容器1.F部蓋なし)を設置した
^Square 50111 square container 1. F section (without lid) was installed.

1i2酸素槽(容量1aの円筒型)において溶存酸素を
チッ素ガスにより充分除去したアクリルアミド200o
を、脱イオン水275gに溶解させた単嬶体水溶液に、
5%過硫酸カリウム水溶液5−および5%亜硫酸ソーダ
水溶1lli5IRIlを添加し、数分間チッ素ガスで
脱酸素を継続したのち、チッ素ガスで密閉された室内に
設置された該重合装置に導入し、重合を開始させた。ジ
ャケット内には25℃の水を通しておいた。重合は約1
0分後に開始し、単層体水溶液は徐々に増粘した。重合
開始後15分を経過した時点で単量体水溶液は、ゆるや
かに流動する状態を呈した。
Acrylamide 200o from which dissolved oxygen was sufficiently removed with nitrogen gas in a 1i2 oxygen tank (cylindrical type with a capacity of 1a)
was dissolved in 275 g of deionized water to a monomer aqueous solution,
After adding 5% potassium persulfate aqueous solution 5- and 5% sodium sulfite aqueous solution 1lli5IRIl and continuing deoxidizing with nitrogen gas for several minutes, the mixture was introduced into the polymerization apparatus installed in a room sealed with nitrogen gas. , initiated the polymerization. Water at 25°C was passed through the jacket. Polymerization is about 1
Starting after 0 minutes, the aqueous monolayer solution gradually thickened. At the time point when 15 minutes had passed after the start of polymerization, the monomer aqueous solution was in a state of gently flowing.

重合開始後約2時間すると、重合体はかたいゲル状とな
った。該重合体ゲルは厚さ約8mlであった。
Approximately 2 hours after the start of polymerization, the polymer became a hard gel. The polymer gel was approximately 8 ml thick.

えられた重合体ゲルを第4図〜第6図に示すごとき破砕
機で、ローラー型カッターの凹凸の巾4mm、凹部の深
さ10Ill11凸部の高さ10m3かみあいの深さく
重合体ゲルが通過するのに必要な間隙(X3 ))12
11、ローラー型カッターの表面スピード10.5cm
/分、回転刃が20〜100r/分なる回転数の破砕機
を調節して20℃で破砕すると、約3 X 8X 3 
Imの角状に切断された。そののち、第1図〜第3図に
示すごとき竪型切断機に、上方から約3 X (3X 
3 IImの角状の重合体ゲルを供給、落下させ、約1
5℃の冷風を通じながら、第1段階として3IIllφ
スクリーンをセットした竪型切断機で切断し、ついで第
2段階として21Ilφスクリーン、第3段階として1
■φスクリーンをセットした竪型切断機により切断した
。その結束、約1■φに整った細り化された重合体ゲル
がえられた。
The resulting polymer gel was passed through a crusher as shown in Figures 4 to 6 through a roller-type cutter with a width of 4 mm of unevenness, a depth of 10 mm of concave portions, and a height of 10 m3 of convex portions. Gap required to do so (X3)) 12
11. Surface speed of roller type cutter 10.5cm
When crushing at 20°C by adjusting the rotation speed of the rotary blade at 20 to 100 r/min, approximately 3 x 8 x 3
Im horns were cut. After that, about 3X (3X
3 IIm angular polymer gel is supplied and dropped, approximately 1
3IIllφ as the first step while passing cold air at 5℃
It is cut with a vertical cutting machine equipped with a screen, then a 21Ilφ screen is cut in the second stage, and a 11Ilφ screen is cut in the third stage.
■It was cut using a vertical cutting machine equipped with a φ screen. A thinned polymer gel having a size of approximately 1 φ was obtained.

えられた約iii+φの重合体ゲルを80℃で熱風乾燥
すると、約25分間で水分率10%lス下の粒径の整っ
た粉粒体かえられた。該粉粒体は、固有粘度23dl/
(lで水不溶性物質を全く含まない水溶液となり、凝集
剤として有用であった。
When the obtained polymer gel of approximately iii+φ was dried with hot air at 80° C., it was transformed into a powder with a moisture content of 10% or less and a uniform particle size in about 25 minutes. The powder has an intrinsic viscosity of 23 dl/
(1), it became an aqueous solution containing no water-insoluble substances and was useful as a flocculant.

