JPS61109784A - Production of arene oxide - Google Patents
Production of arene oxideInfo
- Publication number
- JPS61109784A JPS61109784A JP23027184A JP23027184A JPS61109784A JP S61109784 A JPS61109784 A JP S61109784A JP 23027184 A JP23027184 A JP 23027184A JP 23027184 A JP23027184 A JP 23027184A JP S61109784 A JPS61109784 A JP S61109784A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- hypochlorite
- polycyclic aromatic
- oxide
- aromatic compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Epoxy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は多環芳香族化合物の次亜塩素酸塩酸化によるア
レンオキシドの製法にHfる。詳しく述べると多環芳香
族化合物を相聞移動条件下次亜塩素酸塩と反応させる際
に、不活な溶媒として塩素化またはニトロ化炭化水素化
合物を使用し常圧還流下あるいは減圧量流下反応温度を
35〜55℃に保ちつつ酸化を行なうことによりアレン
オキシドを工業的に有利に製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is directed to a method for producing allene oxide by hypochlorite oxidation of polycyclic aromatic compounds. Specifically, when a polycyclic aromatic compound is reacted with hypochlorite under phase transfer conditions, a chlorinated or nitrated hydrocarbon compound is used as an inert solvent, and the reaction temperature is refluxed at normal pressure or under reduced pressure. The present invention relates to an industrially advantageous method for producing allene oxide by carrying out oxidation while maintaining the temperature at 35 to 55°C.
アレンオキシドは、医薬、農薬、染料及びその他種々の
工業製品の中間原料として有用であシ広汎な用途を有す
るものである。Allene oxide is useful as an intermediate raw material for pharmaceuticals, agricultural chemicals, dyes, and various other industrial products, and has a wide range of uses.
アレンオキシド、特にに領域アレンオキシドは公知の方
法で得られる化合物である。例えはJ、 Am、 Ch
@w、 Soc、誌1977年第99巻24号8121
〜3頁の雑文に記されているとおシ、K領域多環芳香族
化合物をそのクロロホルム溶液と水の液々不拘−系にお
いて次亜塩素酸ナトリウム及びテトラ−h−ブチルアン
モニワム°ビプルフエートを用い10℃ないし室温でP
Hを8〜9に保ちつつ酸化せしめて容易Kかつかなシの
高収率でうろことができる。しかし上記の方法は、高収
率を目指すには次亜塩素酸ナトリウムを反応基質(K領
域多環芳香族化合物)に対し30モル当量用いる必要が
あシ、経済的に難点があること、さらに上記の酸化反応
は大きな発熱反応であり、その反応熱を除去するために
水浴上で冷却しつつ酸化せしめる必要があり、反応の制
御を誤ると爆発の危険性もあることから技術的にも難点
があ夛、工業的な方法としては採用し得ない。Allene oxide, particularly allene oxide, is a compound obtained by known methods. Examples are J, Am, Ch
@w, Soc, Magazine 1977 Vol. 99 No. 24 8121
As described in the miscellaneous text on pages 3 to 3, K domain polycyclic aromatic compounds were prepared using sodium hypochlorite and tetra-h-butylammonium bipurphate in a liquid-liquid independent system of chloroform solution and water. P at 10℃ or room temperature
It can be easily oxidized while keeping H at 8 to 9, and can be easily oxidized with a high yield of K and kana. However, in the above method, in order to achieve high yield, it is necessary to use 30 molar equivalents of sodium hypochlorite relative to the reaction substrate (K domain polycyclic aromatic compound), which is economically difficult. The above oxidation reaction is a large exothermic reaction, and in order to remove the reaction heat, it is necessary to oxidize while cooling on a water bath, and if the reaction is not controlled incorrectly, there is a risk of explosion, so it is technically difficult. However, it cannot be used as an industrial method.
上記において述べたように公知の方法は経済的かつ技術
的な問題があシ、工業的な方法とはなり難い。As mentioned above, the known methods have economical and technical problems and are difficult to be used as industrial methods.
本発明はこのような問題点を解決して工業的に有利にア
レンオキシド、4? K yエナンスレン−9,10−
オキシドを得る方法を提供するものであシ、特に次亜塩
素酸塩の使用量を減少せしめることによシ、経済的に、
さらに反応熱を効率良く除去せしめることKより技術的
な難点を克服し、安全にアレンオキシド、特にフェナン
スレンー9110−オキシドを得る方法を提供する。The present invention solves these problems and industrially advantageously produces allene oxide, 4? K y enanthrene-9,10-
The present invention provides a method for obtaining oxides, particularly by reducing the amount of hypochlorite used.
