JPS6110986A - Starting method of induction motor - Google Patents

Starting method of induction motor

Info

Publication number
JPS6110986A
JPS6110986A JP59132629A JP13262984A JPS6110986A JP S6110986 A JPS6110986 A JP S6110986A JP 59132629 A JP59132629 A JP 59132629A JP 13262984 A JP13262984 A JP 13262984A JP S6110986 A JPS6110986 A JP S6110986A
Authority
JP
Japan
Prior art keywords
torque
current
magnetic flux
induction motor
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59132629A
Other languages
Japanese (ja)
Other versions
JPH0446074B2 (en
Inventor
Takumi Yoshida
巧 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP59132629A priority Critical patent/JPS6110986A/en
Publication of JPS6110986A publication Critical patent/JPS6110986A/en
Publication of JPH0446074B2 publication Critical patent/JPH0446074B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/26Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor And Converter Starters (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To obtain a large starting torque by flowing an exciting current larger than a normal value to form an internal magnetic flux larger than that at normal time, then returning the exciting current to the normal value and simultaneously flowing a torque current. CONSTITUTION:When a switch 32 is closed, a large exciting current set value is applied, sufficiently larger internal magnetic flux PHI0 than that at normal time is formed, and then the switch 32 is opened, switches 33a/33b/33c are ON/OFF/ON. Then, an exciting current command value decreases to normal value, and a torque current iq is applied. Since the internal flux PHI0 formed previously remains at this time, a starting torque equal to the product of the flux PHI0 and the torque current iq is generated to start an induction motor 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、戒気車両のように大きな起動トルクを必要
とする機器に用いて好適な誘導電動機の起動方法に関す
るっ 〔従来技術〕 近年、サイリスタ等の電力用牛導体素子の発達によって
インバータが普及し、従来直流電動機が用いられていた
可変速駆動システムの分野において、「インバータ+イ
ンダクショ/モータ」の・らなるOT変速駆動装置が次
々と採用されている。しかし、4気車両のように非常に
大きな起動トルクを必要とする用途においては、その採
用例か少ない。これは、直巻直流電@機に比べて、イン
ダクションモータでは入ぎな起動トルク(静止トルク〕
を出しにくいためであった。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a method for starting an induction motor suitable for use in equipment that requires a large starting torque, such as an air-powered vehicle. [Prior Art] In recent years, With the development of power conductor elements such as thyristors, inverters have become widespread, and in the field of variable speed drive systems, where DC motors have traditionally been used, OT variable speed drive devices consisting of "inverter + induction/motor" are being developed one after another. It has been adopted. However, in applications that require a very large starting torque, such as 4-air vehicles, there are only a few examples of its use. This is because the starting torque (static torque) of an induction motor is higher than that of a series-wound DC electric machine.
This was because it was difficult to produce.

このような背景の中から、最近、インダク/ヨンモータ
において安定した静止トルクを得る方法としてベクトル
側脚が用いられるようVCILつたっCのベクトル制御
は、イングク/ヨンモータリ1次屯流化励磁電流成分i
dと、トルク電流成分Iqとの2つの直交取分に分離し
、各々独立に匍j鐸して頁流亀gth機の特注と同等の
特注を得ようとするものである。
Against this background, recently vector side legs have been used as a method to obtain stable static torque in induction/yon motors, and vector control of VCIL/Yonta C
The purpose is to separate the current component into two orthogonal components, d and the torque current component Iq, and apply each component independently to obtain a custom order equivalent to that of the page flow gth machine.

第3図は、従来りベクトル制呻装置の概略形成を示すプ
ロンク図であり、上山直彦編著の「モータドライブエレ
クトロニクス」第り版(オーム社発行)の133頁から
一部変更して引用したものである。この図において、[
は直流′電源、3は直流化交流に変換してインダクショ
ンモータ4を回転制御するインバータ、5aはインダク
ンヨンモータ4の速度検出器、5は速度検出回路である
Figure 3 is a Pronk diagram showing the general structure of a conventional vector damping device, and is quoted with some changes from page 133 of "Motor Drive Electronics", edited by Naohiko Ueyama, 1st edition (published by Ohmsha). It is. In this figure, [
3 is a DC' power source; 3 is an inverter that converts the AC into DC and controls the rotation of the induction motor 4; 5a is a speed detector for the induction motor 4; and 5 is a speed detection circuit.

速度検出回路5の出力(インダクタンモーク4の実回転
数)ω゛mは加え合せ点7、および自動界磁弱め制御9
へ供給され、自動界磁弱め制@9からは、実回転数ωm
によって定まる磁束指令値本  、 f、か出力される。また、加え合せ点7から出力された
パ表−・−(、木はll1liJ転周波数指令値〕は。
The output of the speed detection circuit 5 (actual rotational speed of the inductor mortar 4) ω゛m is the summation point 7 and the automatic field weakening control 9
from the automatic field weakening @9, the actual rotational speed ωm
A magnetic flux command value determined by f is output. Moreover, the parameter table outputted from the summing point 7 is as follows.

速度アンプ[0によって変換されてトルク指令値大  
          火 波数指令1直、)s および励磁電流指令値1dが算用
される(これらの波形については、第4図参照λ涜  
    ネ ojS =〔(τ÷h  )÷5L” ) X kLz
 −・−・・−(21+ (1− ただし、L、:インダクションモータ402次自己イン
ダクタンス M :インダクションモータ4の[仄2次相互インダク
タンス R2:インダクタンモータ4の2?:に、抵抗 木茎本 これら算出された値iQ  、+d  、ωS と、速
度検出回路5より得られた実回転数′ωml(座標変換
回路20に入力し、その結果得られる出力である、3相
゛亀流指令iu* t iv”  + iw” vt流
制御回路・21fK:弁じてインバータ3に供給する。
The torque command value becomes large after being converted by the speed amplifier [0]
Fire wave number command 1st shift, )s and excitation current command value 1d are calculated (for these waveforms, see Figure 4
NeojS = [(τ÷h)÷5L”) X kLz
−・−・・−(21+ (1−) L,: Induction motor 40 Secondary self-inductance M: Induction motor 4's secondary mutual inductance R2: Inductance motor 4's 2?: Resistance These calculated values iQ, +d, ωS and the actual rotational speed 'ωml obtained from the speed detection circuit 5 are inputted to the coordinate conversion circuit 20, and the resulting output is the 3-phase "turbulent flow command iu* t iv” + iw” VT flow control circuit/21fK: Supplies to the inverter 3 with a valve.

たうして、インダクションモータ4に供給される′電流
1の振幅と周波数が逐次コントロールされ、インダクシ
ョンモータ4の速度制御が行われる。
Thus, the amplitude and frequency of the current 1 supplied to the induction motor 4 are sequentially controlled, and the speed of the induction motor 4 is controlled.

なお1図中、22は電流検出器であり、インダクンヨン
モータ4の1次電流を検出するものである。
In FIG. 1, 22 is a current detector, which detects the primary current of the induction motor 4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上述した従来のベクトル制御装置においては
、第4図に示すように、モータ内部磁束Nt’  が一
定となるように制御しているため、インバータ3の最大
出力電流I m a xが決定されるト、インダクショ
ンモータ4の出力トルクでの最大値″”7:maxは静
止状態から定常速度まで同じ埴に限定されてしまう。
By the way, in the conventional vector control device described above, as shown in FIG. 4, since the motor internal magnetic flux Nt' is controlled to be constant, the maximum output current Imax of the inverter 3 is determined. However, the maximum value of the output torque of the induction motor 4 ``7:max'' is limited to the same value from a stationary state to a steady speed.

促って、起動時のみに人ぎなトルク化必要とする負荷系
に2いても、起動に必要なトルク′c10に常時〔トル
クコンスタント領域内でも〕出刃できるようなインダク
ンヨンモータとインバータが必要であったっ丁なわち、
第5図に示すように、定常負荷トルクが小さく・にもか
かわらず、起動必要トルク′11″IOが人ざいとぎに
は、最大定常出力トルク’7:maX75;c10より
大きいインダクタンモータと、これを制御できる人答量
Q)インノく一タとを使用しなければならなかった。
Therefore, even if you are in a load system that requires a large amount of torque only at startup, you need an induction motor and inverter that can always produce the torque required for startup (even within the constant torque range). It was so hot,
As shown in Fig. 5, even though the steady load torque is small, if the required starting torque '11'' IO is too large, the inductor motor is larger than the maximum steady output torque '7: maX75; c10. I had to use a person who could control this Q) Inno Kuichita.

この発明は、上記の問題点火解決しようとするものであ
ろっ 〔問題点化解決するための手段〕 上記問題点を解決するために、この発明は、インバータ
の最大出力内で定常値より大きな励磁電流を流し、定常
時よりも大きな内部磁束を形成する第1の段階と、前記
励磁電流化定常値に戻すと同時にトルク電流を流丁第2
の段階とを壱することを特徴とするっ 〔作用〕 励磁電流を定常値に戻してトルク電流を流した段階では
1大きな内部磁束が残留しているので、これとトルク′
電流によって大きな起動トルクを得ることができる。
This invention attempts to solve the above-mentioned problem of ignition. [Means for solving the problem] In order to solve the above-mentioned problem, this invention aims to solve the above-mentioned problem. The first step is to flow a current to form a larger internal magnetic flux than in a steady state, and the second step is to flow a torque current at the same time as returning the excitation current to the steady state value.
[Operation] At the stage when the excitation current is returned to the steady value and the torque current is applied, a large internal magnetic flux remains, so this and the torque '
A large starting torque can be obtained by using the current.

さらに詳述すると、この発明は、以下の事実を利用して
いる。
More specifically, the present invention utilizes the following facts.

(1)モータ内部磁束fは、励磁電流idに対して所定
の時定数Tだけ遅れろ。丁なわち、インダクンヨンモー
タの1?:K(ステータ)、2i’lX:(ロータ9間
の相互インダクタンス&M、2次もれインダクタンスを
13.2次抵抗を鳥とすると。
(1) The motor internal magnetic flux f should be delayed by a predetermined time constant T with respect to the excitation current id. Ding, that is, 1 of the indakun yong motor? :K (stator), 2i'lX: (Mutual inductance between rotor 9 &M, secondary leakage inductance is 13.Secondary resistance is bird.

次式が成立するっ S:ラブ2ス演算子 (2)モータ発生トルクTはモータ内部磁束fが丁でに
存在しているときには、トルク電流lqに比例する。丁
なわち、インダクションモータの極対数をアとすると、 T = J:’ j i q   ・・・・・・(6)
となる。
The following equation holds true: S: Love 2 S Operator (2) The motor generated torque T is proportional to the torque current lq when the motor internal magnetic flux f is present at all times. In other words, if the number of pole pairs of the induction motor is A, then T = J:' j iq (6)
becomes.

(3)  インダクンヨンモータの定格*流に対する励
磁電流の割合は、通常、小型モータで1/3程度であり
、モータ体格が大きくなるに従ってさらに減少する。ま
た、通常使用時、モータコアは飽和まで励磁されておら
ず、内部磁束を増加させ得る。このことは、ベクトル制
御用モータには特に当てはまることである。
(3) The ratio of excitation current to the rated current of an inductor motor is usually about 1/3 for small motors, and further decreases as the motor size increases. Also, during normal use, the motor core is not energized to saturation, which can increase internal magnetic flux. This is especially true for vector control motors.

以上の理由から、モータ起動時に、インバータ電流答瀘
の許丁限りの大きな励磁電流idを一定時間以上流し続
けることにより、モータ内部磁束φを定常時より大きく
しておぎ、しかる後にトルク電流iqを化工と同時に励
磁′電流!d、化定常値に切換えるようにすると、イン
バータ叱方ぎりぎりの電流によって形成された内S磁束
fと、インバータ本来のトルク電流1qとの積によって
生じるトルクが、内部磁束φが減衰するまで発生し。
For the above reasons, when starting the motor, by continuing to flow an excitation current id as large as the inverter current response allows for a certain period of time or more, the motor internal magnetic flux φ is made larger than the steady state, and then the torque current iq is increased. Chemical engineering and excitation current at the same time! d. When switching to the steady state value, the torque generated by the product of the internal S magnetic flux f formed by the current at the limit of the inverter and the inverter's original torque current 1q is generated until the internal magnetic flux φ is attenuated. .

大きな起動トルクが得られる。Large starting torque can be obtained.

〔実施例〕〔Example〕

以下1図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to one drawing.

第1図は、本発明の一実施例の形成を示すブロック図で
あり、第3図の各部に対応する部分には同一の符号を付
しである。
FIG. 1 is a block diagram showing the formation of an embodiment of the present invention, and parts corresponding to those in FIG. 3 are given the same reference numerals.

本実施例が第3図に示す従来の装置と異なる点条 は、モータ起動時の上記指令1直id  化定當時の値
より大す(シている点であるっそして、上記励磁電流指
令値+d  から磁束指令値φ を得るためには、(5
)式の関係1丁なわち、 なる式を用いている。第1図の符号3[は、この演算を
行う演4器であり、演算器310人力には、モータ起動
時の励磁′亀化合合値id4′(以下、これ1ido”
で示す]がスイッチ32(當開接点ンと33b(常閉接
点)とを弁して(渡設定器35から供給される一方、定
常時の励磁電流指令値歌              
      肴+d  (以下、これfp(Id c 
 で示す]がスイッチ33C(常閉接点)を弁じて演算
器15かも供給されている。
The difference between this embodiment and the conventional device shown in FIG. To obtain the magnetic flux command value φ from +d, (5
) equation, that is, the following equation is used. Reference numeral 3 in FIG. 1 is a calculator that performs this calculation.
The switch 32 (shown as an open contact) and the switch 33b (a normally closed contact) are supplied with the excitation current command value (indicated by
Appetizer + d (Hereafter, this is fp (Id c
] is also supplied to the arithmetic unit 15 by controlling the switch 33C (normally closed contact).

また、演算器11と12との間には、スイッチ33a(
片開接点)が介挿され、演算di?31の出力rが演算
器itと13に供給されている。なお、上記スイッチ3
3a〜33cは連動するようになっている。
Further, a switch 33a (
A single open contact) is inserted, and the calculation di? The output r of 31 is supplied to arithmetic units it and 13. In addition, the above switch 3
3a to 33c are designed to be interlocked.

仄に、第2図の波形図を参照して、上記実施例の動作を
説明する。
The operation of the above embodiment will be briefly described with reference to the waveform diagram in FIG.

今、第2図に示す時刻t、に、スイッチ32をオンする
と、起動時の励磁電流指令値ido“(これは、インバ
ータ3の数人出力電流と寺しくとっであるンが演算器2
0および、3Lに供給される。この場合、スイッチ33
aが開状態にあるため5 トルク成流指令11区iq’
=oとなり・演算器20からはi”−1do”なる電化
合引1 か出力される一方1丁べり周波数指令1面(1
7s’  も苓となる。また、冥回転数ωmも零である
から1回転周波畝指令1直ω も零となり、インダクシ
ョンモータ4内には、回転しない内部磁束f  〔以下
、これをf。とする〕が形成される。この内部磁束fo
は、(5)式の関係により、励磁T4流化合値id。
Now, when the switch 32 is turned on at time t shown in FIG.
0 and 3L. In this case, switch 33
Since a is in the open state, 5 Torque flow command 11 section iq'
= o, and the calculator 20 outputs the electrical connection 1, which is i"-1do", while the one-stop frequency command 1 (1
7s' is also a lily. In addition, since the rotational speed ωm is also zero, the one-rotation frequency ridge command one-direction ω is also zero, and the induction motor 4 has a non-rotating internal magnetic flux f [hereinafter referred to as f]. ] is formed. This internal magnetic flux fo
is the excitation T4 flow combined value id according to the relationship of equation (5).

を積分した形となっており、後者がインバータの准流谷
量ぎりぎりの値にとっであることから、内部磁束f。も
これに対応する大きな値とIよっている。また、磁束指
令匡rも同様の波形となっている。
The internal magnetic flux f. I also have a correspondingly large value. Furthermore, the magnetic flux command value r has a similar waveform.

こうして、定常時に比べて十分に人ぎな内部磁束f。が
形成された後、第2図の時刻t2にスイッチ32をオフ
、スイッチ33 a / 33 b / 33 Cにオ
ン/オフ/オンとすると、励峰底化合令値Id水が定常
値idc  に減少するとともに、トルク指箭値′C”
および磁束指令値ψ に対応するトルク心化合会値iq
 および丁べり周波数指令1直ωS ρ)演算され、こ
れらか、速度検出回路5より得られた実回転数ωmと共
に座標変換回路20に入力され、3相の電流指令iu”
 、iv”。
In this way, the internal magnetic flux f is sufficiently strong compared to the steady state. is formed, and when the switch 32 is turned off at time t2 in Fig. 2 and the switches 33a/33b/33C are turned on/off/on, the excitation peak/bottom combination command value Id water decreases to the steady value idc. At the same time, the torque index value 'C'
and the torque center combination value iq corresponding to the magnetic flux command value ψ
and 1st direction frequency command ωS ρ) are calculated, and these are input to the coordinate conversion circuit 20 together with the actual rotational speed ωm obtained from the speed detection circuit 5, and the three-phase current command iu''
,iv”.

1W9に変換され、′屯流制両回路21化弁じてインバ
ータ3Vc供給されることによって、指令値iq< 、
+d省に等しいトルク祇流lq、励磁亀流1dがインダ
ク/ヨンモータ4に流れるようにする2゜ ここで、時刻t2には、光に形成された内部磁束f。が
残留しているため、このi。と上記トルク電流1qの積
に等しい起動トルクでか発生し、これが第2図(ト)に
示す最大起動トルクでmaxとなり、インダクションモ
ータ4が起動される。そして、内部磁束fが時定数′r
で減挾するに従って、トルクでが定常1直てCに近づき
、やがて、内部磁束f、トルクでおよび丁ベリ周波ff
m5が”dK値に洛着くっ こうして5本実施例によれば、まずインノく一夕3の′
電流容量ぎりぎりの大きな励磁電流idoを流して、で
きる1波り大きな内部磁束f。?形成し、仄にトルク電
流Iqを化工と同時に励磁電流指令1直をIdOからI
dCVC,I/I替えるので、内部磁束f。が減衰する
まで人さな起動トルク4得ることができる。
The command value iq<,
A torque current lq equal to +d energy causes an excitation current 1d to flow into the inductor/yeon motor 42.Here, at time t2, the internal magnetic flux f formed in the light. remains, so this i. A starting torque equal to the product of the torque current 1q and the torque current 1q is generated, and this reaches the maximum starting torque shown in FIG. 2 (G), and the induction motor 4 is started. Then, the internal magnetic flux f has a time constant ′r
As the torque decreases, the torque approaches a steady one-direction C, and eventually the internal magnetic flux f, the torque, and the alignment frequency ff
According to this embodiment, m5 reaches the dK value.
An internal magnetic flux f that is one wave larger is created by flowing a large excitation current ido that is at the limit of the current capacity. ? forming the torque current Iq, and at the same time transmitting the excitation current command 1st shift from IdO to IdO.
Since dCVC and I/I are changed, the internal magnetic flux f. A person can obtain a small starting torque of 4 until it decays.

〔発明の効果〕〔Effect of the invention〕

以上B51明したように、この発明は、インノく一タの
通人出力内で定唐埴より人さな動員電流を流して定常時
よりも人ざは内部磁束を形成し、次に。
As explained above, the present invention allows a human-like mobilizing current to flow from a fixed coil within the normal output of an innocent to form an internal magnetic flux more than in a steady state, and then.

mJ記励磁、Ji流を定常値に戻すと同時にトルク電流
を流1”ようにしたので、大きな起動トルクを得ろこと
かでさる。
By excitation mJ and returning the Ji current to a steady value, the torque current was made to flow 1" at the same time, so a large starting torque could be obtained.

【図面の簡単な説明】 第1図は、不発明の一実施91Jの憫by、に示すブロ
ック図、第2図は、同実施例の動作を説明するための波
形図、第3図は、従来のベクトル制O11装置の構by
、化示すブロック図、第4図は、同装置の動作をi兄明
するための波形図、第5図は、起動必要トルク′T:1
oと定常負荷トルクの関係を示す図である。 3・・インバータ、4・・インダクションモータ(誘導
電動機)。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a block diagram shown in Embodiment 91J of the present invention, FIG. 2 is a waveform diagram for explaining the operation of the same embodiment, and FIG. 3 is a waveform diagram for explaining the operation of the embodiment. Structure of conventional vector system O11 device
, FIG. 4 is a waveform diagram for explaining the operation of the device, and FIG. 5 is a block diagram showing the required starting torque 'T: 1
FIG. 3 is a diagram showing the relationship between o and steady load torque. 3. Inverter, 4. Induction motor (induction motor).

Claims (1)

【特許請求の範囲】[Claims] ベクトル制御インバータによつて回転制御される誘導電
動機において、前記インバータの最大出力内で定常値よ
り大きな励磁電流を流して定常時よりも大きな内部磁束
を形成する第1の段階と、前記励磁電流を定常値に戻す
と同時にトルク電流を流す第2の段階とを有することを
特徴とする誘導電動機の起動方法。
In an induction motor whose rotation is controlled by a vector control inverter, a first step of flowing an excitation current larger than a steady value within the maximum output of the inverter to form a larger internal magnetic flux than in a steady state; A method for starting an induction motor, comprising a second step of returning the torque current to a steady state value and simultaneously supplying a torque current.
JP59132629A 1984-06-27 1984-06-27 Starting method of induction motor Granted JPS6110986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59132629A JPS6110986A (en) 1984-06-27 1984-06-27 Starting method of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59132629A JPS6110986A (en) 1984-06-27 1984-06-27 Starting method of induction motor

Publications (2)

Publication Number Publication Date
JPS6110986A true JPS6110986A (en) 1986-01-18
JPH0446074B2 JPH0446074B2 (en) 1992-07-28

Family

ID=15085790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59132629A Granted JPS6110986A (en) 1984-06-27 1984-06-27 Starting method of induction motor

Country Status (1)

Country Link
JP (1) JPS6110986A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0257628A2 (en) * 1986-08-27 1988-03-02 Allen-Bradley Company, Inc. Flux profile control for startup of an induction motor
EP1289120A1 (en) * 2001-08-24 2003-03-05 Siemens Aktiengesellschaft Method for increasing the torque of an asynchronmotor over a short period
DE10060368B4 (en) * 2000-05-25 2010-01-14 Mitsubishi Denki K.K. Method for controlling an asynchronous motor and device for carrying out the same
JP2011114894A (en) * 2009-11-25 2011-06-09 Panasonic Corp Power generation device
JP2018042387A (en) * 2016-09-08 2018-03-15 株式会社デンソー Control device for rotary electric machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0257628A2 (en) * 1986-08-27 1988-03-02 Allen-Bradley Company, Inc. Flux profile control for startup of an induction motor
EP0257628A3 (en) * 1986-08-27 1989-08-09 Allen-Bradley Company, Inc. Flux profile control for startup of an induction motor
DE10060368B4 (en) * 2000-05-25 2010-01-14 Mitsubishi Denki K.K. Method for controlling an asynchronous motor and device for carrying out the same
EP1289120A1 (en) * 2001-08-24 2003-03-05 Siemens Aktiengesellschaft Method for increasing the torque of an asynchronmotor over a short period
JP2011114894A (en) * 2009-11-25 2011-06-09 Panasonic Corp Power generation device
JP2018042387A (en) * 2016-09-08 2018-03-15 株式会社デンソー Control device for rotary electric machine

Also Published As

Publication number Publication date
JPH0446074B2 (en) 1992-07-28

Similar Documents

Publication Publication Date Title
Abrahamsen et al. Efficiency-optimized control of medium-size induction motor drives
Solveson et al. Soft-started induction motor modeling and heating issues for different starting profiles using a flux linkage ABC frame of reference
JPS61196787A (en) Torque control system for induction motor
JPH0240586B2 (en)
Lin et al. Automatic IM parameter measurement under sensorless field-oriented control
US3320506A (en) Reference system for closed loop variable frequency drive
JPS6110986A (en) Starting method of induction motor
EP0253267A2 (en) AC motor drive apparatus
Plunkett et al. System design method for a load commutated inverter-synchronous motor drive
Goswami et al. High performance induction machine drive using rotor field oriented control
Law Closed loop bidirectional rotation and speed controls for three-phase induction motor
Farrahov et al. Development of The Universal Apparatus for Induction Motors with Combined Winding Design
JPS60219983A (en) Drive controller of induction motor
JP2003244991A (en) Control method for induction motor
JPS6152176A (en) Vector controlling method of induction motor
Metwally et al. Vector control of four switch three-phase inverter fed synchronous reluctance motor drive including saturation and iron losses effects based Maximum Torque Control
Zachepa et al. Starting System of Induction Motor with Dynamic Torque Control Powered by an Autonomous Sources of Energy Supply
JP4802428B2 (en) Induction motor control method
Yakut et al. A control method for driving dual permanent magnet synchronous motors fed by single matrix converter
Abdel-Halim Control of single phase induction motor using forced-commutated electronic switches
Wu et al. Control of a dual stator winding induction machine as a source of dc power
Woudstra et al. Improved soft starter with thyristor chopper
JP3235320B2 (en) Induction motor vector control device
JP3307086B2 (en) Induction motor vector control device
JP2644222B2 (en) Induction motor torque control method