JPS61110510A - Crushing method of water-soluble polymer gel - Google Patents

Crushing method of water-soluble polymer gel

Info

Publication number
JPS61110510A
JPS61110510A JP23356084A JP23356084A JPS61110510A JP S61110510 A JPS61110510 A JP S61110510A JP 23356084 A JP23356084 A JP 23356084A JP 23356084 A JP23356084 A JP 23356084A JP S61110510 A JPS61110510 A JP S61110510A
Authority
JP
Japan
Prior art keywords
polymer gel
water
polymerization
roller type
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23356084A
Other languages
Japanese (ja)
Other versions
JPH047887B2 (en
Inventor
Akira Yada
明 矢田
Shusaku Matsumoto
修策 松本
Yoshihiro Kawamori
河盛 吉宏
Takao Saito
孝夫 斎藤
Tadashi Nishiyama
西山 正
Seiji Adachi
足立 誠次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP23356084A priority Critical patent/JPS61110510A/en
Priority to CA000494151A priority patent/CA1253833A/en
Priority to FI854352A priority patent/FI84448C/en
Priority to CN85109717A priority patent/CN1007796B/en
Priority to US06/795,263 priority patent/US4690788A/en
Priority to FR858516383A priority patent/FR2572671B1/en
Priority to DE19853539385 priority patent/DE3539385A1/en
Priority to GB8530862A priority patent/GB2184054B/en
Publication of JPS61110510A publication Critical patent/JPS61110510A/en
Publication of JPH047887B2 publication Critical patent/JPH047887B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/04Making granules by dividing preformed material in the form of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/06Conditioning or physical treatment of the material to be shaped by drying
    • B29B13/065Conditioning or physical treatment of the material to be shaped by drying of powder or pellets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/10Conditioning or physical treatment of the material to be shaped by grinding, e.g. by triturating; by sieving; by filtering

Abstract

PURPOSE:To contrive an improvement in water-solubility, by cutting off a vinyl series monomer gel in a state of a narrow paper tablet and then in a state of a splinter. CONSTITUTION:A polymer gel obtained by polymerizing a water solution of a water-soluble vinyl series monomer is supplied to a roller type cutters 3, 4. As for the supply, it is desirable to perform the same continuously by a method wherein a polymer gel is unloaded continuously from the other end of an endless belt, which is made to intrude upon a roller type cutter. A strand of an article made into a state of a narrow paper tablet, for example, a strand of a polymer gel cut off in the state of the narrow paper tablet by the roller type cutters 3, 4 rotating in the direction wherein they are meshing with each other is peeled off from the external circumferential part of an inner blade A of a roller type cutter by edges at the top of combs 5, 6, descended between the combs 5, 6 and made into a state of a splinter with a stationary blade 2 and a rotating blade 1 of a rotor 10.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水溶性重合体ゲルの破砕方法に関する。さら
に詳しくは、水溶性ビニル系単量体の水溶液の重合によ
ってえられた重合体ゲルを短ざく状にし、ざらに短ざく
状にしたものを細片状に切断する水溶性重合体ゲルの破
砕方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for crushing water-soluble polymer gel. More specifically, the water-soluble polymer gel is crushed by cutting the polymer gel obtained by polymerizing an aqueous solution of a water-soluble vinyl monomer into short pieces and cutting the rough pieces into small pieces. Regarding the method.

[従来の技術] 従来より、アクリルアミドの単独重合体、アクリルアミ
ドを主体とし、これと他の重合性単量体との共重合体ま
たはそれらのアルカリ加水分解物は、紙力増強剤、増粘
剤、土壌改良剤、原油回収用薬剤、廃水処理剤などとし
て広く利用されている。
[Prior Art] Conventionally, acrylamide homopolymers, copolymers mainly composed of acrylamide with other polymerizable monomers, or alkaline hydrolysates thereof have been used as paper strength agents and thickeners. It is widely used as a soil conditioner, crude oil recovery agent, wastewater treatment agent, etc.

それらアクリルアミド系水溶性重合体の製法には、塊状
重合法、懸濁重合法、乳化重合法、溶液重合法などがあ
るが、本質的に高分子量の重合体が用いられるため、通
常水溶液重合法を採用するばあいが多い。
Methods for producing these water-soluble acrylamide polymers include bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization, but since polymers with essentially high molecular weight are used, aqueous solution polymerization is usually used. is often adopted.

水溶液重合法によって分子量が非常に高く、かつ良好な
水溶解性を有する重合体をうるには、重合反応段階にお
ける架橋を防止する意味においても、比較的低い濃度で
重合を実施する必要がある。
In order to obtain a polymer having a very high molecular weight and good water solubility by an aqueous solution polymerization method, it is necessary to conduct the polymerization at a relatively low concentration, also in the sense of preventing crosslinking in the polymerization reaction stage.

しかしながら近年、運搬コスト、保管コストなどの経済
性が重視されるため、液状製品よりも粉末製品が生産の
主流を占めるにいたり、低濃度で水溶性重合法を行なう
ばあいには、えられた重合体を粉末化する際に多量の水
を揮散させ、乾燥しなければならず、粉末化のためのユ
ーティリティーコストが増大する欠点を有している。
However, in recent years, as emphasis has been placed on economic efficiency such as transportation costs and storage costs, powder products have become the mainstream of production rather than liquid products, and when water-soluble polymerization is carried out at low concentrations, When powdering a polymer, a large amount of water must be volatilized and drying must be carried out, which has the drawback of increasing utility costs for powdering.

かかる欠点を排除するため、できる限り高い単量体濃度
で重合を実施し、粉末化段階におけるユーティリティー
コストの軽減をはかる研究が行なわれ、多数の特許出願
がなされている。
In order to eliminate such drawbacks, research has been conducted to carry out polymerization at the highest possible monomer concentration to reduce utility costs in the powdering step, and numerous patent applications have been filed.

しかしながら、アクリルアミド、アクリル酸などのビニ
ル系申出体は本質的に架橋して3次元化する傾向がきわ
めて強く、したがって必然的に架橋防止のための緩和な
条件、とりわけ単量体濃度に関しては、たとえばアニオ
ン系またはノニオン系のばあいには、高々的20〜30
%(重量%、以下同様)という比較的低い濃度に保持し
たままで重合を実施しなければならない。
However, vinyl-based compounds such as acrylamide and acrylic acid inherently have a very strong tendency to crosslink and become three-dimensional, and therefore, it is necessary to have relaxed conditions for preventing crosslinking, especially regarding monomer concentration, e.g. In the case of anionic or nonionic, at most 20 to 30
The polymerization must be carried out while maintaining the concentration at a relatively low concentration of % (weight %, same hereinafter).

前記のような濃度のアクリルアミドまたはアクリルアミ
ドを主体とした単量体溶液を重合させると、流動性の全
くない、かたいまたは弾力性の強いゲル状物としてえら
れる。それゆえ、たとえばそのゲル状重合体の塊やシー
ト状物を機械的に粗砕することなしに、そのまま含有さ
れている水を揮散せしめようとすると、非常に長時間、
高温下に放置しなければならず、その結果、折角えられ
た高分子量重合体の分子量が低下したり、重合体の熱変
化に伴う架橋が促進され、商品価値が著しく低下するこ
とになる。
When acrylamide or a monomer solution mainly consisting of acrylamide at the above concentration is polymerized, a hard or highly elastic gel-like material having no fluidity is obtained. Therefore, for example, if you try to volatilize the water contained in the gel polymer lump or sheet without mechanically crushing it, it will take a very long time.
It is necessary to leave the product under high temperature, and as a result, the molecular weight of the high molecular weight polymer that has been carefully prepared decreases, and crosslinking of the polymer due to thermal changes is promoted, resulting in a significant decrease in commercial value.

したがって、一般的には、えられた重合体ゲルの塊やシ
ート状物を何らかの機械的手段によって粗砕して小塊粒
子としたのち、加熱により乾燥せしめて水を除去する方
法が採用されている。
Therefore, generally, a method is adopted in which the obtained polymer gel lump or sheet-like material is crushed into small particles by some mechanical means, and then dried by heating to remove water. There is.

一般的には、重合によってえられた重合体ゲルを肉挽機
のごとき、押出成形機を用いてストランド状に成形する
ことによって粗砕する方法が広く採用されている。しか
しながら、肉挽機のごとき押出成形機を使用するばあい
、重合体ゲルが著しくかたいばあいには、機械壁面との
摩擦が大きく、機械能率の損失をおこすばかりか、重合
体ゲル自身が摩擦熱や物理力などにより劣化をうけ、折
角重合段階で高分子量化したものが分子切断されたりす
る結果、高分子量物質かえられなくなってしまったりす
る。
Generally, a method is widely adopted in which a polymer gel obtained by polymerization is crushed into strands by forming it into a strand using an extruder such as a meat grinder. However, when using an extrusion molding machine such as a meat grinder, if the polymer gel is extremely hard, there will be large friction with the machine wall, which will not only cause a loss of machine efficiency, but also cause the polymer gel itself to As a result of deterioration due to frictional heat and physical forces, the molecules that have been made to have a high molecular weight during the polymerization stage are severed, and as a result, the high molecular weight substance cannot be converted.

その改良法として、押出成形する際にポリエチレングリ
コール、ノニオン系界面活性剤などの滑剤を用いて機械
の摩擦抵抗を軽減する方法も提案されているが、望まし
い効果をうるため−5−Aバ には多聞の薬剤を使用しなければならず、逆に純分の低
下ないしは粉末にしたときのヌメリ性増加、粉末の自由
流動性の低下などの好ましくない結果を招いている。
As an improvement method, a method has been proposed in which the frictional resistance of the machine is reduced by using a lubricant such as polyethylene glycol or nonionic surfactant during extrusion molding, but in order to obtain the desired effect, This requires the use of a large number of chemicals, which leads to unfavorable results such as a decrease in purity, an increase in sliminess when powdered, and a decrease in free-flowing properties of the powder.

かかる理由から、重合によってえられる重合体ゲルを摩
擦熱や物理力などによる劣化を受けることなく細粒化し
、かつ分子量低下をもたらさない破砕の方法が望まれて
いる。
For these reasons, there is a desire for a method of crushing the polymer gel obtained by polymerization into fine particles without deterioration due to frictional heat, physical forces, etc., and without causing a decrease in molecular weight.

[発明が解決しようとする問題点] 本発明は、前記のごとき重合体ゲルを破砕する際に生ず
る摩擦熱や物理力などによる重合体の劣化や、滑剤を用
いて破砕するばあいに生ずる純分の低下ないしは粉末に
したときのヌメリ性の増加、粉末の自由流動性の低下な
どの問題を解決しようとするものである。
[Problems to be Solved by the Invention] The present invention solves the problem of deterioration of the polymer due to frictional heat and physical force that occur when crushing the polymer gel as described above, and the deterioration of the polymer gel that occurs when crushing using a lubricant. This aims to solve problems such as a decrease in the content of the powder, an increase in sliminess when powdered, and a decrease in the free-flowing properties of the powder.

E問題点を解決するための手段] 本発明は、水溶性ビニル系ll量体を重合させてえられ
た重合体ゲルを破砕するに際して、第1段階の破砕形式
として、互にかみあう方向に回転する1対のローラー型
カッターに重合体ゲルをくい込ませて短ざく状に切断し
、ついでえられた短ざく状の重合体ゲルを回転刃と固定
刃によって細片状に切断することを特徴とする水溶性重
合体ゲルの破砕方法に関する。
Means for Solving Problem E] The present invention provides a method of crushing a polymer gel obtained by polymerizing a water-soluble vinyl polymer as a first-stage crushing method using rotation in mutually interlocking directions. The polymer gel is inserted into a pair of roller-type cutters and cut into short pieces, and the resulting short pieces of polymer gel are then cut into strips using a rotating blade and a fixed blade. The present invention relates to a method for crushing a water-soluble polymer gel.

[実施例] 本発明に用いる水溶性ビニル系単量体としては、たとえ
ばアクリルアミド、メタクリルアミド、アクリル酸、メ
タクリル酸、ビニルスルホン酸、アクリルアミド−メチ
ルプロパンスルホン酸、イタコン酸などの水溶性ビニル
単量体またはそれらの塩類、(メタ)アクリル酸ジアル
キルアミノアルキルエステル類、その塩もしくは酸性塩
類またはその4級化物類、ジアルキルアミノアルキルア
クリルアミド類、その塩もしくは酸性塩類またはその4
級化物類、ジアリルアミン酸性塩、ジアリルジアルキル
アンモニウム塩などのジアリルアミン類などがあげられ
るが、これらに限定されるものではない。これらは単独
で用いてもよく、2種以上混合して用いてもよい。
[Example] Examples of water-soluble vinyl monomers used in the present invention include water-soluble vinyl monomers such as acrylamide, methacrylamide, acrylic acid, methacrylic acid, vinylsulfonic acid, acrylamide-methylpropanesulfonic acid, and itaconic acid. (meth)acrylic acid dialkylaminoalkyl esters, salts or acidic salts thereof, or quaternized products thereof, dialkylaminoalkylacrylamides, salts or acidic salts thereof, or quaternary products thereof;
Examples include, but are not limited to, diallylamines such as graded compounds, diallylamine acid salts, and diallyldialkylammonium salts. These may be used alone or in combination of two or more.

前記水溶性ビニル系単量体には、えられる重合体が水溶
性になるような範囲で水に本質的に不溶性の単量体、た
とえばアクリロニトリル、(メタ)アクリル酸エステル
類、酢酸ビニル、スチレンなどの疎水性単量体を配合し
てもよい。
The water-soluble vinyl monomers include monomers that are essentially insoluble in water to the extent that the resulting polymer is water-soluble, such as acrylonitrile, (meth)acrylates, vinyl acetate, and styrene. Hydrophobic monomers such as these may also be blended.

水溶性ビニル系単量体を重合させる方法にはとくに限定
はなく、たとえば公知の過硫酸塩またはアゾ系開始剤な
どのラジカル重合開始剤を用いる熱重合法、公知の過硫
酸塩/アミン類または過硫酸塩/亜硫酸塩などのレドッ
クス重合開始剤を用いるレドックス重合法、ベンゾイン
またはベンゾインアルキルエーテルなどの光重合開始剤
を用いる光重合法あるいは放射線重合法などの通常の方
法があげられる。通常、このような方法により、水溶性
ビニル系単量体の所定の濃度の水溶液が自由に流動しな
くなるまで重合せしめられる。
There are no particular limitations on the method of polymerizing the water-soluble vinyl monomer, such as thermal polymerization using a radical polymerization initiator such as a known persulfate or an azo initiator, a method using known persulfates/amines, or Common methods include a redox polymerization method using a redox polymerization initiator such as persulfate/sulfite, a photopolymerization method using a photopolymerization initiator such as benzoin or benzoin alkyl ether, or a radiation polymerization method. Usually, by such a method, an aqueous solution of a water-soluble vinyl monomer of a predetermined concentration is polymerized until it no longer flows freely.

前記のごとき水溶性ビニル系単量体水溶液の重合を紫外
線照射によって行なうと、誘導時間がほとんどなしに重
合が開始するばかりか、重合速度が他法に比して著しく
大である結果、重合に要する所要時間が短かくてすみ効
率的である。とくに高濃度での重合を行なうのに適した
方法であり、可動式支持体上で薄層状に重合させ、ひき
続き本発明に用いるような破砕機に連続的に供給するば
あいには、コンパクトな設備で生産性を大巾に低下させ
ることな〈実施できる利点を有しているため、好ましい
重合方式といえる。
When the above-described aqueous solution of a water-soluble vinyl monomer is polymerized by ultraviolet irradiation, not only does the polymerization start with almost no induction time, but the polymerization rate is significantly higher than that of other methods. The required time is short and it is efficient. This method is particularly suitable for polymerization at high concentrations, and is compact when polymerizing in a thin layer on a movable support and subsequently feeding it continuously to a crusher such as the one used in the present invention. It can be said to be a preferable polymerization method because it has the advantage of being able to be carried out with modern equipment without significantly reducing productivity.

水溶性ビニル系単量体を使用してえられた重合体ゲルは
、できるだけ高濃度であることが生産性向上という点か
ら好ましく、また破砕時の粘着性を低減し、破砕物の相
互付着を防止する点からも好ましい。一般に、アクリル
アミドあるいはアクリル酸を使用してえられるノニオン
系あるいはアニオン系重合体のゲルは、20〜60%、
望ましくは30〜45%である。一方、ジアルキルアミ
ノアルキルアクリレートあるいはその酸性塩、4級塩を
使用するカチオン系重合体ゲルのばあいには、50〜9
0%、望ましくは60〜80%である。
It is preferable for the polymer gel obtained using water-soluble vinyl monomers to have as high a concentration as possible from the viewpoint of improving productivity. It is also preferable from the viewpoint of prevention. Generally, nonionic or anionic polymer gel obtained using acrylamide or acrylic acid has a content of 20 to 60%,
It is preferably 30 to 45%. On the other hand, in the case of a cationic polymer gel using dialkylaminoalkyl acrylate or its acid salt or quaternary salt, 50 to 9
0%, preferably 60-80%.

重合体ゲルの形態は、互いにかみあう方向に回転する1
対のローラー型カッターで効率よく切断されるためには
、円滑に重合体ゲルを該ローラー型カッターにくい込ま
せなくてはならないので、厚さが2〜30Ill11望
ましくは5〜15m1llのごとき薄層状にすることが
好ましい。たとえば皿型、平板型、トレイ型などの容器
または可動式のベルトなどを用いて水溶性ビニル系単層
体水溶液を重合させると、薄層状にすることができる。
The morphology of the polymer gel is one that rotates in the interlocking direction.
In order to cut efficiently with a pair of roller-type cutters, the polymer gel must be inserted into the roller-type cutter smoothly, so the polymer gel must be cut into a thin layer with a thickness of 2 to 30 ml, preferably 5 to 15 ml. It is preferable to do so. For example, when an aqueous solution of a water-soluble vinyl monolayer is polymerized using a dish-type, flat-plate-type, or tray-type container or a movable belt, it can be formed into a thin layer.

可動式ベルト上で薄層状に重合する方法は、以降の破砕
が連続的になるので好ましい方法である。
The method of polymerizing in a thin layer on a movable belt is a preferred method because subsequent crushing is continuous.

本発明においては、上記のようにしてえられた重合体ゲ
ルが、第1図〜第3図に一実施態様を示すような破砕機
を用いて破砕される。
In the present invention, the polymer gel obtained as described above is crushed using a crusher as shown in one embodiment in FIGS. 1 to 3.

重合体ゲルは、第1図に示す破砕機の上方から破砕機に
供給される。供給された重合体ゲルは、第1図と第2図
に示す破砕機を上方から見た図面である第3図に示すロ
ーラー型カッター(3)、(4)により切断され、短ざ
く状のストランドにされる。
The polymer gel is fed into the crusher from above the crusher as shown in FIG. The supplied polymer gel is cut into short pieces by the roller cutters (3) and (4) shown in Figure 3, which is a top view of the crusher shown in Figures 1 and 2. Be made into strands.

ローラー型カッター(3)、(4)の表面には、それぞ
れ第3図、より詳しくは第4図および第5図に示すよう
に、互いの凹凸がかみ合うように凹凸の形状にカッター
の刃が形成されている。この互いにかみ合うローラ型カ
ッターは、たとえば同じ寸法を持ち、同じ回転速度でか
み合う方向に回転する。かみあうように形成された刃の
凹凸の巾、深さ、高さは、破砕された重合体ゲルに所望
される大きさにより決定すればよく、たとえば第5図に
おける巾(X+ )が2〜10mm程度、凹部の深さく
x4)が10〜15mm程度、凸部の高さく×5)が1
0〜15IllI11程度で、凹部と凸部とが最も深く
かみあったばあいでも、切断された重合体ゲルが通過す
るのに必要な間隙(第5図における(X3 ))が10
〜25mm程度あくように通常は形成される。このよう
な形状にローラー型カッター(3)、(4)表面の刃を
形成し、第3図に示すローラー型カッターの回転軸(8
)、(9)を用いて2っのローラー型カッター(3)、
(4)を第2図(第1図のA−A−断面図)に示すよう
に回転させ、上方から供給された重合体ゲルをかみこん
で切断して下方に供給するようにすることにより、重合
体ゲルの切断が容易に行ないえ、たとえばストランド状
の短ざくにすることができる。
As shown in Figure 3, and more specifically in Figures 4 and 5, the surfaces of the roller type cutters (3) and (4) are provided with cutter blades in a concave and convex shape so that the concavities and convexities engage with each other. It is formed. The intermeshed roller-type cutters, for example, have the same dimensions and rotate at the same rotational speed in the interlocking direction. The width, depth, and height of the unevenness of the blades formed to interlock with each other may be determined depending on the desired size of the crushed polymer gel; for example, the width (X+) in FIG. 5 is 2 to 10 mm. The depth of the concave part x 4) is about 10 to 15 mm, and the height of the convex part x 5) is 1
0 to 15IllI11, and even when the concave part and the convex part are most deeply engaged, the gap ((X3) in Figure 5) necessary for the cut polymer gel to pass through is 10
It is usually formed with a gap of about 25 mm. The blades on the surfaces of the roller type cutters (3) and (4) are formed in such a shape, and the rotating shaft (8) of the roller type cutter shown in FIG.
), (9) using two roller type cutters (3),
(4) is rotated as shown in Figure 2 (A-A cross-sectional view in Figure 1), and the polymer gel supplied from above is caught and cut, and the polymer gel is supplied downward. The polymer gel can be easily cut, for example, into short pieces in the form of strands.