Furthermore, the present invention provides a method for safely obtaining allene oxide, particularly phenanthrene-9110-oxide, by efficiently removing reaction heat and overcoming technical difficulties.
本発明者らはこれら問題点の解決を達成すべく鋭意研究
した結果、多環芳香族化合物の次亜塩素酸塩酸化による
アレンオキシドの工業的に有利な製造方法を確立するに
至った。すなわち本発明は多環芳香族化合物を相関移動
条件下次亜塩素酸塩と液々不拘−反応を行ないアレンオ
キシドを製造する際、不活性な溶媒として塩素化または
ニトロ化炭化水素化合物の共存下、反応を、35〜55
℃の範囲の温度で常圧ある−は減圧の還流下で行ない、
その際還流溶媒の気化熱を利用し、反応熱の除去を行な
いつつ、酸化反応を行なわせることを特徴とする、K領
域アレンオキシドの製造方法でラシ、上記の手法によシ
初めて公知の方法の種々の問題を解決するに至った。As a result of intensive research aimed at solving these problems, the present inventors have established an industrially advantageous method for producing allene oxide by oxidizing polycyclic aromatic compounds with hypochlorite. In other words, the present invention involves the production of allene oxide by carrying out a liquid-liquid-independent reaction of a polycyclic aromatic compound with hypochlorite under phase transfer conditions, in the coexistence of a chlorinated or nitrated hydrocarbon compound as an inert solvent. , reaction, 35-55
It is carried out under reflux at normal pressure and - at a temperature in the range of °C, and at reduced pressure.
This method is the first known method to produce K-region allene oxide, which is characterized by using the heat of vaporization of the refluxing solvent to carry out the oxidation reaction while removing the heat of reaction. various problems have been solved.
本発明の方法における原料である多環芳香族化合物はた
とえばタール留分中に含まれ、分留などの手段によって
容易に見られるものである。The polycyclic aromatic compound which is a raw material in the method of the present invention is contained in, for example, a tar fraction, and is easily found by means such as fractional distillation.
多環芳香族化合物としてフェナンスレン、ピレン、ペン
:/ [:a] l’レン、ペンツ[8)アンスラセン
、ジベンズ(a%h)アンスラセン、クリセン、フェナ
ンスロリンおよびアセナフテンなどがあげられる。これ
らは一般に固体なので本発明の方法においてそれらを反
応に不活性な有機溶媒に溶解させて使用する必要がある
。Examples of polycyclic aromatic compounds include phenanthrene, pyrene, pen:/[:a] l'rene, penz[8] anthracene, dibenz(a%h) anthracene, chrysene, phenanthroline, and acenaphthene. Since these are generally solids, it is necessary to use them in the method of the present invention by dissolving them in an organic solvent inert to the reaction.
有機溶媒としては、塩素化またはニトロ化炭化水素化合
物が有効に使用され、例えば、二塩化メチレン、クロロ
ホルム、塩化エチレン、トリクレン、クロロベンゼンま
タハニトロベンゼンなどが好適である。As the organic solvent, chlorinated or nitrated hydrocarbon compounds are effectively used, and suitable examples include methylene dichloride, chloroform, ethylene chloride, trichlene, chlorobenzene, and nitrobenzene.
先にも述べたように本発明反応は溶媒の気化熱を利用し
て反応熱の除去を行なうことを1#像とするので、溶媒
の還流温度で反応することを必須条件とするものである
。その反応温匿は35〜55℃の範囲の温度に設定され
るものである。還流温度を35〜55℃に保つべく上記
の有機溶媒を単独で使用してもよく、または上記の有機
溶媒を適当な比率で混合して使用しても反応にはさしつ
かえない。とくに本発明においては二塩化メチレンが最
も良い#*である。As mentioned earlier, the reaction of the present invention is based on removing the reaction heat using the heat of vaporization of the solvent, so it is an essential condition that the reaction be carried out at the reflux temperature of the solvent. . The reaction temperature is set at a temperature in the range of 35 to 55°C. The above organic solvents may be used alone to maintain the reflux temperature at 35 to 55°C, or the above organic solvents may be used as a mixture in an appropriate ratio without any problem in the reaction. In particular, in the present invention, methylene dichloride is the best #*.
55℃を越える温度で反応させる場合、使用する次亜塩
素酸塩の分解が激しくなシ転化率が著しく低下するので
不適当でるる。一方35℃未満の温度では反応速度が遅
く工業的に不経済となシ好ましくない。If the reaction is carried out at a temperature exceeding 55° C., the hypochlorite used will decompose rapidly and the conversion rate will drop significantly, making it unsuitable. On the other hand, a temperature lower than 35° C. is undesirable because the reaction rate is slow and industrially uneconomical.
本発明の方法では相間移動条件下、すなわち相間移動触
媒を使用して反応を行なうことを必須条件とし、たとえ
ば、テトラ−n〜プブチアンモニクムクロリド、テトラ
−n−ブチルアンモニウムプロミド、テトラ−n−ブチ
ルアンモニタムビナルフエート、ベンジルトリーn−ブ
チルアンモニウムクロリド、ベンジルトリーn−ブチル
アンモニワムプロミド、トリーn−オクチルメチルアン
モ二9ムクロリド、N−ラクリルピリジワムクロリドな
どが使用できるが、テトラ−n−ブチルアンモニウムプ
ロミド、テトラ−n−ブチルアンモニウムビプルフェー
ト、オヨヒヘンジル) I) −n−ブチルアンモニ9
ムクロリドが最も好ましい。相関移動触媒の使用量は多
環芳香族化合物に対し0.1〜50モル係、好ましくは
0.5〜10モル暢の1囲である。0.1モル憾よ勺少
量では反応が遅く、また50モル憾を超える量では経済
上好ましくない。The method of the present invention requires that the reaction be carried out under phase transfer conditions, that is, using a phase transfer catalyst, such as tetra-n-butylammonium chloride, tetra-n-butylammonium bromide, tetra- n-Butylammonitum vinylphate, benzyltri-n-butylammonium chloride, benzyltri-n-butylammonium bromide, tri-n-octylmethylammonium chloride, N-lacrylpyridium chloride, etc. can be used. , tetra-n-butylammonium bromide, tetra-n-butylammonium bipurphate, oyohihenzil) I) -n-butylammonium 9
Muchloride is most preferred. The amount of the phase transfer catalyst used is 0.1 to 50 mol, preferably 0.5 to 10 mol, relative to the polycyclic aromatic compound. If the amount is less than 0.1 mol, the reaction will be slow, and if the amount exceeds 50 mol, it is economically unfavorable.
本発明の方法における反応溶液のPHは8〜10の範囲
であるが、好ましくは8.2〜9.2で越えると反応は
遅くな9好ましくない。The pH of the reaction solution in the method of the present invention is in the range of 8 to 10, preferably 8.2 to 9.2, and if it exceeds this, the reaction will be slow (9), which is not preferred.
本発明の方法における次亜塩素酸塩は一般にはナトリウ
ム塩の水溶液の形で用いられるが、ブリーチング・パウ
ダー(さらし粉)を水に懸濁させて使用してもよい。そ
の次亜塩素酸塩の水溶液または懸濁液の有効塩素濃度が
1〜15優、好ましくは有効塩[1度が5〜13)6の
範囲で使用される。有効塩素濃度が!優よ〕も低い濃度
では反応の装置効率が悪く、また有効塩素濃度が15%
を超える濃度では次亜塩素酸塩の分解が激しくいずれも
好ましくない。次亜塩素酸塩の使用量は多環芳香族化合
物1モルに対し1.5〜5.0 %ル、好ましくは1.
7〜3.0%#である。モル比が1.5未満では転化率
が恐く、モル比が5.0を超えては経済上好ましくない
。The hypochlorite used in the method of the present invention is generally used in the form of an aqueous sodium salt solution, but a bleaching powder may also be suspended in water. The effective chlorine concentration of the aqueous solution or suspension of hypochlorite is from 1 to 15, preferably from 5 to 13,6. Effective chlorine concentration! At low concentrations, the efficiency of the reaction equipment is poor, and the effective chlorine concentration is 15%.
If the concentration exceeds 100%, the decomposition of hypochlorite will be severe and both are unfavorable. The amount of hypochlorite used is 1.5 to 5.0%, preferably 1.5% to 1 mole of the polycyclic aromatic compound.
7 to 3.0% #. If the molar ratio is less than 1.5, the conversion rate may be low, and if the molar ratio exceeds 5.0, it is economically unfavorable.
本発明の方法における反応時間は反応条件によって異な
るが1o分〜5時間であるが、触媒の使用量、反応温度
などを変化させるととKよシ、反応時間を自由に調整す
ることが可能である。The reaction time in the method of the present invention varies depending on the reaction conditions, but is from 1 minute to 5 hours, but the reaction time can be freely adjusted by changing the amount of catalyst used, reaction temperature, etc. be.
本発明の方法における反応様式は液々不拘−系であ凱回
分式連続式いずれも可能である。The reaction mode in the method of the present invention is a liquid-liquid independent system, and either a batchwise or continuous system is possible.
液々不拘−系の反応では攪拌効率の反応速度に及はす影
響が大きく、一般に高速攪拌下で反応を行なうことが多
い。In liquid-liquid independent reactions, the stirring efficiency has a large effect on the reaction rate, and the reaction is generally carried out under high-speed stirring.
本発明の方法においては、環流下で反応を行なう九めに
好都合にも溶媒の沸騰にょシ攪拌効率が向上し、高速攪
拌することなしに反応を行える利点をも有する。本発明
の反応を行なった後鉱、副生成物もきわめて少なく、液
々分離、水洗、11縮、−過、乾燥などの常法の単位操
作によシ容易に高収率でアレンオキシドを得ることがで
きる。また液々分離、有機層の水洗を行なって得られる
オキシドの溶液はそのまま次の反応に使用してもさしつ
かえない。In the method of the present invention, since the reaction is carried out under reflux, the stirring efficiency is improved when the solvent boils, and the reaction can be carried out without high-speed stirring. After carrying out the reaction of the present invention, there are very few minerals and by-products, and allene oxide can be easily obtained in high yield by conventional unit operations such as liquid-liquid separation, water washing, 11-condensation, -filtration, and drying. be able to. Further, the oxide solution obtained by liquid-liquid separation and washing of the organic layer with water may be used as it is in the next reaction.
かくして本発明の方法によれば、多環芳香族化合物の次
亜塩素酸塩酸化KJ:、9アレンオキシドを高収率高純
度でしかも経済的にも工業的にも有利に製造しうるもの
であル、よってこの技術分野および利用分野に大きな進
歩をもたらすものである。Thus, according to the method of the present invention, hypochlorite oxidation of polycyclic aromatic compounds, KJ:9, is possible to produce allene oxide in high yield and high purity, and economically and industrially. Therefore, it represents a major advance in this field of technology and application.
次に本発明の方法を実施例によってさらに具体的に説明
する。しかし以下の実施例は本発明の方法を限定するも
のではない。Next, the method of the present invention will be explained in more detail with reference to Examples. However, the following examples are not intended to limit the method of the invention.
実施例 1
還流冷却管、温度計、滴下ロート、PHIE&および攪
拌器を備えた内容&ltの円筒型フラスコにフェナンス
レン(M1度91%) 78.2グラム(0,40モル
)、テトラ−n−ブチルアンモニウムビサルフエート1
.0グラム(o、o O3モル)、二塩化メチレン69
0グラム、有効塩素濃度が104である次亜塩素酸ナト
リウムの水溶液852グラム(1,2モル)を加えて、
攪拌下昇温し還流温度(40〜43℃)にした。Example 1 78.2 g (0.40 mol) of phenanthrene (M1 degree 91%), tetra-n-butyl in a cylindrical flask equipped with a reflux condenser, thermometer, addition funnel, PHIE < Ammonium bisulfate 1
.. 0 grams (o, o O3 moles), methylene dichloride 69
0 g, and 852 g (1.2 mol) of an aqueous solution of sodium hypochlorite with an available chlorine concentration of 104,
The temperature was raised to reflux temperature (40-43°C) while stirring.
以後反応終了時まで攪拌を続は同温度を保った。Thereafter, stirring was continued and the same temperature was maintained until the end of the reaction.
滴下ロートよシ35壬塩@20グラム(0,19モル)
を20分間で滴下し反応溶液のPHを8.5に調整し反
応を開始させた。反応が開始すると反応溶液のPHが低
下するので、2N−水酸化ナトリウムの水溶液を滴下す
ることによりPHを8.5±0.2に保ち1時間反応を
続けた@反応終了後液々分離し、有機層を水100グラ
ムで洗浄シ、フェナンスレン−9,lO−オキシドの二
塩化メチレン溶液を得た。ガスクロマトグラフィーによ
る内部標準法で測定したところフェナンスレンの転化率
は100%で7二す/スレンー9.10−オキシドが9
6モル幅の収率で生成していた。Dripping funnel 35 salt @ 20 grams (0.19 mol)
was added dropwise over 20 minutes to adjust the pH of the reaction solution to 8.5 to start the reaction. When the reaction started, the pH of the reaction solution decreased, so the pH was kept at 8.5 ± 0.2 by dropping a 2N aqueous solution of sodium hydroxide and the reaction was continued for 1 hour @After the reaction was finished, the liquid was separated. The organic layer was washed with 100 g of water to obtain a methylene dichloride solution of phenanthrene-9,1O-oxide. As measured by internal standard method using gas chromatography, the conversion rate of phenanthrene was 100%, 72/threne-9.10-oxide was 9
It was produced in a yield of 6 molar width.
実施例 2
還流冷却管、温度計、滴下ロート、PH電極および攪拌
器を装えた内容&10tの円筒形フラスコに、有効塩素
濃度が12.9%である工業用次亜塩素酸ナトリウム1
651グラム(3,0モル)を加え、攪拌下これに滴下
口、−トより17係塩#165グラム(0,30モル)
を5分間で滴下しPI(を9.0に調整した。ここに工
業用二塩化メチレン5200グラムに溶解せしめた、フ
ェナンスレン(純i91%)587/ラム(3,0モル
)およびテトラ−n−ブチルアンモニクムプロミド7.
25グラム(0,023モル)を20分間で加えた。続
いて17係塩943グラム(0,20モル)を5分間で
滴下し、反応溶液のPHを8.7に調整しながら還流温
度(40〜43℃)に達するまで湯浴上で加熱し、以後
反応終了まで攪拌、還流を続けた。反応が始まると反応
溶液のPHが低下するので有効塩素濃度が12.9係で
ある工業用次亜塩素酸ナトリウム(PH12,5) 1
982グラム(3,6モル)を滴下することによシ、反
応溶液のPHを8.5±0.2に保ちつつ反応を進めた
。なお反応溶液のPHを8.7に調整した後工業用次亜
塩素酸す) IJウムの滴下が終了するまでの間は、反
応熱が溶媒の環流に有効に利用されるため、湯浴上で加
熱する必要はなく反応温度も42〜43℃に保たれ、反
応熱の除去に関する問題点は見い出せなかった。全量の
次亜塩素酸ナトリウムを滴下するのにおよそ2.5〜3
.0時間を要した。全量滴下後さらに1時間反応溶液の
PHを8.5±0.2に保つべく、2N−水酸化す)
IJクムの水浴液7〇−を滴下しつつ反応を完結させた
。ガスクロマトグラフィーによる内部標準法で測定した
ところフェナンスレンの転化率は100%でフェナンス
レン−9,10−オキシドが98モル幅の収率で生成し
ていた。このように還流下においては反応熱の除去およ
び二液層の混合が非常に効率よく行なわれた。Example 2 In a 10 ton cylindrical flask equipped with a reflux condenser, thermometer, dropping funnel, PH electrode and stirrer, industrial sodium hypochlorite 1 with an effective chlorine concentration of 12.9% was added.
Add 651 grams (3.0 mol) and add 165 grams (0.30 mol) of #17 salt from the dripping port while stirring.
was added dropwise over 5 minutes to adjust PI to 9.0. Phenanthrene (91% pure i) 587/ram (3.0 mol) and tetra-n- Butylammonicum promide7.
25 grams (0,023 moles) were added over 20 minutes. Subsequently, 943 g (0.20 mol) of salt 17 was added dropwise over 5 minutes, and while adjusting the pH of the reaction solution to 8.7, it was heated on a water bath until it reached the reflux temperature (40-43°C). Thereafter, stirring and refluxing were continued until the reaction was completed. When the reaction starts, the pH of the reaction solution decreases, so the effective chlorine concentration is 12.9. Industrial sodium hypochlorite (PH12.5) 1
By dropping 982 grams (3.6 moles), the reaction proceeded while maintaining the pH of the reaction solution at 8.5±0.2. After adjusting the pH of the reaction solution to 8.7, add industrial hypochlorous acid). There was no need to heat the reaction mixture, and the reaction temperature was maintained at 42 to 43° C., and no problems were found regarding the removal of reaction heat. Approximately 2.5 to 3 to drip the entire amount of sodium hypochlorite
.. It took 0 hours. After dropping the entire amount, 2N-hydroxide was added to keep the pH of the reaction solution at 8.5 ± 0.2 for another 1 hour.)
The reaction was completed while dropping IJ Kum's water bath solution 70-. As measured by internal standard method using gas chromatography, the conversion rate of phenanthrene was 100%, and phenanthrene-9,10-oxide was produced in a yield of 98 molar width. As described above, under reflux, the reaction heat was removed and the two liquid layers were mixed very efficiently.
実施例 3
実施例1におけると同様の装置に、二塩化メチレン69
0グラムに溶解せしめた、フェナンスレン(純度91%
) 78.2グラム(0,40モル)、テトラ−n−ブ
チルアンモニウムプロミド0.97グラム(o、o 0
3モル)及び水10グラムを加え攪拌しながら還流温度
(40〜43℃)に達するまで昇温した。以後反応終了
まで攪拌、還流を続けた。ここに17%塩a!42グラ
ム(0,196モル)と有効塩素濃度が12qbである
工業用次亜塩素酸ナトリウム521グラム(O,S a
モル)を異なる滴下ロートから2時間かけて同時に滴下
した。この時反応溶液のPHは8.6±0.2に保たれ
た。それぞれ全量滴下後、さらに1時間反応溶液のP
Hf:8.6±0.2に保つべ(2N−水酸化ナトリウ
ムの水溶液11−を滴下し、反応を完結させた。ガスク
ロマトグラフィーによる内部標準法で測定したところフ
ェナンスレンの転化率は100%でフェナンスレンー9
.10−オキシドが97モル幅の収率で生成していた。Example 3 In an apparatus similar to that in Example 1, methylene dichloride 69
Phenanthrene (91% purity) dissolved in 0g
) 78.2 grams (0,40 mol), tetra-n-butylammonium bromide 0.97 grams (o, o 0
3 mol) and 10 g of water were added thereto, and the temperature was raised while stirring until it reached reflux temperature (40 to 43°C). Thereafter, stirring and refluxing were continued until the reaction was completed. 17% salt a here! 42 grams (0,196 mol) and 521 grams of industrial sodium hypochlorite (O,S a
mol) were simultaneously added dropwise from different dropping funnels over a period of 2 hours. At this time, the pH of the reaction solution was maintained at 8.6±0.2. After dropping the entire amount, the P of the reaction solution was further increased for 1 hour.
Hf: Maintained at 8.6 ± 0.2 (2N aqueous solution of sodium hydroxide 11- was added dropwise to complete the reaction. As measured by internal standard method using gas chromatography, the conversion rate of phenanthrene was 100%. So Fenanthren-9
.. 10-oxide was produced in a yield of 97 molar width.
実施例 4
実施例IKおけると同様の装置に有効塩素濃度が8.5
4である工業用次亜塩素酸ナトリウム168グラム(0
,20モル)を加え攪拌下、ここに滴下ロートよシェフ
釜塩i1!9.5グラム(0,044モル)を5分間で
滴ヤしPHを9.0に調整した。ついでここに工業用二
塩化メチレン173グラムと工業用二塩化エチレン18
7グラムの混合溶液に溶解せしめ、フェナンスレン(純
度92.5鳴) 38.5グラム(o、z oモル)お
よびテトラ−n−ブチルアンモニタムプロミド0.48
3グラム(o、o o 1sモル)を5分間で加えた。Example 4 A device similar to that in Example IK was used with an effective chlorine concentration of 8.5.
168 grams of industrial sodium hypochlorite (0
, 20 mol) was added thereto, and while stirring, 9.5 grams (0,044 mol) of Chef's pot salt I1 was added dropwise over 5 minutes through the dropping funnel to adjust the pH to 9.0. Next, here are 173 grams of industrial methylene dichloride and 18 grams of industrial ethylene dichloride.
Dissolved in a mixed solution of 7 grams, 38.5 grams (o, zo mol) of phenanthrene (purity 92.5) and 0.48 grams of tetra-n-butylammonitum bromide.
3 grams (o, o 1 smol) were added over 5 minutes.
続いて17%塩酸5.3グラム(0,025モル)を5
分間で滴下し、反応溶液のPHを8.7に調整しながら
還流温度(53℃)に達するまで湯浴上で加熱し、以後
反応終了まで攪拌、還流を続けた。反応が始まると反応
溶液のPHが低下するのであらかじめPHをおよそ12
にil[した有効塩素濃度が8.5%でらる次亜塩素酸
ナトリウム235グラム(0,28モル)を滴下するこ
とにより反応溶液の?)[を8.5±0.2に保ちつつ
反応を進めた。次亜塩素酸ナトリウムの全量滴下(およ
そ30分を喪する)の後、さらに1時間PHを8.5±
0.2に保つべく2N−水酸化ナトリワムの水#!*5
−を滴下しつつ反応を完結させた。ガスクロマトグラフ
ィーによる内部標準法で測定したところフェナンスv
ンo転化率a 9 s esで、フェナンスレン−9,
10−オキシドが95モル悌の収率で生成していた。Subsequently, 5.3 grams (0,025 moles) of 17% hydrochloric acid
The reaction solution was added dropwise over a period of minutes, and while adjusting the pH of the reaction solution to 8.7, it was heated on a hot water bath until it reached the reflux temperature (53°C), and stirring and refluxing were continued until the reaction was completed. When the reaction starts, the pH of the reaction solution decreases, so adjust the pH to approximately 12 in advance.
of the reaction solution by adding dropwise 235 g (0.28 mol) of sodium hypochlorite with an available chlorine concentration of 8.5%. ) [ was maintained at 8.5±0.2 while the reaction proceeded. After dropping the entire amount of sodium hypochlorite (takes approximately 30 minutes), the pH is maintained at 8.5± for another 1 hour.
2N-sodium hydroxide water to keep it at 0.2 #! *5
- was added dropwise to complete the reaction. Fennans v as measured by internal standard method using gas chromatography
Phenanthrene-9,
10-oxide was produced in a yield of 95 mol.
特許出願人 日不触媒化学工業株式会社手続補正V(
自発)
昭和ご年72月61日
特許庁長官 志 賀 卓 殿
1、事件の表示
昭和59年特許願第230271号
2、発明の名称
アレンオキシドの製法
3、補正をする者Patent applicant Nippon Shokubai Kagaku Kogyo Co., Ltd. Procedure Amendment V (
Voluntary) December 61, 1982 Director General of the Patent Office Takashi Shiga1, Indication of the case Patent Application No. 230271 of 19822, Name of the invention Process for producing allene oxide3, Person making the amendment
Claims (6)
塩と反応させて対応するアレンオキシドを製造する際に
、当該多環芳香族化合物を不活性な溶媒として塩素化ま
たはニトロ化炭化水素化合物の共存下、35℃〜55℃
の範囲の温度で還流下に反応させることを特徴とするア
レンオキシドの製造方法。(1) When producing the corresponding arene oxide by reacting a polycyclic aromatic compound with hypochlorite under phase transfer conditions, the polycyclic aromatic compound is chlorinated or nitrated as an inert solvent. 35°C to 55°C in the coexistence of hydrocarbon compounds
A method for producing allene oxide, characterized in that the reaction is carried out under reflux at a temperature in the range of .
特徴とする特許請求の範囲(1)記載の方法。(2) The method according to claim (1), wherein the reaction is carried out under normal pressure or reduced pressure.
、ベンゾ〔a〕ピレン、ベンズ〔a〕アンスラセン、ジ
ベンズ〔a,h〕アンスラセン、クリセン、フェナンス
ロリンおよびアセナフチレンよりなる群から選ばれた少
なくとも1種であることを特徴とする特許請求の範囲(
1)または(2)記載の方法。(3) The polycyclic aromatic compound is at least one member selected from the group consisting of phenanthrene, pyrene, benzo[a]pyrene, benz[a]anthracene, dibenz[a,h]anthracene, chrysene, phenanthroline, and acenaphthylene. A claim characterized in that it is a species (
1) or the method described in (2).
を特徴とする特許請求の範囲(1)、(2)または(3
)記載の方法。(4) Claims (1), (2), or (3) characterized in that the hypochlorite is sodium hypochlorite.
) method described.
水素化合物が、二塩化メチレン、クロロホルム、塩化エ
チレン、トリクレン、クロルベンゼンおよびニトロベン
ゼンよりなる群から選ばれた少なくとも1種であること
を特徴とする特許請求の範囲(1)、(2)、(3)ま
たは(4)記載の方法。(5) The chlorinated or nitrated hydrocarbon compound as the inert solvent is at least one selected from the group consisting of methylene dichloride, chloroform, ethylene chloride, trichlene, chlorobenzene, and nitrobenzene. The method according to claim (1), (2), (3) or (4).
,10−オキシドであることを特徴とする特許請求の範
囲(1)、(2)、(3)、(4)または(5)記載の
方法。(6) The target allene oxide is phenanthrene-9
, 10-oxide, the method according to claim (1), (2), (3), (4) or (5).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23027184A JPS61109784A (en) | 1984-11-02 | 1984-11-02 | Production of arene oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23027184A JPS61109784A (en) | 1984-11-02 | 1984-11-02 | Production of arene oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61109784A true JPS61109784A (en) | 1986-05-28 |
JPS6347711B2 JPS6347711B2 (en) | 1988-09-26 |
Family
ID=16905181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23027184A Granted JPS61109784A (en) | 1984-11-02 | 1984-11-02 | Production of arene oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61109784A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4112609A1 (en) | 2021-06-30 | 2023-01-04 | Covestro Deutschland AG | Method for the production of alkylene oxides |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL2021113B1 (en) | 2018-06-13 | 2019-12-19 | Univ Delft Tech | Synthesis of aromatic epoxide derived compounds |
-
1984
- 1984-11-02 JP JP23027184A patent/JPS61109784A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4112609A1 (en) | 2021-06-30 | 2023-01-04 | Covestro Deutschland AG | Method for the production of alkylene oxides |
WO2023274993A1 (en) | 2021-06-30 | 2023-01-05 | Covestro Deutschland Ag | Method for producing alkylene oxides |
Also Published As
Publication number | Publication date |
---|---|
JPS6347711B2 (en) | 1988-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1132572A (en) | Process for producing 2-chloro-5- trichloromethyl pyridine | |
KR850000945B1 (en) | Process for preparing 5-carbamoyl-10,11-dihydro-5h-dibenz(b,f)azepine | |
DE3824634A1 (en) | METHOD FOR PRODUCING VINYL CHLORIDE BY REACTIVATING ACETYLENE WITH HYDROCHLORINE | |
EP0078410B1 (en) | Process for producing 3-chloro-5-trifluoromethylpyridines | |
JPS6168469A (en) | Manufacture of 6-chloro-n-methyl-2,3,4,5-tetrahydro-1h- 3-benzazepine | |
JPS61109784A (en) | Production of arene oxide | |
US2608591A (en) | Substitution chlorination of aromatic compounds with liquid chlorine | |
US4504665A (en) | Process for producing chloronicotinic acid compounds | |
US5872291A (en) | Process for producing benzoyl chlorides | |
US2734084A (en) | Synthesis of l-halo-z | |
EP0307481A1 (en) | Process for preparing 3-chloro-4-fluoronitrobenzene | |
EP0143769B1 (en) | Preparation of ortho-aminobenzotrifluoride | |
US3952065A (en) | Method of producing chlorobenzenes from benzene sulphonyl chlorides | |
JPH01238564A (en) | Production of aromatic nitrile | |
JPH07188076A (en) | Manufacturing of 3-fluoro-4,6-dichlorotoluene | |
US5091068A (en) | Preparation of 3-trichloromethyl-pyridine | |
US2968673A (en) | Chlorotolyl esters | |
JPS6130667B2 (en) | ||
DE2756235A1 (en) | PROCESS FOR THE MANUFACTURING OF BENZOTRIFLUORIDE AND ITS DERIVATIVES | |
US3129240A (en) | Preparation of nitriles | |
KR850000944B1 (en) | Process for preparing 5-carbamoyl-10,11-dihydro 5h-dibenz(b,f)azepine | |
JP2826576B2 (en) | Preparation of 2-chloroterephthaloyl chloride | |
JPS6115848B2 (en) | ||
JPS6130666B2 (en) | ||
DE2534210A1 (en) | METHOD FOR SIDE CHAIN CHLORINATION OF PERHALOGENATED METHYLAROMATS |