比較例1 実施例1でえられた3 x 8x 3 +uの角状の重
合体ゲルを80℃で熱風乾燥すると、約60分間かかっ
て漸く水分率10%以下の粉粒体となったが、ベレット
状の粉粒体であり、さらに粉砕する必要があった。
Comparative Example 1 When the 3 x 8 x 3 +U angular polymer gel obtained in Example 1 was dried with hot air at 80°C, it took about 60 minutes to finally become powder with a moisture content of 10% or less. It was a pellet-like powder and needed to be further crushed.

約11Ilφスクリーンを有するフィツミル型粉砕機で
粉砕すると、100メツシユパスの超微粉の発生が著し
く(約3.43%)、粉立ちの多い粉末となった。
When the powder was pulverized using a Fitzmill-type pulverizer having a screen of approximately 11 Ilφ, the generation of ultrafine powder of 100 mesh passes was significant (approximately 3.43%), resulting in a powder with a large amount of dust.

えられた粉末品の固有粘痘は21.5dl/Qであり、
水不溶性物質の多い粉末であり、明らかに、乾燥、粉砕
段階で品質劣化が生起していた。
The inherent mucus of the obtained powder product was 21.5 dl/Q,
The powder contained a large amount of water-insoluble substances, and the quality had clearly deteriorated during the drying and grinding stages.

−27一 実施例2 表面には四フッ化エチレンーエチレン共重合体フィルム
(厚さ50μm)を装着した幅4501Ill、有効長
3.00011のステンレス鋼製のエンドレスベルトの
裏面に温水〜冷水を噴賞しつる構造としたものを重合用
の可動式の支持体として、チッ素ガスで完全に充満され
た室内に設置し、30鵬■/分の定速度で可動せしめ、
ベルトの裏面に25℃の水を噴霧した。
-27-Example 2 Hot to cold water was sprayed on the back side of a stainless steel endless belt with a width of 4501 Ill and an effective length of 3.00011 mm and a tetrafluoroethylene-ethylene copolymer film (thickness 50 μm) was attached to the surface. A vine structure was installed as a movable support for polymerization in a room completely filled with nitrogen gas, and it was moved at a constant speed of 30 cm/min.
Water at 25° C. was sprayed on the back side of the belt.

10%塩酸水溶液でpH4に調整した濃度75%のN、
 N、 N−トリメチルアミノエチルメタクリレートク
ロライドモノマー水溶液約30aをチッ素ガスにより充
分脱気し、稼動状態にある前記ベルト上に10a/時間
の速度で該ベルトの一端から定量供給した。
N with a concentration of 75% adjusted to pH 4 with a 10% aqueous hydrochloric acid solution,
Approximately 30 μm of an aqueous solution of N,N-trimethylaminoethyl methacrylate chloride monomer was sufficiently degassed with nitrogen gas, and was quantitatively fed onto the belt in operation at a rate of 10 μm/hour from one end of the belt.

なお、ベルト上部に設置した2個の撹拌機付き一時貯槽
(5d1M)に、それぞれ重合開始剤として5%過硫酸
カリウム溶液および亜硫酸ナトリウム溶液を入れ、それ
ぞれ70d /時間の速度で連続的に供給し、混合しな
がら上記モノマー水溶液に加え、均一に混合しながら前
記ペルトートに供給した。
In addition, 5% potassium persulfate solution and sodium sulfite solution were placed as polymerization initiators in two temporary storage tanks (5d1M) with a stirrer installed above the belt, and each was continuously supplied at a rate of 70d/hour. , was added to the above monomer aqueous solution while mixing, and fed to the Pel tote while being mixed uniformly.

前記条件においては供給後約20分で重合が開始した。Under the above conditions, polymerization started approximately 20 minutes after the supply.

七ツマー水溶液がベルト上で重合に供される時間は10
0分間、重合時における七ツマー水溶液層は約12mm
および全重合所要時間は2時間であった。
The time for polymerization of the 7-mer aqueous solution on the belt is 10
0 minutes, the layer of 7-mer aqueous solution during polymerization is approximately 12 mm.
And the total polymerization time was 2 hours.