なおローラー型カッター(3)、(4)に重合体ゲルを
供給するのに、可動式支持体、たとえばエンドレスベル
トの他端より重合体ゲルを連続的に取出し、ローラー型
カッターにくい込ませる方法などを用いて連続的に行な
うと、工程全体を連続化することができ、生産効率を向
上させることができる。
In order to supply the polymer gel to the roller type cutters (3) and (4), there is a method in which the polymer gel is continuously taken out from the other end of a movable support, such as an endless belt, and then inserted into the roller type cutter. If the process is carried out continuously, the entire process can be made continuous, and production efficiency can be improved.

つぎに短ざく状にしたもののストランドを細片状に切断
する方法について説明する。
Next, a method of cutting the short strand into strips will be explained.

互いにかみ合う方向に回転するローラー型カッター(3
)、(4)により、たとえば短ざく状に切断された重合
体ゲルのストランドは、第2図に示す<シ(5)、(6
)の上端のエツジでローラー型カッターの内刃(A>の
外周部より剥離され、くし(5)と<Li2)との間を
下降し、<L、+61の下端に設けられた固定刃(2の
位置に到達する。通常、重合体ゲルのストランドがロー
ラー型カッターの外刃(8)にひつつくことはない。固
定刃(2)の位置に到達し、該位置より下方にでた短ざ
く状のストランドは、第1図および第2図に示す(′7
1を回転軸とする回転体(10)の外周部に設けられた
回転刃(1)と固定刃(2)との間に働らく切断力によ
り切断され、細片状、好ましくは約3〜20!lll1
lの角状にされる。
Roller-type cutters (3) that rotate in the direction of mutual engagement
), (4), for example, the polymer gel strands cut into short pieces are shown in FIG. 2 (5), (6).
) is separated from the outer periphery of the inner blade (A>) of the roller type cutter, descends between the comb (5) and <Li2), and is separated from the fixed blade (<L, +61) provided at the lower end. The strand of polymer gel normally does not get caught in the outer blade (8) of the roller type cutter.The strand of polymer gel reaches the position of the fixed blade (2) The strand-shaped strands are shown in Figures 1 and 2 ('7
The blade is cut by a cutting force acting between a rotary blade (1) and a fixed blade (2) provided on the outer periphery of a rotating body (10) with rotation axis 1, and is cut into strips, preferably about 3~ 20! lll1
It is made into a square shape.

短ざく状のものの横中方向の断面形状は、ローラー型カ
ッター[3) 、[4)の組立後の機械寸法、すなわち
刃の凹凸の巾(X+ ) 、高さく×4)、(Xs )
 、かみ合いの深さく×2)およびローラー型カッター
(3)、(4)の回転速度により決定される。
The cross-sectional shape of the short piece in the horizontal direction is determined by the machine dimensions of the roller cutters [3) and [4] after assembly, that is, the width of the unevenness of the blade (X+), the height x 4), and (Xs).
, the depth of engagement x 2) and the rotational speed of the roller type cutters (3) and (4).

そしてローラー型カッター(3)、(4)の回転速度と
、それに同調する速度で回転する回転体(10)の回転
速度および回転体(10)上に設けられた回転刃(1)
の数(第2図においては6枚)とを調節により、細片状
に切断される長さを決定することができる。
The rotational speed of the roller type cutters (3) and (4), the rotational speed of the rotating body (10) that rotates at a speed synchronized therewith, and the rotating blade (1) provided on the rotating body (10).
By adjusting the number of strips (six in FIG. 2), the length to be cut into strips can be determined.

重合体ゲルを破砕機で切断するばあいに、切断効率を高
くし、かつえられた細片状の重合体ゲルの再付着を防止
するために、切断時の重合体ゲルの温度をできるだけ低
くして、切断に伴なう発熱による重合体ゲルの昇温を防
ぐことが好ましい。
When cutting polymer gel with a crusher, the temperature of the polymer gel at the time of cutting should be kept as low as possible in order to increase cutting efficiency and prevent redeposition of the resulting pieces of polymer gel. It is preferable to prevent the temperature of the polymer gel from increasing due to heat generated during cutting.

重合体ゲルの湿度を低クツ°る方法としては、重合段階
において冷却を充分行なう方法、重合によりえられた重
合体ゲルを破砕機で破砕する以前に、冷風などにより強
制的に冷却する方法などによって達成されるが、通常1
0〜30℃、好ましくは20℃以下に調整することが好
ましい。
Methods for lowering the humidity of the polymer gel include a method of sufficiently cooling it during the polymerization stage, a method of forcibly cooling the polymer gel obtained by polymerization with cold air, etc. before crushing it with a crusher, etc. , but usually 1
It is preferable to adjust the temperature to 0 to 30°C, preferably 20°C or less.

また破砕時に冷風、好ましくは25℃以下の冷風を通じ
たりして破砕工程を冷却しながら、短ざく状にしたもの
のストランドを製造し、ついで該ストランドをさらに細
片状に切断すると、切断時の摩擦熱、ローラー型カッタ
ーなどの駆動熱などにより、重合体ゲルがべとついたり
、切断された重合体ゲルの細片同士が相互付着してブロ
ック状になったりすることを軽減することができる。
Furthermore, if the crushing process is cooled by blowing cold air, preferably cold air at a temperature of 25°C or lower, to produce short strands, and then the strands are further cut into strips, the friction at the time of cutting is It is possible to reduce the possibility that the polymer gel becomes sticky due to heat or the driving heat of a roller type cutter, or that the cut pieces of the polymer gel adhere to each other and form blocks.

このような方法を採用すると破砕効率が高められるので
有効である。
Adopting such a method is effective because it increases crushing efficiency.

なお必要によりポリエチレングリコール、ノニオン系界
面活性剤、アニオン系界面活性剤などを破砕機に投入し
たり、重合体ゲル表面に塗布したりして、細片状の重合
体ゲルの再付着を防止したりしてもよい。
If necessary, polyethylene glycol, nonionic surfactants, anionic surfactants, etc. may be added to the crusher or applied to the surface of the polymer gel to prevent the pieces of polymer gel from re-adhering. You can also

つぎに本発明の方法を実施例にもとづき説明する。Next, the method of the present invention will be explained based on examples.

実施例1 チッ素ガスで密閉しうる箱型の小さな室内にジャケット
付重合装置(縦200ml1l、横300mm、高さ5
0ml1lの角型容器、上部蓋なし)を設置した。
Example 1 A polymerization apparatus with a jacket (length: 200 ml, width: 300 mm, height: 5
A 0 ml 1 liter square container (without top lid) was installed.

脱酸素槽(容116の円筒型)において溶存酸素をチッ
素ガスにより充分除去したアクリルアミド150g、ア
クリル酸38g、苛性ソーダ20gを脱イオン水275
gに溶解させた単量体水溶液に5%過硫酸カリウム水溶
液5Idおよび5%亜硫酸ソーダ水溶液5dを添加し、
数分間チッ素ガスで脱酸素を継続したのち、チッ素ガス
で密閉した室内に設置した該重合装置に導入し、重合を
開始させた。ジャケット内には25℃の水を通しておい
た。重合は約10分後に開始し、単量体水溶液は徐々に
増粘した。重合開始後15分を経過した時点で単量体水
溶液はゆるやかに流動する状態を呈した。
150 g of acrylamide, 38 g of acrylic acid, and 20 g of caustic soda, from which dissolved oxygen was sufficiently removed using nitrogen gas in a deoxidizing tank (cylindrical type with a capacity of 116 mm), were mixed with 275 g of deionized water.
Add 5% potassium persulfate aqueous solution 5Id and 5% sodium sulfite aqueous solution 5d to the monomer aqueous solution dissolved in g,
After continuing to deoxidize with nitrogen gas for several minutes, the mixture was introduced into the polymerization apparatus installed in a room sealed with nitrogen gas, and polymerization was started. Water at 25°C was passed through the jacket. Polymerization started after about 10 minutes, and the aqueous monomer solution gradually thickened. When 15 minutes had passed after the start of polymerization, the monomer aqueous solution was in a state of gently flowing.

重合開始後約2時間すると、重合体はかたいゲル状とな
った。該重合体ゲルは厚さ約8mIgであった。
Approximately 2 hours after the start of polymerization, the polymer became a hard gel. The polymer gel was approximately 8 mlg thick.

えられた重合体ゲルを第1図〜第3図に示すごとき破砕
機で、ローラー型カッターの凹凸の中5mm、凹部の深
さ15mm、凸部の高さ14m+++、かみあいの深さ
7mm 、固定刃と回転刃の回転外径とのスリット0.
3mm、回転刃の回転数が20〜100r/分なる破砕
機をローラー型カッターの表面スピード30cm/分で
、回転刃の回転数を調節することにより20℃で破砕し
、約3 X 8 x 5 mm角の細片状ゲルをえた。
The resulting polymer gel was crushed using a crusher as shown in Figures 1 to 3, with a roller-type cutter having 5 mm in the unevenness, 15 mm in the depth of the concave, 14 m +++ in the height of the convex, and 7 mm in the depth of engagement. The slit between the blade and the rotating outer diameter of the rotary blade is 0.
A crusher with a diameter of 3 mm and a rotation speed of a rotary blade of 20 to 100 r/min was used to crush the material at 20°C by adjusting the rotation speed of the rotary blade using a roller type cutter with a surface speed of 30 cm/min. A strip-shaped gel of mm square was obtained.

えられた細片状ゲルは重合体ゲル相互の付着がほとんど
なく、バラバラの状態であった。
The obtained strip-like gel had almost no adhesion between the polymer gels and was in a loose state.

比較例1 実施例1によりえられた重合体ゲルを小型肉挽機により
押出成形することを試みたが、重合体ゲルがかたく、小
型肉挽機の可動は不可能であった。
Comparative Example 1 An attempt was made to extrude the polymer gel obtained in Example 1 using a small meat grinder, but the polymer gel was so hard that it was impossible to move the small meat grinder.

ポリエチレングリコール(MW 600)を重合体ゲル
の表面に約1%塗布したのち、小型肉挽機で押出成形し
たところ、かろうじて細片化しつる状態であったが、え
られた重合体ゲルは、互にヒモ状に結びつき、かつ粒子
相互が互に練り合わされた状態を呈し、明らかに摩擦熱
や物理力によって機械劣化を起こしていることがわかっ
た。
Approximately 1% polyethylene glycol (MW 600) was applied to the surface of the polymer gel, and when it was extruded using a small meat grinder, it was barely broken into pieces and dangling, but the resulting polymer gel was compatible with each other. It was found that the particles were tied together like a string, and the particles were kneaded together, and mechanical deterioration was clearly caused by frictional heat and physical force.

実施例2 N、 N、 N−トリメチルアミノエチルメタクリレー
トクロライド80%水溶液500gを採取し、10%塩
化水素水溶液を用いてpH4に調整したのち、蒸溜水で
全量を565gにした。そののち実施例1で用いた重合
容器に仕込み、実施例1と同様にして重合させた。
Example 2 500 g of an 80% aqueous solution of N, N, N-trimethylaminoethyl methacrylate chloride was collected, and after adjusting the pH to 4 using a 10% aqueous hydrogen chloride solution, the total amount was made up to 565 g with distilled water. Thereafter, it was charged into the polymerization container used in Example 1, and polymerized in the same manner as in Example 1.

えられた重合体ゲルは、9.4n+mの厚さのかたい重
合体ゲルであった。
The resulting polymer gel was a hard polymer gel with a thickness of 9.4n+m.

固定刃/回転刃のスリットの巾0.5mu+で、実施例
1の破砕機により実施例1と同様にして該重合体ゲルを
破砕すると、容易に3×8×5IIllIl角の細粒状
ゲルかえられた。
When the polymer gel was crushed in the same manner as in Example 1 using the crusher of Example 1 with the width of the slit of the fixed blade/rotary blade being 0.5 mu+, the gel was easily transformed into fine granular gel of 3×8×5IIllIl square. Ta.

比較例2 実施例2でえられた重合体ゲルを小型肉挽機で破砕しよ
うとしたところ、重合体ゲルがかたすぎるため、くい込
み不良となり破砕できなかった。
Comparative Example 2 When an attempt was made to crush the polymer gel obtained in Example 2 using a small meat grinder, the polymer gel was too hard and could not be crushed due to poor penetration.

実施例3 表面に四フッ化エチレンーエチレン共重合体フィルム(
厚さ50μm)を装着した中450mm、有効長3,0
00mn+のステンレスuA製のエンドレスベルトの裏
面に温水〜冷水を噴霧しうる構造としたものを、重合用
の可動式の支持体としてチッ素ガスで完全に充填された
室内に設置し、30l1lIIl/分の定速度で可動せ
しめ、ベルトの裏面に25℃の水を噴霧した。
Example 3 Tetrafluoroethylene-ethylene copolymer film (
Medium 450mm with a thickness of 50μm), effective length 3.0
An endless belt made of 00mn+ stainless steel uA with a structure capable of spraying hot to cold water on the back side was installed as a movable support for polymerization in a chamber completely filled with nitrogen gas, and the belt was heated at 30l1lIIl/min. The belt was moved at a constant speed of 25° C. and water at 25° C. was sprayed onto the back surface of the belt.

10%塩酸水溶液でpH4に調整した濃度75%のN、
 N、 N−トリメチルアミノエチルメタクリレートク
ロライドモノマー水溶液層3012を、チッ素ガスによ
り充分脱気し、稼働状態にある前記ベルト上に101/
時間の速度で該ベルトの一端から定向供給した。
N with a concentration of 75% adjusted to pH 4 with a 10% aqueous hydrochloric acid solution,
The N,N-trimethylaminoethyl methacrylate chloride monomer aqueous solution layer 3012 is sufficiently degassed with nitrogen gas, and the layer 101/
The feed was directed from one end of the belt at a rate of 1 hour.

なお、重合開始剤とモノマー水溶液の混合はベルト上部
に設置した2個の撹拌機付き一時貯槽(5ff容量)に
重合開始剤として5%過硫酸カリウム溶液および亜硫酸
ナトリウム溶液を別々に入れ、それぞれ70m1! /
時間の速度で均一にモノマー水溶液と混合しながら、前
記ベルト上にモノマー水溶液を供給後、20分で重合が
開始した。ひきつづき連続的に供給した。
To mix the polymerization initiator and monomer aqueous solution, separately put a 5% potassium persulfate solution and a sodium sulfite solution as polymerization initiators into two temporary storage tanks (5ff capacity) equipped with a stirrer installed above the belt, and add 70ml each. ! /
Polymerization started in 20 minutes after the monomer aqueous solution was supplied onto the belt while being uniformly mixed with the monomer aqueous solution at a constant speed. It continued to be supplied continuously.

モノマー水溶液がベルト上で重合に供される時間は10
0分間、重合時におけるモノマー水溶液層は約12mm
および全重合所要時間は2時間であった。
The time that the monomer aqueous solution is subjected to polymerization on the belt is 10
0 minutes, the monomer aqueous solution layer during polymerization is approximately 12 mm.
And the total polymerization time was 2 hours.

七ツマー水溶液供給開始から12020分後ンドレスベ
ルトの他端より約12IllIllの厚さのシート状の
重合体かえられた。えられた重合体はベルト表面から人
力によって容易に剥離される状態であって、約3時間の
連続重合が可能であった。
After 12,020 minutes from the start of supply of the seven-mer aqueous solution, a sheet-like polymer having a thickness of about 12 IllIll was transferred from the other end of the belt. The obtained polymer could be easily peeled off from the belt surface by hand, and continuous polymerization for about 3 hours was possible.

えられた重合体ゲルの温度は約28℃であった。The temperature of the resulting polymer gel was about 28°C.

エンドレスベルトの他端より連続的にえられた重合体ゲ
ルシートを第1図〜第3図に示すごとき破砕機で、巾5
n+m、凹部の深さ15RIIl、凸部の高さ14m1
、固定刃と回転刃の回転外径とのスリット巾0.5mm
、回転刃の回転数が20〜100r/分なる回転数の破
砕機を用いてローラー型カッターの表面スピード30c
Ill/分で、回転刃の回転数を調節した破砕機に連続
的に供給し、細片化した。破砕機出口より約5X12X
511111角に細片化された重合体ゲルが連続的に取
出された。細片化された重合体ゲル相互間の付着は非常
に少なく、互いにバラバラの状態であった。
The polymer gel sheet continuously obtained from the other end of the endless belt is crushed into pieces with a width of 5 mm using a crusher as shown in Figs.
n+m, depth of recess 15RIIl, height of protrusion 14m1
, the slit width between the fixed blade and the rotating outer diameter of the rotary blade is 0.5 mm.
, using a crusher with a rotation speed of the rotary blade of 20 to 100 r/min, the surface speed of the roller cutter is 30 c.
The mixture was continuously fed to a crusher with a rotating blade whose rotational speed was adjusted at 11/min, and the mixture was shredded into small pieces. Approximately 5X12X from the crusher outlet
A polymer gel fragmented into 511111 corners was continuously removed. There was very little adhesion between the pieces of polymer gel, and they were in a state of being separated from each other.

重合体ゲルシートを連続的に破砕する際に、破砕機の入
口に約15℃に調整された冷風を吹込みながら実施する
と、細粒化された重合体ゲルがかたくなり、切断機の摩
擦熱の発生もほとんどなく、細片化効率が著しく改善さ
れた。
When continuously crushing a polymer gel sheet, blowing cold air adjusted to about 15°C into the inlet of the crusher will harden the finely divided polymer gel and reduce the frictional heat of the cutting machine. There was almost no generation, and the fragmentation efficiency was significantly improved.

実施例4 ステンレス鋼製の巾450mm 、有効長3.000m
mのエンドレスベルトに、裏面がアルミニウムで蒸着さ
れた四フッ化エチレンーエチレン共重合体フィルムを装
着し、下方向から温水〜冷水を前記エンドレスベルトに
噴霧しうる構造としたものを、重合用の可動式支持体と
してチッ素ガスで完全に充満された室内に設置し、10
0mm 7分の低速度で稼働せしめ、ベルトの下方向か
ら15℃の水を噴霧した。また、可動式支持体の上部に
は紫外線照射源として低圧水銀ランプを設置し、紫外線
の強度を50W / m”とした。
Example 4 Made of stainless steel, width 450mm, effective length 3.000m
A polytetrafluoroethylene-ethylene copolymer film whose back side is vapor-deposited with aluminum is attached to an endless belt of 1.0 m, and the structure is such that hot to cold water can be sprayed onto the endless belt from below. Installed as a movable support in a room completely filled with nitrogen gas,
The belt was operated at a low speed of 0 mm for 7 minutes, and water at 15° C. was sprayed from below the belt. Furthermore, a low-pressure mercury lamp was installed as an ultraviolet irradiation source above the movable support, and the intensity of ultraviolet rays was set to 50 W/m''.

10%塩酸水溶液でpH4に調整した濃度75%のN、
N、N−1−リメチルアミノエチルメタクリレートクロ
リドモノマー水溶液約40dをチッ素ガスにより充分脱
気し、稼働状態にある前記ベルト上に13.512/時
間の速度で該ベルトの一端から定=  20 − 量供給した。
N with a concentration of 75% adjusted to pH 4 with a 10% aqueous hydrochloric acid solution,
Approximately 40 d of an aqueous solution of N,N-1-limethylaminoethyl methacrylate chloride monomer is thoroughly degassed with nitrogen gas, and is poured onto the belt in operation at a rate of 13.512/hour from one end of the belt at a constant = 20 − Quantity supplied.

なお、ベルト上部に設置した撹拌機付き一時貯槽(5I
2容吊)から重合開始剤としてベンゾインイソプロピル
エーテル5%メタノール溶液を30d /時間の速度で
上記モノマー水溶液中に供給し、モノマー水溶液と重合
開始剤とを均一に混合させながらベルト上に供給して紫
外線照射による重合を行なった。
In addition, there is a temporary storage tank (5I) with an agitator installed above the belt.
A 5% methanol solution of benzoin isopropyl ether as a polymerization initiator was supplied into the monomer aqueous solution at a rate of 30 d/hour from a 2-volume suspension), and the monomer aqueous solution and the polymerization initiator were uniformly mixed while being supplied onto the belt. Polymerization was carried out by ultraviolet irradiation.

前記条件においては、モノマー水溶液がベルト上で重合
に供される時間は30分間、重合時におけるモノマー水
溶液層は約5111Illであった。
Under the above conditions, the time during which the monomer aqueous solution was subjected to polymerization on the belt was 30 minutes, and the monomer aqueous solution layer during polymerization was about 5111 Ill.

モノマー水溶液供給開始から30分後にエンドレスベル
トの他端より5mmの厚さのシート状の重合体かえられ
た。えられた重合体はベルト表面から人力で容易に剥離
される状態にあり、約3時間の連続重合が可能であった
Thirty minutes after the start of supply of the monomer aqueous solution, a sheet-like polymer having a thickness of 5 mm was transferred from the other end of the endless belt. The obtained polymer was in a state where it could be easily peeled off manually from the belt surface, and continuous polymerization for about 3 hours was possible.

えられた重合体ゲルの温度は20℃であった。The temperature of the obtained polymer gel was 20°C.

エンドレスベルトの他端より連続的にえられた重合体ゲ
ルシートを、第1図〜第3図に示すごとき、凸凹の巾5
n+m、凹部の深さ1511J凸部の高さ14mm、固
定刃と回転刃のスリット巾051、回転刃の回転数が2
0〜100r/分なる破砕機を用いて、のローラー型カ
ッターの表面スピード10011+11 /分で、回転
刃の回転数を調節した破砕機に連続的に供給して細粒化
したところ、破砕機出口より約3X5X5mm角の相互
付着のない細片化した重合体ゲルが連続的に取出された
The polymer gel sheet obtained continuously from the other end of the endless belt is shaped into a shape with a width of 5 mm as shown in Figures 1 to 3.
n+m, depth of recess 1511J height of convexity 14mm, slit width of fixed blade and rotary blade 051, rotation speed of rotary blade 2
Using a crusher with a speed of 0 to 100 r/min, the surface speed of the roller type cutter was 10011+11/min, and the number of revolutions of the rotary blade was adjusted. Pieces of the polymer gel, each having a size of about 3×5×5 mm square and free of mutual adhesion, were continuously taken out.

[発明の効果] 本発明の方法は、 (1)非常にかたい重合体ゲルであっても、機械摩擦も
しくは物理的な力によって重合体の分子量を低下させる
ことなく、容易に細片化ゲルが取得できるので、高分子
量の重合体がえられる (2)細片化ゲルは相互に付着せずに、バラバラ状態を
呈し、かつ微細化されているので、乾燥時における乾燥
効率を著しく改良しうる(3)重合工程から乾燥行程ま
での連続化プロセスとなしうる (4)  紫外線を照射することによる重合方法を採用
するとYJnのコンパクト化がはかれるなどの点で優れ
たものである。
[Effects of the Invention] The method of the present invention provides the following advantages: (1) Even if the polymer gel is very hard, it can be easily broken into pieces without reducing the molecular weight of the polymer by mechanical friction or physical force. (2) Since the fragmented gel does not stick to each other and is in pieces, and is finely divided, it significantly improves the drying efficiency during drying. (3) It can be a continuous process from the polymerization step to the drying step. (4) Adopting a polymerization method by irradiating ultraviolet rays is excellent in that YJn can be made more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる破砕機の一実施態様の正面図、
第2図は第1図に示す破砕機のA−A′断面図、第3図
は第1図に示す破砕機の平面図、第4図はローラ型カッ
ターのかみ合い部分に関する説明図、第5図は第4図に
示すかみ合い部分の拡大説明図である。 (図面の主要符号) (1)二回転刃 (2):固定刃 (3)、(4):ローラー型カッター = 24− 第1図 見 4:ローラー型力。 第2図 /夕一 第3図 才4図 ノ” 第5図
FIG. 1 is a front view of an embodiment of a crusher used in the present invention;
Fig. 2 is a sectional view taken along the line A-A' of the crusher shown in Fig. 1, Fig. 3 is a plan view of the crusher shown in Fig. 1, Fig. 4 is an explanatory diagram of the engaging portion of the roller cutter, and Fig. 5 is a cross-sectional view of the crusher shown in Fig. 1. The figure is an enlarged explanatory view of the engaging portion shown in FIG. 4. (Main symbols in the drawings) (1) Two-rotating blade (2): Fixed blade (3), (4): Roller type cutter = 24- First diagram 4: Roller type force. Figure 2/Yuichi Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 水溶性ビニル系単量体の水溶液を重合させてえられ
た重合体ゲルを破砕するに際して、互いにかみあう方向
に回転する1対のローラー型カッターに重合体ゲルをく
い込ませて短ざく状に切断し、ついでえられた短ざく状
の重合体ゲルを回転刃と固定刃によって細片状に切断す
ることを特徴とする水溶性重合体ゲルの破砕方法。 2 可動式支持体を用いて前記重合体ゲルを連続的に破
砕機に供給し、連続的に細片状に切断する特許請求の範
囲第1項記載の破砕方法。 3 前記重合体ゲルが、水溶性ビニル系単量体の水溶液
に紫外線を照射することによってえられた重合体ゲルで
ある特許請求の範囲第1項または第2項記載の破砕方法
。 4 25℃以下の冷風を通じながら重合体ゲルを細片状
に切断する特許請求の範囲第1項、第2項または第3項
記載の破砕方法。
[Claims] 1. When crushing a polymer gel obtained by polymerizing an aqueous solution of a water-soluble vinyl monomer, the polymer gel is bitten into a pair of roller-type cutters that rotate in a mutually interlocking direction. 1. A method for crushing a water-soluble polymer gel, which comprises cutting the polymer gel into short pieces using a rotary blade and a fixed blade. 2. The crushing method according to claim 1, wherein the polymer gel is continuously fed to a crusher using a movable support and is continuously cut into strips. 3. The crushing method according to claim 1 or 2, wherein the polymer gel is a polymer gel obtained by irradiating an aqueous solution of a water-soluble vinyl monomer with ultraviolet rays. 4. The crushing method according to claim 1, 2, or 3, wherein the polymer gel is cut into strips while passing cold air at 25° C. or lower.
JP23356084A 1984-11-06 1984-11-06 Crushing method of water-soluble polymer gel Granted JPS61110510A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP23356084A JPS61110510A (en) 1984-11-06 1984-11-06 Crushing method of water-soluble polymer gel
CA000494151A CA1253833A (en) 1984-11-06 1985-10-29 Process for preparing water-soluble polymer gel particles
FI854352A FI84448C (en) 1984-11-06 1985-11-05 FOERFARANDE FOR FRAMSTAELLNING AV VATTENLOESLIGA POLYMERPARTIKLAR.
CN85109717A CN1007796B (en) 1984-11-06 1985-11-05 Process for preparing water-soluble polymer gel particles
US06/795,263 US4690788A (en) 1984-11-06 1985-11-05 Process for preparing water-soluble polymer gel particles
FR858516383A FR2572671B1 (en) 1984-11-06 1985-11-05 PROCESS FOR THE PREPARATION OF WATER-SOLUBLE POLYMER GEL PARTICLES
DE19853539385 DE3539385A1 (en) 1984-11-06 1985-11-06 METHOD FOR PRODUCING POLYMER GEL PARTICLES
GB8530862A GB2184054B (en) 1984-11-06 1985-12-14 Process for preparing water-soluble polymer gel particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23356084A JPS61110510A (en) 1984-11-06 1984-11-06 Crushing method of water-soluble polymer gel

Publications (2)

Publication Number Publication Date
JPS61110510A true JPS61110510A (en) 1986-05-28
JPH047887B2 JPH047887B2 (en) 1992-02-13

Family

ID=16956978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23356084A Granted JPS61110510A (en) 1984-11-06 1984-11-06 Crushing method of water-soluble polymer gel

Country Status (1)

Country Link
JP (1) JPS61110510A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017453A1 (en) * 1996-10-24 1998-04-30 Nippon Shokubai Co., Ltd. Method of production of water-absorbing resin
EP1510317A1 (en) * 2003-09-01 2005-03-02 Nippon Shokubai Co., Ltd. Process for production of hydrogel particles and process for cutting of high-concentration hydrogel sheet
JP2005096448A (en) * 2003-09-01 2005-04-14 Nippon Shokubai Co Ltd Method for manufacturing water containing gel particles and cutting method of high solid content water containing gel sheet
EP1754725A2 (en) 2005-08-17 2007-02-21 Nippon Shokubai Co.,Ltd. Production method of water-absorbent resin, water-absorbent resin, and usage of water-absorbent resin
JP2008515425A (en) * 2004-10-07 2008-05-15 ゲースタ ラーソン メカニスカ フェルクスタッド アクチボラク Ground roller
WO2008086975A1 (en) * 2007-01-16 2008-07-24 Basf Se Production of superabsorbent polymers on a continuous belt reactor
WO2018174175A1 (en) * 2017-03-24 2018-09-27 住友精化株式会社 Method for producing water-absorbing resin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071745A (en) * 1973-10-27 1975-06-13
JPS541954U (en) * 1977-06-07 1979-01-08

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071745A (en) * 1973-10-27 1975-06-13
JPS541954U (en) * 1977-06-07 1979-01-08

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017453A1 (en) * 1996-10-24 1998-04-30 Nippon Shokubai Co., Ltd. Method of production of water-absorbing resin
EP0876888A1 (en) * 1996-10-24 1998-11-11 Nippon Shokubai Co., Ltd. Method of production of water-absorbing resin
US6100305A (en) * 1996-10-24 2000-08-08 Nippon Shokubai Co., Ltd. Method of production of water-absorbing resin
EP0876888A4 (en) * 1996-10-24 2002-11-06 Nippon Catalytic Chem Ind Method of production of water-absorbing resin
US7638078B2 (en) 2003-09-01 2009-12-29 Nippon Shokubai Co., Ltd. Process for production of hydrogel particles and process for cutting of high-concentration hydrogel sheet
JP2005096448A (en) * 2003-09-01 2005-04-14 Nippon Shokubai Co Ltd Method for manufacturing water containing gel particles and cutting method of high solid content water containing gel sheet
EP1510317A1 (en) * 2003-09-01 2005-03-02 Nippon Shokubai Co., Ltd. Process for production of hydrogel particles and process for cutting of high-concentration hydrogel sheet
JP2008515425A (en) * 2004-10-07 2008-05-15 ゲースタ ラーソン メカニスカ フェルクスタッド アクチボラク Ground roller
EP1754725A2 (en) 2005-08-17 2007-02-21 Nippon Shokubai Co.,Ltd. Production method of water-absorbent resin, water-absorbent resin, and usage of water-absorbent resin
EP2287215A2 (en) 2005-08-17 2011-02-23 Nippon Shokubai Co., Ltd. Production method of water-absorbent resin, water-absorbent resin and usage of water-absorbent resin
WO2008086975A1 (en) * 2007-01-16 2008-07-24 Basf Se Production of superabsorbent polymers on a continuous belt reactor
US9914230B2 (en) 2007-01-16 2018-03-13 Basf Se Production of superabsorbent polymers on a continuous belt reactor
WO2018174175A1 (en) * 2017-03-24 2018-09-27 住友精化株式会社 Method for producing water-absorbing resin
JPWO2018174175A1 (en) * 2017-03-24 2020-01-23 住友精化株式会社 Method for producing water absorbent resin

Also Published As

Publication number Publication date
JPH047887B2 (en) 1992-02-13

Similar Documents

Publication Publication Date Title
US4690788A (en) Process for preparing water-soluble polymer gel particles
EP0497623B1 (en) Method for production of particulate hydrated gel polymer and absorbent resin
CA1268732A (en) Radiation-polymerizing water-soluble cast vinyl monomer layer and forming particles
JP5989913B2 (en) Gel pulverizer, polyacrylic acid (salt) water-absorbing resin powder production method, and water-absorbing resin powder
US4762862A (en) Process for preparing high molecular weight acrylic polymers
DE102004026787B4 (en) Process for producing water-absorbing material
WO2015030130A1 (en) Gel pulverization device, method for manufacturing polyacrylic acid (polyacrylate) superabsorbent polymer powder, and superabsorbent polymer powder
EP1510317B1 (en) Process for production of water-absorbent resin particles from hydrogel particles
CA1085093A (en) Method of producing partially hydrolyzed acrylamide polymers
JP4084648B2 (en) Method for producing water absorbent resin
JPS61110510A (en) Crushing method of water-soluble polymer gel
JP5298288B2 (en) Method for producing powdery polymer
CN110713566B (en) Fine powder reconstituted pellet and method for producing super absorbent resin
JPS61110511A (en) Granulation of water-soluble polymer gel
US4535131A (en) Process for producing partially hydrolyzed acrylamide polymer
JPS6316402B2 (en)
JP3795210B2 (en) Method for producing water absorbent resin
JP2000189794A (en) Production of water absorbing material
JPH11140193A (en) Production of hydrophilic polymer
JPH0553804B2 (en)
JP4097754B2 (en) Method for producing water absorbent resin
JPS63273609A (en) Production of high-molecular weight cationic acrylic polymer
JPS608681B2 (en) cohesive polymer
JPS6139323B2 (en)
JPS6316401B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees