JPS61196787A - Torque control system for induction motor - Google Patents

Torque control system for induction motor

Info

Publication number
JPS61196787A
JPS61196787A JP60036051A JP3605185A JPS61196787A JP S61196787 A JPS61196787 A JP S61196787A JP 60036051 A JP60036051 A JP 60036051A JP 3605185 A JP3605185 A JP 3605185A JP S61196787 A JPS61196787 A JP S61196787A
Authority
JP
Japan
Prior art keywords
command
current
component
magnetic flux
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60036051A
Other languages
Japanese (ja)
Inventor
Yoshimoto Fujioka
藤岡 良基
Shinichi Kono
新一 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP60036051A priority Critical patent/JPS61196787A/en
Priority to PCT/JP1986/000079 priority patent/WO1986005043A1/en
Priority to US06/933,746 priority patent/US4757248A/en
Priority to EP86901496A priority patent/EP0214301B1/en
Priority to DE8686901496T priority patent/DE3681665D1/en
Publication of JPS61196787A publication Critical patent/JPS61196787A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • H02P21/08Indirect field-oriented control; Rotor flux feed-forward control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To obtain a linear output torque for a torque command by decomposing by vectors an exciting current command and the secondary current command, and obtaining the primary current command by the combination of the vector values. CONSTITUTION:A torque command Iw is decomposed by vectors into the electromotive force direction component (E1 axis component) I2W and exciting magnetic flux component (PHI axis component) I2M of the secondary current. The command PHIis decomposed by vectors into the electromotive force direction component (E1 axis component) Iou and exciting magnetic flux component (PHI axis component) IoM. These components IoM and I2M are added to obtain the PHI axis component I1(PHI) of the primary current I1. The components Iou and I2W are added to obtain the E1 axis component I1(E1) of the primary current I1. The current calculator A adds the PHI axis component I1 and the E1 axis component I1(E1) to obtain the primary current command I1. The thus obtained primary current is the current command when considering all various constants of an induction motor, and becomes a current command to obtain a linear output torque for the torque command.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、誘導電動機のトルク制御方式に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a torque control method for an induction motor.

(従来技術とその問題点) 最近の誘導電動機の速度制御は、ベクトル制御が一般的
に用いられている。このようなベクトル制御により誘導
電動機の速度制御を行なう場合に□ は、工作機械等の
主軸用モータ等のように高速回転領域まで速度制御を行
なう場合や、一定回転数において、トルク指令に応じて
励磁を弱めるような制御を行なう場合に、電動機の2次
もれインダクタンス、励磁鉄損等の効果により、トルク
指令と励磁電流、2次電流、すべり周波数が非線形とな
り、この結果、トルク指令に対して出力トルクも非線形
となり、正確なトルク指令ができなくなる。
(Prior art and its problems) Vector control is generally used for speed control of recent induction motors. When controlling the speed of an induction motor using such vector control, □ is used when controlling the speed up to a high-speed rotation range, such as in the spindle motor of a machine tool, or when controlling the speed of an induction motor in response to a torque command at a constant rotation speed. When controlling to weaken the excitation, the torque command, excitation current, secondary current, and slip frequency become nonlinear due to the effects of the motor's secondary leakage inductance, excitation iron loss, etc., and as a result, the torque command As a result, the output torque also becomes non-linear, making it impossible to provide accurate torque commands.

これに対処するため従来は、モータの出力トルクを正確
に知る手段として、モータトルクを測定する、トルク、
センサ等の外部機器を使用していた。このため設備コス
トがかさむという問題があった。
To deal with this, conventional methods of accurately determining the output torque of the motor include measuring the motor torque.
External devices such as sensors were used. Therefore, there was a problem in that the equipment cost increased.

(発明の目的) 本発明は、このような従来技術の問題点を解消し、特別
なトルク測定機器を必要とすることなく、トルク指令に
対して出力トルクを線形に制御する、誘導電動機のトル
ク制御方式の提供を目的とするものである。
(Objective of the Invention) The present invention solves the problems of the prior art, and the torque of an induction motor that linearly controls the output torque with respect to the torque command without the need for special torque measurement equipment. The purpose is to provide a control method.

(発明の概要) 本発明の誘導電動機のトルク制御方式は、電動機に対す
るトルク指令及び電動機に対応して決定される励磁磁束
指令をもとにして、これらの指令に対して線形な出力ト
ルクが得られるように、励磁電流指令、2次電流指令を
それぞれ、励磁磁束方向成分および電動機の起電圧方向
(トルク方向)成分にベクトル分解し、これらのベクト
ル値の合成により電動機の1次電流指令を求めることを
特徴とする。また、必要な負荷電流を流すためのすべり
周波数指令を得ることにより、電動機トルクを線形に制
御するために、特別なトルク測定機器を必要とすること
なく、トルク指令そのものを゛出力トルクとして代用で
きるようにしたことを特徴とするものである。
(Summary of the Invention) The induction motor torque control method of the present invention is based on a torque command for the motor and an excitation magnetic flux command determined corresponding to the motor, and obtains an output torque linear with respect to these commands. The excitation current command and the secondary current command are vector-decomposed into a component in the direction of the excitation magnetic flux and a component in the direction of the motor's electromotive force (torque direction), respectively, and the primary current command of the motor is obtained by combining these vector values. It is characterized by In addition, by obtaining the slip frequency command to flow the necessary load current, the torque command itself can be used as an output torque in order to linearly control the motor torque without requiring special torque measurement equipment. It is characterized by the following.

(実施例) 以下、図により本発明の一実施例について説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

はじめに、本発明の前提となる、誘導電動機の緒特性の
関係を、第3図の等何回路、第4図、第5図のベクトル
図により説明する。
First, the relationship between the mechanical characteristics of an induction motor, which is the premise of the present invention, will be explained using the equal circuit shown in FIG. 3 and the vector diagrams shown in FIGS. 4 and 5.

誘導電動機の2次人力R2は、 P2°EIXIIXcosθ2  ・・・(1)で求め
られる。ここで、Φを励磁磁束、ω。を励磁周波数とす
ると、誘起起電圧E、は、E□=dΦ/dt=ω。×Φ
  ・・・(2)2次電流は、 Iz=Et/1ZzJ =Et / (R2/S) 2+X2 ’・・・(3) 力率は、 cosθ2  =(R2/S)  / l  Z  l
= (R2/S) /W万丁T〒x2”・・・ (4) で求められる。
The secondary human power R2 of the induction motor is obtained as follows: P2°EIXIIXcosθ2 (1). Here, Φ is the exciting magnetic flux, and ω. When is the excitation frequency, the induced voltage E is E□=dΦ/dt=ω. ×Φ
...(2) Secondary current is Iz=Et/1ZzJ =Et/(R2/S) 2+X2'...(3) Power factor is cosθ2 =(R2/S)/l Z l
= (R2/S) /WmanchoT〒x2”... (4) It is obtained as follows.

(2)、(3)、(4)式を(1)式に代入すると、 R2=E1 2*(R2Is)/ ((R2/S)  
’  +)[2z)=I22・(R2/S)     
   ・・・ (5)2次銅損R2rは、 P2r=I2 2− R2=SXP2     ・・−
(6)で求められ、電動機の出力Pmは、 P m= R2R2r = (I  S) R2・・・
(7) となる。また、電動機のトルクをTm、電動機の回転数
をωmとすると、 P m = (1) m X T m        
−(8)となる。
Substituting equations (2), (3), and (4) into equation (1), R2=E1 2*(R2Is)/((R2/S)
' +)[2z)=I22・(R2/S)
... (5) Secondary copper loss R2r is P2r=I2 2- R2=SXP2...-
(6), the output Pm of the motor is P m = R2R2r = (I S) R2...
(7) becomes. Also, if the torque of the electric motor is Tm and the rotation speed of the electric motor is ωm, then P m = (1) m X T m
−(8).

ここで、電動機のトルクTmは、(1)  、  (2
)、(7)、(8)式より、 Tm= Pm/ωm =(1−3)R2/0m = (1/ωm)X (1−(ωslω6月XP2= 
R2/ω0 =  (1/(1)0  )XEI  XI2  X 
 cosθ2=ΦXl2Xcosθ2      =(
9)となる。
Here, the torque Tm of the electric motor is (1), (2
), (7), and (8), Tm = Pm/ωm = (1-3) R2/0m = (1/ωm)X (1-(ωslωJuneXP2=
R2/ω0 = (1/(1)0)XEI XI2 X
cosθ2=ΦXl2Xcosθ2=(
9).

但し、ωSをすべり周波数とする。However, ωS is the slip frequency.

次に、Io、I2のΦ軸成分(励磁磁束成分)、El軸
成分(起電圧方向成分)をそれぞれ■。
Next, the Φ-axis component (exciting magnetic flux component) and El-axis component (electromotive force direction component) of Io and I2 are respectively .

M 、 In ω、およびI2M、L21J)として、
以下のように求める。Loを励磁インダクタンスとする
と、 Φ=L0XIoM であるから、 I(IM  =  (1/Lo)XΦ   ・ (10
)また、■oωは鉄損成分であり、比例定数をKとする
と、 IOωmKX(+)6 XΦ    ・(11)で近似
される。
M, In ω, and I2M, L21J),
Find it as follows. If Lo is the excitation inductance, then Φ=L0XIoM, so I(IM = (1/Lo)XΦ ・ (10
) Also, ■oω is an iron loss component, and if the proportionality constant is K, it is approximated by IOωmKX(+)6XΦ·(11).

さらに、(9)式を変形して、 I2 (1)= I2 X cosθ2=Tm/Φ・・
・(12) が得られ、2次電流のΦ軸成分I2Mは、I2M = 
I2 X sinθ2=I2ωXtanθ2= I 2
 ωX (X2 / (R2/ S) )= I 2 
(+) X (SX2 / R2)=I2ω×ω5X(
L2/R2) ・・・(13) となるが、(2)、(3)、(4)、(12)式%式% が得られ、両辺をΦで割ると、 I2(1)/Φ= ((1) 5XR2) / (R2
z+(ω5L2)2) ・・・(14) 以上を前提として、本発明によるトルク指令に応じた1
次電流およびすべり周波数を求める具体的方法について
以下に説明する。
Furthermore, by transforming equation (9), I2 (1) = I2 X cosθ2 = Tm/Φ...
・(12) is obtained, and the Φ-axis component I2M of the secondary current is I2M =
I2 X sinθ2=I2ωXtanθ2= I2
ωX (X2/(R2/S))=I2
(+) X (SX2 / R2) = I2ω×ω5X (
L2/R2) ...(13) However, formulas (2), (3), (4), and (12) are obtained, and dividing both sides by Φ, I2(1)/Φ = ((1) 5XR2) / (R2
z+(ω5L2)2) ...(14) Based on the above, 1 according to the torque command according to the present invention
A specific method for determining the secondary current and slip frequency will be described below.

一般に、励磁磁束Φの最大値は、[11電動機に流し得
る最大励磁電流、[2]電動機に印加できる最大電圧、
のいずれかによって決定される。
Generally, the maximum value of excitation magnetic flux Φ is [11 maximum excitation current that can be passed through the motor, [2] maximum voltage that can be applied to the motor,
determined by either.

電動機の実際の制御においては、負荷が小さいときには
励磁音を減少させる等の理由により励磁を弱める場合が
あるが、以下の説明においては磁束指令は最大値を与え
るものとする。
In actual control of an electric motor, when the load is small, excitation may be weakened for reasons such as reducing excitation noise, but in the following explanation, the magnetic flux command is assumed to be given the maximum value.

トルク指令Tmと、磁束指令Φがそれぞれ与えられると
、(10)式より■。Mが、(11)式よりI。ωが、
また(12)式よりI2ωが各々求められる。
When the torque command Tm and the magnetic flux command Φ are respectively given, from equation (10), ■. M is I from formula (11). ω is
Further, I2ω can be obtained from equation (12).

次に、I2ωとΦより、(14)式によりすべり周波数
ωSが決定されるが、ωSをCPU等により短時間に演
算するのは困難なので、予め、I2ω/Φの値に対する
ωSの値を求めておき、ωSをデータテーブルとして、
また、I2ω/Φの値をデータアドレスとしてメモリに
記憶させておく。
Next, the slip frequency ωS is determined from Equation (14) from I2ω and Φ, but since it is difficult to calculate ωS in a short time using a CPU, etc., the value of ωS for the value of I2ω/Φ is calculated in advance. Then, using ωS as a data table,
Further, the value of I2ω/Φ is stored in the memory as a data address.

このようにして、I2ωとωSが求められれば、(13
)式よりI2Mが得られる。
In this way, if I2ω and ωS are found, (13
) I2M can be obtained from the formula.

以上より、1次電流I!のΦ軸成分Il (Φ)は、 11 (Φ)=IOM  +I2M   −(15)E
l軸成分It(El)は、 11  (El)=1.(1)+l2(1)・・・(1
6) として、それぞれ求めることができる。
From the above, the primary current I! The Φ-axis component Il (Φ) is 11 (Φ)=IOM +I2M − (15)E
The l-axis component It(El) is 11 (El)=1. (1)+l2(1)...(1
6) Each can be obtained as follows.

このようにして得られた1次電流は、誘導電動機の諸定
数を全て考慮した場合の電流指令であり、トルク指令に
対して線形な出力トルクを得るための電流指令となって
いる。
The primary current obtained in this way is a current command in consideration of all the various constants of the induction motor, and is a current command for obtaining an output torque linear with respect to the torque command.

また、Ir  (Φ)、It  (El)は、それぞれ
誘導電動機のベクトル制御における励磁電流成分、負荷
電流成分に対応するものである。
Further, Ir (Φ) and It (El) correspond to the excitation current component and load current component, respectively, in vector control of the induction motor.

以下、本発明の具体例について、第1図のブロック図及
び第2図のフローチャートにより説明する。
Hereinafter, specific examples of the present invention will be explained with reference to the block diagram in FIG. 1 and the flowchart in FIG. 2.

■速度指令ωCと、電動機の出方軸に直結した速度発電
機で得られた電動機回転数ωmとを、比較器aに入力し
、 Tm=に1  (ωc−ωm) +に2 f ((+10−0m) dtの演算を行ない
、トルク指令Tmを算出する。なお、ベクトル制御にお
いてはこのような速度偏差の演算でトルク指令とみなし
ていることは、通常知られた事項であるので、これ以上
の説明は省略する。
■Input the speed command ωC and the motor rotation speed ωm obtained from the speed generator directly connected to the output shaft of the motor to the comparator a, and calculate Tm=1 (ωc-ωm) +2 f (( +10-0m) dt and calculates the torque command Tm.In addition, it is generally known that in vector control, such calculation of speed deviation is regarded as a torque command, so this The above explanation will be omitted.

■励磁周波数ω0から、磁束特性曲線上の励磁磁束Φを
決定する。
(2) Determine the excitation magnetic flux Φ on the magnetic flux characteristic curve from the excitation frequency ω0.

■励磁磁束Φより、励磁電流■。のΦ方向成分IOHを
、 IOM  =  (1,/Lo )XΦで求め、加算器
d2に入力する。
■Exciting current■ from exciting magnetic flux Φ. The Φ direction component IOH of is determined by IOM = (1, /Lo)XΦ and input to the adder d2.

■Φとω。より、■oのE11方向性 Ioω=に3×ω。XΦ として求め、加算器d1に入力する。■Φ and ω. From ■o's E11 direction Ioω = 3×ω. XΦ and input it to the adder d1.

02次電流I2のE、方向成分を除算器b1により、 I2ω=(Tm/Φ) として求める。The E direction component of the secondary current I2 is divided by the divider b1, I2ω=(Tm/Φ) Find it as.

■得られた■2ωと励磁磁束指令Φを除算器b2に入力
し、予めメモリに記憶させておいたデータテーブルより
、I2ω/Φのデータアドレスに対応するすべり周波数
ωSを求める。
(2) The obtained 2ω and excitation magnetic flux command Φ are input to the divider b2, and the slip frequency ωS corresponding to the data address of I2ω/Φ is determined from the data table stored in the memory in advance.

■■2ωとωSを乗算器c2に入力し、更に(L2 /
 R2)を乗算して、2次電流のΦ方向成分I2M =
 (L2/R2)XI2ωXωsを演算して、加算器d
2に入力する。
■■2ω and ωS are input to multiplier c2, and further (L2 /
R2) to obtain the Φ direction component of the secondary current I2M =
(L2/R2)XI2ωXωs and adder d
Enter 2.

■加算器d2により、■1のΦ方向成分I+  (Φ)
 −Ior1+I2M を演算する。
■Adder d2 adds ■1's Φ direction component I+ (Φ)
-Ior1+I2M is calculated.

■加算器d1により、IlのE、方向成分I I(El
 ) = IO(1)+I2 (+)を演算する。
■Adder d1 adds E of Il, direction component II(El
)=IO(1)+I2(+) is calculated.

◎電流演算回路Aからは、直交する2相の1次電流指令
■1が得られ、2相−3相変換回路Bに入力される。
◎From the current calculation circuit A, the orthogonal two-phase primary current command ■1 is obtained and input to the two-phase to three-phase conversion circuit B.

o2相−3相回路から得られる誘導電動機Mの各相指令
電流Iu、Iv、Iwは、電流制御器Cに入力される。
o Each phase command current Iu, Iv, Iw of the induction motor M obtained from the 2-phase to 3-phase circuit is input to the current controller C.

電動機の各相の実際電流はCTu 。The actual current in each phase of the motor is CTu.

CTv 、CTwにより検゛出され、指令電流と比較さ
れて、電流制御器で所定の制御が行なわれる。
The current is detected by CTv and CTw, compared with a command current, and a current controller performs a predetermined control.

(発明の効果) 以上説明したように本発明によれば、特別なトルク測定
機器を必要とすることなく、トルク指令に対して線形な
出力トルクを得ることができる。
(Effects of the Invention) As described above, according to the present invention, an output torque linear with respect to a torque command can be obtained without requiring a special torque measuring device.

このため、低コストで誘導電動機の正確な出力トルクを
判断できる利点がある。
Therefore, there is an advantage that accurate output torque of the induction motor can be determined at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の概略のブロック図、第2図はフローチ
ャート、第3図は等両回路、第4図、第5図はベクトル
図である。 A・・・電流演算回路、B・・・2相−3相変換器、C
・・・電流制御器。
FIG. 1 is a schematic block diagram of the present invention, FIG. 2 is a flowchart, FIG. 3 is a circuit diagram, and FIGS. 4 and 5 are vector diagrams. A... Current calculation circuit, B... 2-phase to 3-phase converter, C
...Current controller.

Claims (1)

【特許請求の範囲】[Claims] 誘導電動機に対するトルク指令および励磁周波数から励
磁磁束指令を決定する手段、励磁磁束から励磁電流の励
磁磁束成分を決定する手段、励磁磁束と励磁周波数から
励磁電流の起電圧方向成分を決定する手段、前記トルク
指令と励磁磁束指令から電動機2次電流の起電圧方向成
分を決定する手段、該2次電流の起電圧成分と励磁磁束
からすべり周波数を決定する手段、2次電流の起電圧方
向成分とすべり周波数より2次電流の励磁磁束成分を決
定する手段、上記励磁電流および2次電流のそれぞれの
励磁磁束成分と起電圧方向成分により、電動機1次電流
の励磁磁束方向成分と起電圧方向成分とを求める手段、
該2次方向成分の合成により電動機1次電流指令を求め
る手段を具備し、誘導電動機の出力トルクをトルク指令
に対して直線的に制御することを特徴とする誘導電動機
のトルク制御方式。
means for determining an excitation magnetic flux command from a torque command and excitation frequency for an induction motor; means for determining an excitation magnetic flux component of an excitation current from an excitation magnetic flux; means for determining an electromotive force direction component of an excitation current from an excitation magnetic flux and an excitation frequency; Means for determining an electromotive force direction component of a motor secondary current from a torque command and an excitation magnetic flux command; A means for determining a slip frequency from an electromotive force component of the secondary current and an excitation magnetic flux; and an electromotive force direction component of a secondary current and a slip. Means for determining the excitation magnetic flux component of the secondary current from the frequency, and the excitation magnetic flux direction component and the electromotive force direction component of the motor primary current using the excitation magnetic flux component and the electromotive force direction component of the excitation current and the secondary current, respectively. means to seek,
A torque control method for an induction motor, comprising means for obtaining a motor primary current command by combining the secondary direction components, and controlling the output torque of the induction motor linearly with respect to the torque command.
JP60036051A 1985-02-25 1985-02-25 Torque control system for induction motor Pending JPS61196787A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60036051A JPS61196787A (en) 1985-02-25 1985-02-25 Torque control system for induction motor
PCT/JP1986/000079 WO1986005043A1 (en) 1985-02-25 1986-02-20 System for controlling torque of induction motor
US06/933,746 US4757248A (en) 1985-02-25 1986-02-20 Induction motor torque control system
EP86901496A EP0214301B1 (en) 1985-02-25 1986-02-20 System for controlling torque of induction motor
DE8686901496T DE3681665D1 (en) 1985-02-25 1986-02-20 CONTROL SYSTEM OF THE TORQUE OF AN INDUCTION MOTOR.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60036051A JPS61196787A (en) 1985-02-25 1985-02-25 Torque control system for induction motor

Publications (1)

Publication Number Publication Date
JPS61196787A true JPS61196787A (en) 1986-08-30

Family

ID=12458913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60036051A Pending JPS61196787A (en) 1985-02-25 1985-02-25 Torque control system for induction motor

Country Status (5)

Country Link
US (1) US4757248A (en)
EP (1) EP0214301B1 (en)
JP (1) JPS61196787A (en)
DE (1) DE3681665D1 (en)
WO (1) WO1986005043A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240875A (en) * 1985-04-16 1986-10-27 Fanuc Ltd Controlling method for 3-phase induction motor
JP2625969B2 (en) * 1988-03-11 1997-07-02 株式会社明電舎 Vector controller for induction motor
US5212438A (en) * 1987-09-24 1993-05-18 Kabushiki Kaisha Toshiba Induction motor control system
US5003243A (en) * 1987-09-29 1991-03-26 Kabushiki Kaisha Toshiba Control apparatus for induction machine
FI884512A (en) * 1987-11-25 1989-05-26 Siemens Ag FOERFARANDE FOER EFTERBILDNING AV EN BELASTNINGSVINKELS NUVAERDE HOS EN VRIDFAELTSMOTOR SAMT ETT KOPPLINGSSCHEMA FOER FOERVERKLIGANDE AV DETTA FOERFARANDE.
JP2780263B2 (en) * 1988-02-23 1998-07-30 株式会社明電舎 Vector control method and device for induction motor
JP2845911B2 (en) * 1988-12-24 1999-01-13 ファナック株式会社 Slip frequency control method for induction motor
FR2644950B1 (en) * 1989-03-21 1991-05-17 Alsthom Gec VECTOR CONTROL SYSTEM FOR A CAGE ASYNCHRONOUS ELECTRIC MOTOR
US4968925A (en) * 1989-08-07 1990-11-06 General Electric Company Universal field-oriented controller
US4958117A (en) * 1989-09-29 1990-09-18 Allen-Bradley Company, Inc. Frequency control based on sensing voltage fed to an induction motor
JPH03150090A (en) * 1989-11-02 1991-06-26 Fanuc Ltd Control system for spindle motor
US5330423A (en) * 1991-11-15 1994-07-19 Holster Donald J Drive system
JP2755011B2 (en) * 1992-02-13 1998-05-20 三菱電機株式会社 Motor drive control device
FR2692693A1 (en) * 1992-06-23 1993-12-24 Smh Management Services Ag Control device of an asynchronous motor
DE4317782C2 (en) * 1993-05-28 1996-01-18 Jungheinrich Ag Hydraulic lifting device for battery-powered industrial trucks or the like
FR2709067B1 (en) * 1993-08-17 1995-11-03 Sellier Bruno Torque generating device, application to a physical exercise device and variator for controlling a corresponding motor.
KR950015957A (en) * 1993-11-12 1995-06-17 이대원 Vector control method and apparatus of induction motor
US5668459A (en) * 1995-05-09 1997-09-16 Lg Industrial Systems Co., Ltd. Apparatus for generating magnetic flux of induction motor
US5754026A (en) * 1997-04-04 1998-05-19 Ford Global Technologies, Inc. Induction motor control method
US6104148A (en) * 1999-04-15 2000-08-15 General Electric Company System and method for controlling an AC traction motor without sensing motor rotation speed
DE102013212054A1 (en) * 2013-06-25 2015-01-08 Robert Bosch Gmbh Method and device for operating an asynchronous machine, asynchronous machine
US9344026B2 (en) * 2013-07-23 2016-05-17 Atieva, Inc. Induction motor flux and torque control
US10521519B2 (en) 2013-07-23 2019-12-31 Atieva, Inc. Induction motor flux and torque control with rotor flux estimation
US11418140B2 (en) 2013-07-23 2022-08-16 Atieva, Inc. Induction motor flux and torque control
DE212018000368U1 (en) * 2017-12-01 2020-07-02 Future Motion, Inc. Control system for electric vehicles
WO2019113537A1 (en) 2017-12-07 2019-06-13 Future Motion, Inc. Dismount controls for one-wheeled vehicle
US10456658B1 (en) 2019-02-11 2019-10-29 Future Motion, Inc. Self-stabilizing skateboard
US11273364B1 (en) 2021-06-30 2022-03-15 Future Motion, Inc. Self-stabilizing skateboard
US11299059B1 (en) 2021-10-20 2022-04-12 Future Motion, Inc. Self-stabilizing skateboard
US11890528B1 (en) 2022-11-17 2024-02-06 Future Motion, Inc. Concave side rails for one-wheeled vehicles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790A (en) * 1980-05-28 1982-01-05 Yaskawa Electric Mfg Co Ltd Controlling device for induction motor
JPS57162986A (en) * 1981-03-31 1982-10-06 Fanuc Ltd Ac motor control system
EP0075023B1 (en) * 1981-03-31 1986-07-30 Fanuc Ltd. Method of controlling an ac motor and device thereof
JPS5879489A (en) * 1981-11-04 1983-05-13 Fanuc Ltd Control system for ac motor
US4558269A (en) * 1982-04-22 1985-12-10 Fanuc Ltd Induction motor drive apparatus
JPS5963998A (en) * 1982-10-04 1984-04-11 Hitachi Ltd Controlling method for induction motor
US4672287A (en) * 1984-08-30 1987-06-09 Fanuc Ltd Induction motor digital control system
US4672288A (en) * 1985-06-18 1987-06-09 Westinghouse Electric Corp. Torque controller for an AC motor drive and AC motor drive embodying the same

Also Published As

Publication number Publication date
EP0214301A1 (en) 1987-03-18
EP0214301A4 (en) 1988-06-08
DE3681665D1 (en) 1991-10-31
WO1986005043A1 (en) 1986-08-28
EP0214301B1 (en) 1991-09-25
US4757248A (en) 1988-07-12

Similar Documents

Publication Publication Date Title
JPS61196787A (en) Torque control system for induction motor
RU2392732C1 (en) Device for control of asynchronous motor vector, method for control of asynchronous motor vector and device for control of asynchronous motor drive
US6107774A (en) Apparatus and method for controlling drive of three-phase multiplex winding motor
US4777422A (en) Induction motor flux estimator/controller
KR20020092167A (en) Driving equipment for synchronous motors
US5754026A (en) Induction motor control method
JPS6240083A (en) Control method of three-phase induction motor
CN103051270A (en) Motor control device that controls d-axis current of permanent magnet synchronous motor
Lin et al. Automatic IM parameter measurement under sensorless field-oriented control
JPH07274599A (en) Method and apparatus for controlling vector in induction motor
JPH0250718B2 (en)
Velkov et al. Speed control of AC Motors for electric vehicles using field oriented control
JP2002233198A (en) Motor drive circuit
US20220014138A1 (en) Inverter control device
JP2850096B2 (en) Inverter control method with constant measurement setting function
JP2017153273A (en) Control device for induction motor
JP2634959B2 (en) Speed sensorless speed control method
JPH01107692A (en) Vector controller for induction motor
SU1432711A1 (en) A.c. electric drive
Umamaheswari et al. High performance sensorless VSI fed Induction Motor drive using combined vector control
JPH0572195B2 (en)
JP2792025B2 (en) Vector controller for induction motor
JP2005269818A (en) Control unit of polyphase ac current
JPH09191700A (en) Method for controlling induction motor
JPH02142379A (en) Speed control device of induction motor