JPS61110280A - Particulate counter - Google Patents
Particulate counterInfo
- Publication number
- JPS61110280A JPS61110280A JP23149384A JP23149384A JPS61110280A JP S61110280 A JPS61110280 A JP S61110280A JP 23149384 A JP23149384 A JP 23149384A JP 23149384 A JP23149384 A JP 23149384A JP S61110280 A JPS61110280 A JP S61110280A
- Authority
- JP
- Japan
- Prior art keywords
- vaporized
- ultrapure water
- dust
- superpure water
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000428 dust Substances 0.000 claims abstract description 17
- 238000005070 sampling Methods 0.000 claims abstract description 13
- 238000003303 reheating Methods 0.000 claims abstract description 10
- 239000012159 carrier gas Substances 0.000 claims abstract description 7
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 33
- 239000012498 ultrapure water Substances 0.000 claims description 33
- 239000002245 particle Substances 0.000 claims description 15
- 238000010992 reflux Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 13
- 238000004458 analytical method Methods 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 6
- 230000008016 vaporization Effects 0.000 abstract description 5
- 239000003595 mist Substances 0.000 abstract description 4
- 238000009834 vaporization Methods 0.000 abstract description 4
- 238000000149 argon plasma sintering Methods 0.000 abstract description 3
- 230000035945 sensitivity Effects 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract 1
- 239000000203 mixture Substances 0.000 abstract 1
- 239000010419 fine particle Substances 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は超純水中の微粒子をカウントする微粒子カウン
タに関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a particle counter for counting particles in ultrapure water.
従来技術
従来、超純水中の微粒子の測定法としては一定量のサン
プルを微細な均一径(0,2μm)をもったフィルタで
濾過し、フィルタ上に捕捉された微粒子を染色し、これ
を光学顕微鈍にて検鏡しながら計測するという直接検鏡
法が主に用いられてきた。Conventional technology The conventional method for measuring fine particles in ultrapure water is to filter a certain amount of sample through a fine filter with a uniform diameter (0.2 μm), dye the fine particles captured on the filter, and then dye the fine particles captured on the filter. The direct microscopy method, in which measurements are taken while looking through a blunt optical microscope, has been mainly used.
この発明が解決すべき問題点
このため、■サンプリング容器に微粒子が付着していな
いこと、■サンプリング時に環境中からサンプル内へ微
粒子が混入しないこと、■サンプリング時から分析に至
るまでの間にサンプル内で微粒子(生菌)が増加しない
こと、■分析中にサンプル内へ微粒子が混入しないこと
が必要である。Problems to be Solved by this Invention For this reason, it is necessary to ensure that: ■ there are no particles attached to the sampling container, ■ there are no particles mixed into the sample from the environment at the time of sampling, and ■ there is no possibility that particles will be mixed into the sample from the time of sampling until analysis. It is necessary that particulates (live bacteria) do not increase in the sample, and that particulates do not get mixed into the sample during analysis.
また、分析法については、■分析法が複雑であるために
熟練した分析者を養生するのに長期間を要し、■プレパ
ラートの製作法・計測のための視野の選び方・高倍率検
鏡時lこは光学顕微鏡の特徴として被写体深度が浅くな
る等の要因により分析値に個人差が現われ、■フィルタ
の精度や光学顕微鏡の識別限界により測定限界は0.2
μm程度であり、将来の超純水レベルには対応が難しい
という問題点があった。In addition, regarding the analysis method, ■As the analysis method is complicated, it takes a long time to train a skilled analyst. Due to factors such as the shallow depth of field, which is a characteristic of optical microscopes, individual differences appear in the analytical values; ■The measurement limit is 0.2 due to the accuracy of the filter and the discrimination limit of the optical microscope.
The problem is that it is difficult to meet future ultrapure water levels.
こうした光学顕微鏡の代わりに電子顕微鏡を用いること
により上記の問題点のうち、いくつかは改善されるが、
操作の複雑さという問題点は残る。Although some of the above problems can be improved by using an electron microscope instead of an optical microscope,
The problem of operational complexity remains.
また、最近超純水に直接レーザを照射し、光散乱法によ
り微粒子をオンラインで計測する方法が開発されている
が、種々の問題により水質監視モニタとして確立するま
でには至っていない。Additionally, a method has recently been developed in which ultrapure water is directly irradiated with a laser and microparticles are measured online using a light scattering method, but this method has not been established as a water quality monitor due to various problems.
そこで、本発明は超純水中の微粒子を計測する際の前記
の様な問題点を解決して、超純水中の微粒子をオンライ
ンで計測し、超純水製造装置の水質監視モニタとして用
いることのできる微粒子カウンタを提供することを目的
とする。Therefore, the present invention solves the above-mentioned problems when measuring fine particles in ultrapure water, measures fine particles in ultrapure water online, and uses it as a water quality monitor for ultrapure water production equipment. The purpose is to provide a particle counter that can
発明の構成
本発明の微粒子カウンタは、ユースラインに接続された
サンプリング・ラインにより蒸発部に超純水を取り入れ
て気化し、キャリア・ガスと混合した後に再加熱部で再
加熱し、こうして生成された気化超純水をダスカウンタ
に導いてダストの計測を行なうものである。Structure of the Invention The particle counter of the present invention takes ultrapure water into an evaporation section through a sampling line connected to a use line, vaporizes it, mixes it with a carrier gas, and then reheats it in a reheating section. The vaporized ultrapure water is guided to a dust counter to measure dust.
実施例 以下、図示する本発明の実施例により説明する。Example DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below with reference to illustrated embodiments.
超純水製造装置1のユース・ライン2にはサンプリング
・ライン6が接続されており、ユース・ライン2を流れ
る超純水の一部がサンプリング・ライン6内を還流する
。A sampling line 6 is connected to the use line 2 of the ultrapure water production apparatus 1, and a portion of the ultrapure water flowing through the use line 2 flows back inside the sampling line 6.
このサンプリング・ライン3には蒸発部4が接続されて
おり、蒸発部4ではサンプリング・ライン3から取入れ
られる超純水を蒸発させる。An evaporator 4 is connected to the sampling line 3, and the evaporator 4 evaporates the ultrapure water taken in from the sampling line 3.
また、蒸発部4には微粒子の壁面への付着防止及び蒸発
を完全に行なわせる為に測定粒子径以下のフィルタ8で
濾過されたN2ガスがキャリア・ガスとして供給される
。Further, in order to prevent fine particles from adhering to the wall surface and to completely evaporate them, N2 gas filtered by a filter 8 having a particle size smaller than the measured particle size is supplied to the evaporation section 4 as a carrier gas.
すなわち、蒸発部4において超純水のサンプルが減圧、
低温状態下及びキャリア・ガス下で蒸発されて気化超純
水となる。That is, the ultrapure water sample is depressurized in the evaporation section 4,
It is evaporated under low temperature conditions and carrier gas to become vaporized ultrapure water.
さらに、蒸発部4には再加熱部5が接続されており、蒸
発部4で生成された気化超純水は再加熱部5において残
留している蒸気ミストが減圧、保温状態で完全に気化さ
れる。Furthermore, a reheating section 5 is connected to the evaporation section 4, and the vaporized ultrapure water generated in the evaporation section 4 is completely vaporized in the reheating section 5, where the remaining steam mist is reduced in pressure and kept warm. Ru.
この再加熱部5から排出される気化超純水の一部はサン
プルとしてダスト・カウンタ6に送られる。A portion of the vaporized ultrapure water discharged from the reheating section 5 is sent to a dust counter 6 as a sample.
ダスト・カウンタ6はレーザ光を光源とする光散乱法に
より0.1μmの感度をもつものであり、気化超純水中
のダストを計測する。The dust counter 6 has a sensitivity of 0.1 μm using a light scattering method using a laser beam as a light source, and measures dust in vaporized ultrapure water.
また、この実施例ではコンピュータ7が設けられており
、ダスト・カウンタ6の出力を入力して超純水製造装置
1の制御を行なう。Further, in this embodiment, a computer 7 is provided, and controls the ultrapure water production apparatus 1 by inputting the output of the dust counter 6.
以上の構成において、サンプリング・ライン3から得ら
れた超純水サンプルは、まず蒸発部4においてキャリア
・ガスと共に気化される。In the above configuration, the ultrapure water sample obtained from the sampling line 3 is first vaporized together with the carrier gas in the evaporator 4.
この蒸発部4での気化では、突沸現象等によりサンプル
中には微粒子のみではなく、蒸気ミストも浮遊すること
になる。そこで、蒸発部4で生成された気化超純水は再
加熱部5に送られて、ライン通過中に減圧下で再度加熱
され、低温下で蒸気ミストが完全に気化される。During the vaporization in the evaporator 4, not only fine particles but also vapor mist are suspended in the sample due to the bumping phenomenon and the like. Therefore, the vaporized ultrapure water produced in the evaporation section 4 is sent to the reheating section 5, where it is heated again under reduced pressure while passing through the line, and the steam mist is completely vaporized at a low temperature.
゛ こうして再加熱部5を通過すれば、サンプルの超
純水は完全に気化され、超純水中に含まれていた微粒子
のみが浮遊状態で残留する。゛ When the ultrapure water of the sample passes through the reheating section 5 in this manner, it is completely vaporized, and only the fine particles contained in the ultrapure water remain in a suspended state.
この状態のサンプルが、ダスト・カウンタ6のセンサ部
に送られ、微粒子の径及び個数が測定され、ダスト・カ
ウンタ6の感度に応じて0.1μm以上の径の微粒子は
全てカウントされる。The sample in this state is sent to the sensor section of the dust counter 6, and the diameter and number of particles are measured. Depending on the sensitivity of the dust counter 6, all particles with a diameter of 0.1 μm or more are counted.
この測定は、自動にてオンラインで行い超純水製造装置
の水質監視モニタとして用いられる。This measurement is performed automatically and online and is used as a water quality monitor for ultrapure water production equipment.
また、本実施例の様にダスト・カウンタ6の出力をコン
ピュータ7で処理する構成とすれば、超純水製造装置の
コンピュータ制御用センサとして用いることができる。Further, if the configuration is such that the output of the dust counter 6 is processed by the computer 7 as in this embodiment, it can be used as a sensor for computer control of an ultrapure water production device.
発明の効果
本発明による微粒子カウンタ実施例は以上の通りであり
、次に述べる効果を挙げることができる。Effects of the Invention The embodiment of the particle counter according to the present invention is as described above, and can bring about the following effects.
超純水中の0.1μm以上の微粒子について測定が可能
であり、半導体素子の高密度化にも対応できる。また、
自動分析であるために複雑な分析操作が不要であり、分
析者による個人差も現われない。It is possible to measure fine particles of 0.1 μm or more in ultrapure water, and it can also be used to increase the density of semiconductor devices. Also,
Since it is an automatic analysis, there is no need for complicated analysis operations, and there are no individual differences between analysts.
さらに、オンラインにて短時間で測定が可能であり、超
純水製造装置の水質監視モニタとして用いることができ
る。Furthermore, it can be measured online in a short time, and can be used as a water quality monitor for ultrapure water production equipment.
図面は本発明の実施例を示す概略図である。
1・・超純水製造装置、2・・ユース・ライン、5・・
サンプリング・ライン、4・・蒸発部、5・・再加熱部
、6・・ダスト・カウンタ、7・・コンピュータ、8・
・フィルタ、9・・ユース・ポイント。The drawings are schematic illustrations of embodiments of the invention. 1. Ultrapure water production equipment, 2. Use line, 5.
Sampling line, 4. Evaporation section, 5. Reheating section, 6. Dust counter, 7. Computer, 8.
・Filter, 9...Use point.
Claims (1)
、 ユース・ラインに接続され当該ユース・ライン中を流れ
る超純水の一部を還流させるサンプリング・ラインと、 前記サンプリング・ラインの所定位置に接続され当該サ
ンプリング・ラインから取入れた超純水を蒸発させると
共に、別途供給されるキャリア・ガスとを混合して気化
超純水を発生させる蒸発部と、 前記蒸発部で生成された気化超純水を再度加熱する再加
熱部と、 前記再加熱部から排出される気化超純水を取入れて当該
気化超純水中のダストをカウントするダストカウンタを
備えたことを特徴とする微粒子カウンタ。[Claims] A particle counter for counting particles in ultrapure water, comprising: a sampling line connected to a use line and refluxing a part of the ultrapure water flowing through the use line; an evaporator that is connected to a predetermined position of the line and that evaporates the ultrapure water taken in from the sampling line and mixes it with a separately supplied carrier gas to generate vaporized ultrapure water; and a dust counter that takes in the vaporized ultrapure water discharged from the reheating section and counts dust in the vaporized ultrapure water. particle counter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23149384A JPS61110280A (en) | 1984-11-02 | 1984-11-02 | Particulate counter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23149384A JPS61110280A (en) | 1984-11-02 | 1984-11-02 | Particulate counter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61110280A true JPS61110280A (en) | 1986-05-28 |
Family
ID=16924351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23149384A Pending JPS61110280A (en) | 1984-11-02 | 1984-11-02 | Particulate counter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61110280A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5253538A (en) * | 1991-04-26 | 1993-10-19 | Dryden Engineering Co., Inc. | Method and device for quantifying particles on a surface |
-
1984
- 1984-11-02 JP JP23149384A patent/JPS61110280A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5253538A (en) * | 1991-04-26 | 1993-10-19 | Dryden Engineering Co., Inc. | Method and device for quantifying particles on a surface |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4761074A (en) | Method for measuring impurity concentrations in a liquid and an apparatus therefor | |
US7427311B2 (en) | Method and device for the detection, characterization and/or elimination of suspended particles | |
McMurry | The history of condensation nucleus counters | |
US4967095A (en) | Method and apparatus for detecting and sizing particles on surfaces | |
Kawaguchi et al. | Investigation of airborne particles by inductively coupled plasma emission spectrometry calibrated with monodisperse aerosols | |
JPH0399248A (en) | Particle diameter measuring method using condensed nuclear counting method | |
US20030082825A1 (en) | Apparatus for rapid measurement of aerosol bulk chemical composition | |
Karpetis et al. | An experimental study of well-defined turbulent nonpremixed spray flames | |
JP3280464B2 (en) | Device for monitoring concentration of non-volatile residue in test liquid and method for measuring the same | |
Vehring et al. | Optical determination of the temperature of transparent microparticles | |
US6674529B2 (en) | Method and apparatus for determining physical collective parameters of particles of gases | |
JPS61159135A (en) | Particle analyzing device | |
Shaheen et al. | Evaluation of the analytical performance of femtosecond laser ablation inductively coupled plasma mass spectrometry at 785 nm with glass reference materials | |
US3398286A (en) | Radiation sensitive evaporative analyzer | |
US3462609A (en) | Radiation sensitive nuclei detector for solutions | |
JPS61110280A (en) | Particulate counter | |
NoMIZU et al. | Simultaneous measurement of the elemental content and size of airborne particles by inductively coupled plasma emission spectrometry combined with the laser light-scattering method | |
Schweiger | In‐situ Determination of the Molecular Composition of Aerosol Particles in a Monodisperse Model Aerosol | |
Vanous et al. | The theory and measurement of turbidity and residue | |
US3890046A (en) | Condensation nucleus discriminator | |
Huie et al. | Spatial mapping of analyte distribution within a graphite furnace atomizer | |
US3765771A (en) | Liquid borne particle sensing method using aerosolizing techniques | |
RU2555353C1 (en) | Device to determine spectrum of size of suspended nanoparticles | |
US5059353A (en) | Method for testing the efficiency of gas mask filters using monodispersed aerosols | |
JPS6415634A (en) | Apparatus for measuring distribution of diameter of particle in mist by instantaneous evaporating method |