七ツマー水溶液供給開始から120分後にエンドレスベ
ルトの他端より約12i+mの厚さのシート状の重合体
かえられた。えられた重合体はベルト表面から人力によ
って容易に剥離される状態にあって約3時間の連続重合
が可能であった。
120 minutes after the start of supply of the seven-mer aqueous solution, a sheet-like polymer having a thickness of about 12 i+m was transferred from the other end of the endless belt. The obtained polymer was easily peeled off from the belt surface by hand, and continuous polymerization for about 3 hours was possible.

えられた重合体ゲルの温度は約28℃であった。The temperature of the resulting polymer gel was about 28°C.

エンドレスベルトの他端より連続的にえられた重合体ゲ
ルシートを、第4図〜第6図に示すごとき破砕機に、第
5図に示づようにかみ合う方向に回転するローラー型カ
ッター(13)、(14)の上方から連続的に供給し、
破砕し、破砕機出口より約5X12X511mの角状の
重合体ゲルを取得した。
The polymer gel sheet continuously obtained from the other end of the endless belt is passed through a crusher as shown in Figs. 4 to 6 using a roller-type cutter (13) that rotates in the direction of engagement as shown in Fig. 5. , (14) is continuously supplied from above,
It was crushed, and a angular polymer gel of approximately 5 x 12 x 511 m was obtained from the crusher outlet.

そののち、第1図〜第2図に示すごとき竪型切断機に、
第3図に示すように回転刃の軸(5)の垂直−上方から
、上記角状の重合体ゲルを供給した。このとぎ竪型切断
機はスクリーンの孔の径が約3msφとなるようなスク
リーンをセットした。竪型切断機の上方から約15℃の
冷風を通じながら切断し、ついで2smφのスクリーン
、さらに1i+mφのスクリーンをセットした切断機を
用いて切断を行ない、約1im+φに整った細粒化され
た重合体ゲルをえた。
After that, a vertical cutting machine as shown in Figures 1 and 2 is used.
As shown in FIG. 3, the angular polymer gel was supplied from vertically above the shaft (5) of the rotary blade. This vertical cutting machine was equipped with a screen in which the diameter of the hole in the screen was approximately 3 msφ. Cutting is carried out while blowing cold air at about 15°C from the top of a vertical cutting machine, and then cutting is performed using a cutting machine equipped with a 2smφ screen and then a 1i+mφ screen, resulting in fine particles of approximately 1im+φ. I got the gel.

えられた約11Iφの細粒化された重合体ゲルを通風式
バンド型乾燥機により80℃で乾燥させたところ、約1
5分間で水分率10%以下の粉粒体がえられた。
The resulting finely divided polymer gel of about 11 Iφ was dried at 80°C in a ventilation band type dryer, resulting in a particle size of about 1
Powder with a moisture content of 10% or less was obtained in 5 minutes.

えられた粉粒体の水溶性は、水不溶性物質を全く含まず
、固有粘度7.0dl/gであった。
The water solubility of the obtained granular material was that it contained no water-insoluble substances and had an intrinsic viscosity of 7.0 dl/g.

比較例2 実施例2でえられた約5X12X511の角状の重合体
ゲルを実施例2と同様の条件で乾燥さUると、約40分
間かかつて水分率10%以下になつた。該乾燥物の水溶
液は固有粘度6.8d110であり、若干の水不溶性物
質を含んでいた。
Comparative Example 2 When the approximately 5 x 12 x 511 angular polymer gel obtained in Example 2 was dried under the same conditions as in Example 2, the moisture content decreased to below 10% in about 40 minutes. The aqueous solution of the dried product had an intrinsic viscosity of 6.8 d110 and contained some water-insoluble substances.

実施例3 ステンレス鋼製のrl+4501m 、 44効艮3.
000uのエンドレスベルトに、裏面がアルミニウムで
蒸着された四フッ化エチレンーエチレン共重合体フィル
ムを装着し、下方向から渇水〜冷水を前記エンドレスベ
ルトに噴霧しうる構造としたものを重合用の可動式支持
体として、チッ素ガスで完全に充満された室内に設置し
、100u+ /分の定速度で稼動せしめ、ベル1−の
下方向から15℃の水を噴霧した。また、可動式支持体
の上部に(よ紫外線照射源として低圧水銀ランプを設置
し、紫外線の強度を50W、/m”とした。
Example 3 Stainless steel RL+4501m, 44 effect 3.
000U endless belt is equipped with a tetrafluoroethylene-ethylene copolymer film whose back side is vapor-deposited with aluminum, and has a structure that allows dry to cold water to be sprayed onto the endless belt from below. The support was placed in a room completely filled with nitrogen gas, operated at a constant speed of 100 u+/min, and water at 15 DEG C. was sprayed from below the bell 1-. In addition, a low-pressure mercury lamp was installed as an ultraviolet irradiation source on the upper part of the movable support, and the intensity of the ultraviolet rays was set to 50 W/m''.

10%塩酸水溶液でpl−14に調整した濃度75%の
14.HJ−トリメチルアミノエチルメタクリレートク
ロライドモノマー水溶液層401をチッ素ガスにより充
分脱気し、稼動状態にある前記ベル1−十に+3.5d
/時間の速度で該ベルトの一端から定鋪供給した。
14. with a concentration of 75% adjusted to pl-14 with a 10% aqueous hydrochloric acid solution. The HJ-trimethylaminoethyl methacrylate chloride monomer aqueous solution layer 401 was sufficiently degassed with nitrogen gas, and the bell 1-1, which was in operation, was heated by +3.5 d.
A constant feed was applied from one end of the belt at a rate of 1/hr.

また、ベルト上部に設置した撹拌機付き一時貯槽(5a
容量)から重合開始剤としてベンゾインイソプロピルエ
ーテルの5%メタノール溶液を30m /時間の速度で
上記モノマー水溶液中に供給し、モノマー水溶液と重合
開始剤とを均一に混合せさながら紫外線照射による重合
を行なった。
In addition, a temporary storage tank (5a) with a stirrer installed above the belt.
A 5% methanol solution of benzoin isopropyl ether as a polymerization initiator was supplied into the above monomer aqueous solution at a rate of 30 m/hour from the volume), and polymerization was performed by ultraviolet irradiation while uniformly mixing the monomer aqueous solution and the polymerization initiator. .

前記条件においては、モノマー水溶液がベルト上で重合
に供される時間は30分間、重合時におけるモノマー水
溶液層は約5■であった。
Under the above conditions, the time period during which the aqueous monomer solution was subjected to polymerization on the belt was 30 minutes, and the layer of the aqueous monomer solution during polymerization was about 5 cm.

モノマー水溶液供給開始から30分後にエンドレスベル
トの他端より51の厚さのシート状の重合体かえられた
。えられた重合体はベルト表面から人力で容易に剥離さ
れる状態にあり、約3時間の連続重合が可能であった。
Thirty minutes after the start of supply of the monomer aqueous solution, a sheet-like polymer having a thickness of 51 mm was transferred from the other end of the endless belt. The obtained polymer was in a state where it could be easily peeled off manually from the belt surface, and continuous polymerization for about 3 hours was possible.

えられた重合体ゲルは20℃であった。The temperature of the resulting polymer gel was 20°C.

エンドレスベルトの他端より連続的にえられた重合体ゲ
ルシートを第4図〜第6図に示すごとき破砕機に、第5
図に示すようにかみ合う方向に回転するローラー型カッ
ター(13)、(14)の上方から連続的に供給し、破
砕し、3X5X51の角状の重合体ゲルを取得した。
The polymer gel sheet continuously obtained from the other end of the endless belt is passed through a crusher as shown in Figs.
As shown in the figure, the roller type cutters (13) and (14) rotating in the interlocking direction were continuously supplied from above and crushed to obtain a 3×5×51 square polymer gel.

ついで、約15℃の冷風を通じながら、約3Ilφのス
クリーンをセットした第1図〜第3図に示すごとき切断
機で、第3図に示されるごとく回転刃の軸(5)の垂直
上方から上記角状の重合体ゲルを供給して、細粒化し、
続いて約2−φのスクリーンおよび約111φのスクリ
ーンをセットした切断機にこの順にとおして切断し、約
11Iφに整った細粒化した重合体ゲルをえた。
Next, while blowing cold air at about 15°C, the above is cut from vertically above the shaft (5) of the rotary blade as shown in Fig. 3 using a cutting machine as shown in Figs. Supplying angular polymer gel and pulverizing it,
Subsequently, the polymer gel was cut through a cutting machine equipped with a screen of about 2-φ and a screen of about 111φ in this order to obtain a finely divided polymer gel having a size of about 11Iφ.

えられた約11Iφの細粒化した重合体ゲルを通風式バ
ンド型乾燥機により80℃で乾燥させたところ、約13
分間で水分率10%以下の粉粒体かえられた。
The resulting finely divided polymer gel of about 11 Iφ was dried at 80°C in a ventilation band type dryer, resulting in a particle size of about 13
Powder with a moisture content of 10% or less was changed in minutes.

えられた粉粒体の水溶性は水不溶性物質を全く含まず、
固有粘度7.8d110であった。
The water solubility of the obtained powder and granules does not contain any water-insoluble substances,
The intrinsic viscosity was 7.8d110.

比較例3 実施例3でえられた約3X5X511の角状の重合体ゲ
ルを実施例3と同様の条件で乾燥させたところ、約35
分間で水分率10%以下になった。
Comparative Example 3 When the angular polymer gel of about 3 x 5 x 511 obtained in Example 3 was dried under the same conditions as in Example 3, about 35
The moisture content decreased to 10% or less in minutes.

えられた乾燥物の水溶液は固有粘度7.5d l /Q
であり、若干の水不溶製物質を含んでいlこ。
The aqueous solution of the dried product obtained has an intrinsic viscosity of 7.5 dl/Q
It contains some water-insoluble substances.

[発明の効果] 本発明の方法を用いると ■ 重合体ゲルを連続して破砕および111粒化するこ
とができる ■ 重合体ゲルを極めて細かく粒状にすることができ、
かつ重合体ゲル細粒化物の相互の61着を防止しつる結
果、次工程の乾燥効率を人中にアップしつる ■ 細粒化物(粉末)中に含まれる、たとえば100メ
ツシユペスの微粉の量は極めて少なく、従来問題視され
ていた粉塵発生、粉立ちなどを解消しつる ■ 重合体ゲルの破砕ないし粗砕時における重合度ある
いは分子量の低下がほとんどない(従来法では分子−の
低下が著しく、改良が要求されている) ■ 重合体ゲルを細粒化したのち乾燥して、えられた製
品(粉末)は、球状を帯び製品(粉末)の流動性を改善
するという顕著な効果を有する などの効果がえられる。
[Effects of the Invention] By using the method of the present invention, (1) the polymer gel can be continuously crushed and made into 111 particles; (2) the polymer gel can be made into extremely fine particles;
As a result, the drying efficiency of the next process can be improved by preventing the adhesion of the fine particles of polymer gel to each other.■ The amount of fine powder, for example, 100 mesh pes, contained in the fine particles (powder) is This eliminates the generation of dust, which was considered a problem in the past. There is almost no decrease in the degree of polymerization or molecular weight when crushing or crushing the polymer gel. (Improvement is required) ■ The product (powder) obtained by pulverizing the polymer gel and drying it has a spherical shape and has the remarkable effect of improving the fluidity of the product (powder). You can get the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3−1図は本発明に用いる切断機の一実施態様に
関する説明図、第3−2図は第3−1図に用いたスクリ
ーンの構造のみを立体的に示した説明図、第4図〜第6
図は本発明に用いる細片状破砕物を製造するための破砕
機の一実論態様に関する説明図、第7図は第6図に示す
ローラー型カッターのかみ合い部分に関する説明図、第
8図は第7図に示すかみ合い部分を詳細に説明するため
の拡大説明図である。 (図面の主要符号) (1):回転刃 +21 : 1番目の固定刃 (2°): 2m目の固定刃 (cl:1留領域 (2):1番目の固定刃 第3−1図 第3−2圀 第4図 −C ,1′5図 26図 オフ図 /。 才8図
Figures 1 to 3-1 are explanatory diagrams relating to one embodiment of the cutting machine used in the present invention; Figure 3-2 is an explanatory diagram showing only the structure of the screen used in Figure 3-1 in three dimensions; Figures 4 to 6
The figure is an explanatory diagram of a practical embodiment of the crusher for producing the shredded material used in the present invention, FIG. 7 is an explanatory diagram of the engaging part of the roller type cutter shown in FIG. 6, and FIG. FIG. 8 is an enlarged explanatory diagram for explaining in detail the meshing portion shown in FIG. 7; (Main symbols in the drawing) (1): Rotating blade +21: 1st fixed blade (2°): 2m fixed blade (cl: 1 station area (2): 1st fixed blade Figure 3-1) 3-2, Figure 4-C, 1'5, Figure 26, off view/.

Claims (1)

【特許請求の範囲】 1 水溶性ビニル系単量体の水溶液を重合させてえられ
た重合体ゲルを破砕したのち、固定刃と回転刃から構成
され、粉砕されるべき重合体ゲルが滞留する領域を有し
、かつ平均粉砕滞留時間が少なくとも3分間以上となる
竪型切断機により粉砕された重合体ゲルをさらに切断し
、細粒化することを特徴とする水溶性重合体ゲルの細粒
化方法。 2 水溶性ビニル系単量体の水溶液を可動式支持体上で
薄膜状に重合させてえられた重合体ゲルを、連続的に3
〜20mmの角状に破砕し、ついで竪型切断機により平
均粒径0.3〜3mmに細粒化する特許請求の範囲第1
項記載の方法。 3 前記重合体ゲルが、薄膜状にした水溶性ビニル系単
量体の水溶液に紫外線を照射してえられた重合体ゲルで
ある特許請求の範囲第1項または第2項記載の方法。 4 25℃以下の冷風を通じながら連続的に破砕し、さ
らに細粒化する特許請求の範囲第1項、第2項または第
3項記載の方法。
[Claims] 1. After crushing a polymer gel obtained by polymerizing an aqueous solution of a water-soluble vinyl monomer, the blade is composed of a fixed blade and a rotating blade, and the polymer gel to be crushed remains. Fine granules of a water-soluble polymer gel, characterized in that the polymer gel is further cut into fine particles by further cutting the pulverized polymer gel using a vertical cutter having a pulverization area and an average pulverization residence time of at least 3 minutes or more. method. 2. A polymer gel obtained by polymerizing an aqueous solution of a water-soluble vinyl monomer into a thin film on a movable support is continuously
Claim 1: The product is crushed into square shapes of ~20 mm, and then refined to an average particle size of 0.3 to 3 mm using a vertical cutter.
The method described in section. 3. The method according to claim 1 or 2, wherein the polymer gel is a polymer gel obtained by irradiating an aqueous solution of a water-soluble vinyl monomer in the form of a thin film with ultraviolet rays. 4. The method according to claim 1, 2, or 3, in which the particles are continuously crushed while passing through cold air at 25° C. or lower to further refine the particles.
JP23356184A 1984-11-06 1984-11-06 Granulation of water-soluble polymer gel Granted JPS61110511A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP23356184A JPS61110511A (en) 1984-11-06 1984-11-06 Granulation of water-soluble polymer gel
CA000494151A CA1253833A (en) 1984-11-06 1985-10-29 Process for preparing water-soluble polymer gel particles
FR858516383A FR2572671B1 (en) 1984-11-06 1985-11-05 PROCESS FOR THE PREPARATION OF WATER-SOLUBLE POLYMER GEL PARTICLES
FI854352A FI84448C (en) 1984-11-06 1985-11-05 FOERFARANDE FOR FRAMSTAELLNING AV VATTENLOESLIGA POLYMERPARTIKLAR.
CN85109717A CN1007796B (en) 1984-11-06 1985-11-05 Process for preparing water-soluble polymer gel particles
US06/795,263 US4690788A (en) 1984-11-06 1985-11-05 Process for preparing water-soluble polymer gel particles
DE19853539385 DE3539385A1 (en) 1984-11-06 1985-11-06 METHOD FOR PRODUCING POLYMER GEL PARTICLES
GB8530862A GB2184054B (en) 1984-11-06 1985-12-14 Process for preparing water-soluble polymer gel particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23356184A JPS61110511A (en) 1984-11-06 1984-11-06 Granulation of water-soluble polymer gel

Publications (2)

Publication Number Publication Date
JPS61110511A true JPS61110511A (en) 1986-05-28
JPH032042B2 JPH032042B2 (en) 1991-01-14

Family

ID=16956994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23356184A Granted JPS61110511A (en) 1984-11-06 1984-11-06 Granulation of water-soluble polymer gel

Country Status (1)

Country Link
JP (1) JPS61110511A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275773A (en) * 1991-02-01 1994-01-04 Nippon Shokubai Co., Ltd. Method for production of particulate hydrated gel polymer and absorbent resin
JPH11188726A (en) * 1997-12-25 1999-07-13 Nippon Shokubai Co Ltd Production of water-absorbable resin
JPH11188725A (en) * 1997-12-25 1999-07-13 Nippon Shokubai Co Ltd Production of water absorbable resin
JPH11349687A (en) * 1998-04-07 1999-12-21 Nippon Shokubai Co Ltd Particulate water-containing gel polymer and preparation of water absorption resin
EP1510317A1 (en) * 2003-09-01 2005-03-02 Nippon Shokubai Co., Ltd. Process for production of hydrogel particles and process for cutting of high-concentration hydrogel sheet
JP2019127522A (en) * 2018-01-24 2019-08-01 Mtアクアポリマー株式会社 Manufacturing method powdery water-soluble polymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017453A1 (en) * 1996-10-24 1998-04-30 Nippon Shokubai Co., Ltd. Method of production of water-absorbing resin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193109A (en) * 1982-05-06 1983-11-10 Sumitomo Chem Co Ltd Breaking method of hydrous high molecular weight water soluble polymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193109A (en) * 1982-05-06 1983-11-10 Sumitomo Chem Co Ltd Breaking method of hydrous high molecular weight water soluble polymer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275773A (en) * 1991-02-01 1994-01-04 Nippon Shokubai Co., Ltd. Method for production of particulate hydrated gel polymer and absorbent resin
JPH11188726A (en) * 1997-12-25 1999-07-13 Nippon Shokubai Co Ltd Production of water-absorbable resin
JPH11188725A (en) * 1997-12-25 1999-07-13 Nippon Shokubai Co Ltd Production of water absorbable resin
JPH11349687A (en) * 1998-04-07 1999-12-21 Nippon Shokubai Co Ltd Particulate water-containing gel polymer and preparation of water absorption resin
EP1510317A1 (en) * 2003-09-01 2005-03-02 Nippon Shokubai Co., Ltd. Process for production of hydrogel particles and process for cutting of high-concentration hydrogel sheet
US7638078B2 (en) 2003-09-01 2009-12-29 Nippon Shokubai Co., Ltd. Process for production of hydrogel particles and process for cutting of high-concentration hydrogel sheet
JP2019127522A (en) * 2018-01-24 2019-08-01 Mtアクアポリマー株式会社 Manufacturing method powdery water-soluble polymer

Also Published As

Publication number Publication date
JPH032042B2 (en) 1991-01-14

Similar Documents

Publication Publication Date Title
US4690788A (en) Process for preparing water-soluble polymer gel particles
EP0497623B1 (en) Method for production of particulate hydrated gel polymer and absorbent resin
US9120100B2 (en) Shredder for super absorbent polymer and preparation method of super absorbent polymer using the same
JP6310046B2 (en) Water absorbent resin powder
JPS62235305A (en) Production of high-molecular-weight acrylic polymer
CN106414527B (en) Super absorbent polymer and preparation method thereof
JP5883948B2 (en) Method for producing polyacrylic acid (salt) water-absorbing resin
DE102004026787A1 (en) Process for producing water-absorbing material
JP2004352776A (en) Method of making particle size of water absorptive resin
JP4084648B2 (en) Method for producing water absorbent resin
JPS61110511A (en) Granulation of water-soluble polymer gel
JPS61110510A (en) Crushing method of water-soluble polymer gel
JPS6316402B2 (en)
JP3795210B2 (en) Method for producing water absorbent resin
JP2000189794A (en) Production of water absorbing material
JPS61155406A (en) Production of high-mw acrylic polymer
JP3469007B2 (en) Grinding method of adhesive hydrogel polymer
JP4097754B2 (en) Method for producing water absorbent resin
JPS6316401B2 (en)
JPS63273609A (en) Production of high-molecular weight cationic acrylic polymer
JP2003251106A (en) Manufacturing method for granular polymeric flocculant
JPH0710895B2 (en) Method for producing cationic (meth) acrylic water-soluble polymer
JPH03143604A (en) Manufacture of granular water-soluble polymer
JPS60152514A (en) Production of acrylamide polymer
JPH02180905A (en) Production of partially hydrolyzed acrylamide polymer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees