JPS6130666B2 - - Google Patents

Info

Publication number
JPS6130666B2
JPS6130666B2 JP54044733A JP4473379A JPS6130666B2 JP S6130666 B2 JPS6130666 B2 JP S6130666B2 JP 54044733 A JP54044733 A JP 54044733A JP 4473379 A JP4473379 A JP 4473379A JP S6130666 B2 JPS6130666 B2 JP S6130666B2
Authority
JP
Japan
Prior art keywords
reaction
chlorine
fluoride
tube
hydrogen fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54044733A
Other languages
Japanese (ja)
Other versions
JPS55147261A (en
Inventor
Ryuzo Nishama
Kanichi Fujikawa
Isao Yokomichi
Yasuhiro Tsujii
Shigeyuki Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP4473379A priority Critical patent/JPS55147261A/en
Priority to NZ192948A priority patent/NZ192948A/en
Priority to US06/124,757 priority patent/US4288599A/en
Priority to DE19803008081 priority patent/DE3008081A1/en
Priority to NL8001312A priority patent/NL191149C/en
Priority to FR8004969A priority patent/FR2450818A1/en
Priority to AU56191/80A priority patent/AU532020B2/en
Priority to GB8007700A priority patent/GB2045245B/en
Priority to SU802891746A priority patent/SU1255049A3/en
Priority to CA347,229A priority patent/CA1125290A/en
Priority to IT20423/80A priority patent/IT1129728B/en
Priority to CH184380A priority patent/CH643543A5/en
Priority to IE475/80A priority patent/IE49188B1/en
Priority to PL1980222533A priority patent/PL123917B1/en
Priority to BE0/199706A priority patent/BE882121A/en
Priority to BR8001398A priority patent/BR8001398A/en
Publication of JPS55147261A publication Critical patent/JPS55147261A/en
Priority to SG834/84A priority patent/SG83484G/en
Publication of JPS6130666B2 publication Critical patent/JPS6130666B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyridine Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はβ−ピコリン又はクロロβ−ピコリン
類から直接クロロβ−トリフルオロメチルピリジ
ン類を製造する方法に関し、詳しくは触媒及び不
活性希釈剤の存在下にβ−ピコリン又はクロロβ
−ピコリン類と塩素及び無水弗化水素とを気相で
反応させてクロロβ−トリフルオロメチルピリジ
ン類(以下β−TFP類と略称する)を製造する
方法に関する。 β−TFP類は除草剤、殺虫剤などの農薬、あ
るいは染料、医薬などの原料として有用な化合物
であり、最近その工業的価値が注目されている。 β−TFP類の製造法としてはβ−ピコリンを
四塩化炭素溶液中紫外線の照射下に塩素ガスを吹
込みクロロβ−トリクロロメチルピリジン類を生
成させ、次いでクロロβ−トリクロロメチルピリ
ジン類を液相で無水弗化水素又は三弗化アンチモ
ンと反応させて製造する方法が知られているが、
反応に長時間を要し、副生物が多量に発生して低
収率であることなどもあつて工業的には適当なも
のとはいえない。 本発明は触媒及び不活性希釈剤の存在下にβ−
ピコリン又はクロロβ−ピコリン類と塩素及び無
水弗化水素とを気相で接触、反応させると単独工
程でかつ短時間にβ−TFP類が生成することの
知見にもとずいている。 即ち、本発明は、アルミニウム、クロム、鉄及
びニツケルよりなる群から選ばれた少くとも一つ
の金属元素の弗化物からなる触媒及び不活性希釈
剤の存在下に、一般式
The present invention relates to a method for directly producing chloro-β-trifluoromethylpyridines from β-picoline or chloro-β-picolines, and more specifically, in the presence of a catalyst and an inert diluent.
- A method for producing chloroβ-trifluoromethylpyridines (hereinafter abbreviated as β-TFPs) by reacting picolines with chlorine and anhydrous hydrogen fluoride in the gas phase. β-TFPs are compounds useful as raw materials for agricultural chemicals such as herbicides and insecticides, dyes, and medicines, and their industrial value has recently attracted attention. The method for producing β-TFPs involves blowing chlorine gas into a carbon tetrachloride solution under ultraviolet irradiation to produce chloroβ-trichloromethylpyridines, and then adding chloroβ-trichloromethylpyridines to the liquid phase. A method of producing it by reacting it with anhydrous hydrogen fluoride or antimony trifluoride is known, but
It is not suitable for industrial use because the reaction takes a long time, a large amount of by-products are generated, and the yield is low. In the present invention, β-
This method is based on the knowledge that when picoline or chloro β-picolines are brought into contact with chlorine and anhydrous hydrogen fluoride to react in a gas phase, β-TFPs are produced in a single step and in a short time. That is, in the present invention, in the presence of a catalyst consisting of a fluoride of at least one metal element selected from the group consisting of aluminum, chromium, iron, and nickel, and an inert diluent,

【式】(式 中X1、Y1は水素原子又は塩素原子である)で表
わされるピリジン化合物と塩素及び無水弗化水素
とを気相で反応させることを特徴とする、一般式
A general formula characterized by reacting a pyridine compound represented by [Formula] (wherein X 1 and Y 1 are hydrogen atoms or chlorine atoms) with chlorine and anhydrous hydrogen fluoride in a gas phase.

【式】(式中X2、Y2は水素原子 又は塩素原子、但し、少くとも一方は塩素原子で
ある)で表わされるクロロβ−トリフルオロメチ
ルピリジン類の製造方法である。 本発明で使用されるピリジン化合物としてはβ
−ピコリンの他に2−クロロ−β−ピコリン、6
−クロロ−β−ピコリン又は2・6−ジクロロ−
β−ピコリンのクロロβ−ピコリン類が挙げられ
る。特に、β−ピコリンは各種有機合成化学工業
の原料として入手し易いものであり、本発明方法
によればこれから直接クロロβ−トリフルオロメ
チルピリジン類が製造できるので有利である。 本発明で触媒として使用されるアルミニウム、
クロム、鉄及びニツケルの弗化物としては、水和
三弗化アルミニウム(AlF3・3H2O)、三弗化ア
ルミニウム(AlF3)、水和三弗化クロム(CrF3
3H2O)、三弗化クロム(CrF3)、水和弗化第1鉄
(FeF2・8H2O)、弗化第1鉄(FeF2)、弗化第2
鉄(FeF3)、水和弗化第1ニツケル(NiF2
3H2O)、弗化第2ニツケル(NiF3)などが挙げら
れる。触媒の使用量は、反応条件により一概に規
定できないが、普通、原料のピリジン化合物1モ
ルに対して0.01〜3モルである。通常、この触媒
は活性炭、活性アルミナなどの担体と混合し、適
当な大きさの粒状、ペレツト状に成型してから固
定床又は流動床として存在させる。また触媒は前
記金属元素の弗化物の型態で直接、反応管に入れ
て存在させる方法もあるが、工業的には、前記金
属元素の酸化物又は塩化物の型態で反応管に入
れ、無水弗化水素と反応させて弗化物に変換させ
ることによつて存在させる方法が有利である。例
えばアルミナの担体に三酸化クロム、塩化第2
鉄、酸化ニツケルなどの前記金属元素の酸化物又
は塩化物を担持させた成型物を反応管に入れ、予
め無水弗化水素を導入して200〜600℃で反応さ
せ、前記金属元素の弗化物に変換させてから本発
明に係る反応を行なう。 不活性希釈剤としては四塩化炭素、クロロホル
ム、塩化メチレン、F−112(CFCl2・CFCl2)、
F−113(CF2Cl・CFCl2)などのハロゲン化炭化
水素の有機溶媒、窒素、ヘリウム、アルゴンなど
の不活性気体が使用でき、これら不活性希釈剤は
燃焼、炭化、タール状副生物の生成などを抑制す
る機能を有するものである。 本発明の実施に当つては原料物質及び不活性希
釈剤を別々に反応器へ供給できる他これらの混合
状態でも供給でき、また、これらを同時に又は順
次に、或は一括又は分割して供給できる。例えば
ピリジン化合物と不活性希釈剤との混合物、或は
塩素と無水弗化水素との混合物を別々に供給す
る。 塩素及び無水弗化水素の使用量は原料のピリジ
ン化合物の種類、目的物の種類、反応装置などの
違いによつて一概に規定できないが一般に原料の
ピリジン化合物1モル当りそれぞれ2〜15モル及
び2〜60モルであり、不活性希釈剤の使用量は普
通、原料のピリジン化合物1モル当り2〜70モル
である。反応温度は一般に300〜600℃であり、反
応混合物の反応帯域における滞留時間は普通3〜
60秒である。 通常、反応器からはβ−TFP類を主成分とす
る弗素化生成物、未反応の弗化水素及び塩素、中
間生成物、副生塩化水素、更には不活性希釈剤を
含有するガス状物質が排出されるが、適当な冷
却、凝縮装置を経てβ−TFP類は液体混合物と
して採取される。液体混合物には一般に2−クロ
ロ−5−トリフルオロメチルピリジン、2−クロ
ロ−3−トリフルオロメチルピリジン及び2・6
−ジクロロ−3−トリフルオロメチルピリジンが
含有されており、β−TFP類は例えば85%以上
の生成率で得られる。採取した液体混合物中にβ
−TFP類の生成迄達していない中間生成物が含
まれているときには、これら中間生成物は未反応
原料、又は不活性希釈剤と共に分離、回収し、反
応帯域へ循環使用することができる。更に上記の
β−TFP類には抽出、蒸留、晶析などの通常の
精製処理が加えられることによつて、例えば2−
クロロ−5−トリフルオロメチルピリジンなどの
β−TFP類の単一化合物を高純度で得ることが
できる。 次に本発明方法の実施例を記載するが、本発明
方法の範囲はこれらの記載によつて何ら限定され
るものでない。 実施例 1 反応部として内径42mm、長さ1250mmのステンレ
ス製反応管を用い、この反応管の入口より後方
500mmの部分に長さ250mmの触媒充填層を設置し
た。 一方、予熱部として無水弗化水素及び塩素用に
内径20mm、長さ500mmのステンレス製予熱管を使
用し、β−ピコリン及び四塩化炭素用に内径20
mm、長さ500mmのステンレス製予熱管を用いた。 反応管及び予熱管は外側から温度制御できる様
に電熱器及び断熱材で覆い、傾斜して設置した。 反応管の触媒充填部に水和三弗化クロム0.03モ
ルと粒径4〜6mmの活性アルミナ200gとを充分
混合した配合物を充填し、反応管を430℃に加熱
して無水弗化水素1g/minで2時間通じて活性
化した。その後230℃で予熱したβ−ピコリン280
g(3モル)及び四塩化炭素2310g(15モル)並
びに300℃で予熱した塩素960g(13.5モル)及び
無水フツ化水素480g(24モル)を290分間にわた
つてほゞ一定流量で供給し、430℃にて気相で反
応させた。反応混合物の管内滞留時間は約9秒で
あつた。 反応管より排出するガスは水洗塔及びアルカリ
洗浄塔に通じて凝縮させた。油状物を分液、採取
し、水洗し、芒硝で乾燥後四塩化炭素を減圧下に
留去して油状物420gを得た。この油状物を昇温
ガスクロマトグラフイーにより分析した結果を後
記の表1に示す。 実施例 2 前記実施例1で使用した反応管の触媒充填層に
γ−アルミナ300gを入れ、前記実施例1の場合
と同様に無水弗化水素で活性化した後、引き続き
250℃で予熱したβ−ピコリン465g(5モル)及
び、四塩化炭素3850g(25モル)並びに300℃で
予熱した塩素1950g(27.5モル)及び無水弗化水
素900g(45モル)を約8時間にわたつてほぼ一
定流量で供給し、反応温度430℃、反応混合物の
管内滞留時間10.5秒で気相反応させた。 反応管より排出するガスを実施例1の場合と同
様に処理して油状物708gを得た。この油状物を
昇温ガスクロマトグラフイーにより分析した結果
を後記の表1に示す。 実施例 3 γ−アルミナ300gに代えて、粒径2〜4mmの
活性炭200gに水和弗化第1ニツケル0.1モルを担
持させたものを使用すること、並びに無水弗化水
素でアルミナの触媒活性を行なわないことを除い
ては、実施例2の場合と同様に反応をおこない、
油状物300gを得た。この油状物を昇温ガスクロ
マトグラフイーにより分析した結果を次表に示
す。 表中その他成分はクロロβ−パークロロフルオ
ロメチルピリジン類などの合量である。
This is a method for producing chloroβ-trifluoromethylpyridines represented by the formula: (wherein X 2 and Y 2 are hydrogen atoms or chlorine atoms, at least one of which is a chlorine atom). The pyridine compound used in the present invention is β
- In addition to picoline, 2-chloro-β-picoline, 6
-chloro-β-picoline or 2,6-dichloro-
Examples include chloroβ-picolines of β-picoline. In particular, β-picoline is easily available as a raw material for various organic synthetic chemical industries, and the method of the present invention is advantageous because chloroβ-trifluoromethylpyridines can be directly produced from it. Aluminum used as a catalyst in the present invention,
Fluorides of chromium, iron, and nickel include hydrated aluminum trifluoride (AlF 3.3H 2 O), aluminum trifluoride (AlF 3 ), and hydrated chromium trifluoride (CrF 3 .
3H 2 O), chromium trifluoride (CrF 3 ), hydrated ferrous fluoride (FeF 2.8H 2 O), ferrous fluoride (FeF 2 ), ferric fluoride
Iron (FeF 3 ), hydrated nickel fluoride (NiF 2
3H 2 O), nickel fluoride (NiF 3 ), and the like. Although the amount of the catalyst to be used cannot be absolutely defined depending on the reaction conditions, it is usually 0.01 to 3 moles per mole of the pyridine compound as a raw material. Usually, this catalyst is mixed with a carrier such as activated carbon or activated alumina, formed into particles or pellets of an appropriate size, and then placed in the form of a fixed bed or a fluidized bed. There is also a method in which the catalyst is directly placed in the reaction tube in the form of a fluoride of the metal element, but industrially, it is placed in the reaction tube in the form of an oxide or chloride of the metal element. Preference is given to the method in which it is present by reaction with anhydrous hydrogen fluoride and conversion to the fluoride. For example, chromium trioxide, dichloride, etc. on an alumina carrier
A molded product supporting an oxide or chloride of the metal element such as iron or nickel oxide is placed in a reaction tube, and anhydrous hydrogen fluoride is introduced in advance to react at 200 to 600°C to form a fluoride of the metal element. The reaction according to the present invention is carried out after the conversion to . Inert diluents include carbon tetrachloride, chloroform, methylene chloride, F-112 (CFCl 2 / CFCl 2 ),
Organic solvents for halogenated hydrocarbons such as F-113 (CF 2 Cl/CFCl 2 ) and inert gases such as nitrogen, helium, and argon can be used; It has the function of suppressing generation. In carrying out the present invention, the raw material and the inert diluent can be supplied to the reactor separately, or they can be supplied in a mixed state, and they can be supplied simultaneously or sequentially, all at once or in parts. . For example, a mixture of a pyridine compound and an inert diluent or a mixture of chlorine and anhydrous hydrogen fluoride are fed separately. The amount of chlorine and anhydrous hydrogen fluoride to be used cannot be absolutely specified depending on the type of raw material pyridine compound, the type of target product, the reaction equipment, etc., but in general, it is 2 to 15 mol and 2 mol, respectively, per 1 mole of raw material pyridine compound. ~60 moles, and the amount of inert diluent used is typically 2 to 70 moles per mole of starting pyridine compound. The reaction temperature is generally 300-600°C, and the residence time of the reaction mixture in the reaction zone is usually 3-600°C.
It is 60 seconds. Usually, gaseous substances containing fluorinated products mainly composed of β-TFPs, unreacted hydrogen fluoride and chlorine, intermediate products, by-product hydrogen chloride, and inert diluents are released from the reactor. is discharged, and β-TFPs are collected as a liquid mixture through appropriate cooling and condensation equipment. The liquid mixture generally contains 2-chloro-5-trifluoromethylpyridine, 2-chloro-3-trifluoromethylpyridine and 2.6-trifluoromethylpyridine.
-dichloro-3-trifluoromethylpyridine is contained, and β-TFPs can be obtained at a production rate of, for example, 85% or more. β in the collected liquid mixture
- When intermediate products that have not reached the stage of producing TFPs are included, these intermediate products can be separated and recovered together with unreacted raw materials or an inert diluent, and recycled to the reaction zone. Furthermore, the above-mentioned β-TFPs are subjected to ordinary purification treatments such as extraction, distillation, and crystallization to obtain, for example, 2-TFPs.
A single compound of β-TFPs such as chloro-5-trifluoromethylpyridine can be obtained with high purity. Next, examples of the method of the present invention will be described, but the scope of the method of the present invention is not limited by these descriptions. Example 1 A stainless steel reaction tube with an inner diameter of 42 mm and a length of 1250 mm was used as the reaction section, and the rear part of the reaction tube was
A catalyst packed bed with a length of 250 mm was installed in a 500 mm section. On the other hand, as a preheating section, a stainless steel preheating tube with an inner diameter of 20 mm and a length of 500 mm was used for anhydrous hydrogen fluoride and chlorine, and a stainless steel preheating tube with an inner diameter of 20 mm was used for β-picoline and carbon tetrachloride.
A stainless steel preheating tube with a length of 500 mm and a length of 500 mm was used. The reaction tube and preheating tube were covered with an electric heater and heat insulating material and installed at an angle so that the temperature could be controlled from the outside. A mixture of 0.03 mol of hydrated chromium trifluoride and 200 g of activated alumina with a particle size of 4 to 6 mm was filled into the catalyst-filled part of the reaction tube, and the reaction tube was heated to 430°C to inject 1 g of anhydrous hydrogen fluoride. /min for 2 hours. β-Picoline 280 was then preheated at 230°C.
g (3 moles) and 2310 g (15 moles) of carbon tetrachloride, as well as 960 g (13.5 moles) of chlorine and 480 g (24 moles) of anhydrous hydrogen fluoride preheated at 300° C., were fed at a substantially constant flow rate over a period of 290 minutes; The reaction was carried out in the gas phase at 430°C. The residence time of the reaction mixture in the tube was about 9 seconds. The gas discharged from the reaction tube was condensed through a water washing tower and an alkali washing tower. The oily substance was separated, collected, washed with water, dried over sodium sulfate, and carbon tetrachloride was distilled off under reduced pressure to obtain 420 g of an oily substance. This oily substance was analyzed by temperature-rising gas chromatography and the results are shown in Table 1 below. Example 2 300 g of γ-alumina was placed in the catalyst packed bed of the reaction tube used in Example 1, and after activation with anhydrous hydrogen fluoride in the same manner as in Example 1,
465 g (5 mol) of β-picoline preheated at 250°C, 3850 g (25 mol) of carbon tetrachloride, 1950 g (27.5 mol) of chlorine and 900 g (45 mol) of anhydrous hydrogen fluoride preheated at 300°C were added in about 8 hours. The gas phase reaction was carried out at a reaction temperature of 430° C. and a residence time of the reaction mixture in the tube of 10.5 seconds. The gas discharged from the reaction tube was treated in the same manner as in Example 1 to obtain 708 g of an oily substance. This oily substance was analyzed by temperature-rising gas chromatography and the results are shown in Table 1 below. Example 3 Instead of 300 g of γ-alumina, 200 g of activated carbon with a particle size of 2 to 4 mm was used to support 0.1 mole of hydrated nickel fluoride, and the catalytic activity of alumina was increased with anhydrous hydrogen fluoride. The reaction was carried out in the same manner as in Example 2, except that
300 g of oil was obtained. The results of analyzing this oily substance by heating gas chromatography are shown in the following table. Other components in the table are the total amounts of chloroβ-perchlorofluoromethylpyridines and the like.

【表】 実施例 4 反応器として、反応部が内径82mm、高さ1100mm
の触媒流動床を有するインコネル製竪型反応管を
設置し、原料物質及び不活性希釈剤用に内径8
mm、長さ2000mmのインコネル製予熱管を2本接続
したものを使用し、反応管及び予熱管を温度制御
できるように電熱器及び断熱材で覆つた。 触媒として、前記実施例1で使用した活性化触
媒を粒径0.18〜0.4mmに粉砕して調整したもの1.7
Kgを反応部に充填した。 反応器を430℃に加熱し、β−ピコリンを3.6
g/分及び窒素ガスを11.3/分の割合になるよ
う予熱管を通じ、また塩素ガスを2.8/分及び
無水弗化水素を2.5/分の割合になるよう予熱
管を通じ、それぞれ約200℃の混合ガスとして反
応管に導入し、約5時間にわたつて反応させた。
反応混合物の管内滞留時間は約7秒であつた。 反応器より排出するガスを前記実施例1の場合
と同様に処理して油状物1680gを得、この油状物
を昇温ガスクロマトグラフイーにより分析した結
果を、表2に示す。 実施例 5 前記実施例4の場合と同様にして、β−ピコリ
ンを2.38g/分、3−トリフルオロメチルピリジ
ンを1.88g/分及び窒素ガスを11.3/分の割合
になるよう供給し、また塩素ガスを2.8/分及
び無水弗化水素を2.5/分の割合になるよう供
給して、約3時間にわたつて反応させた。反応混
合物の管内滞留時間は約7秒であつた。 反応器より排出するガスを前記実施例1の場合
と同様に処理して油状物1090gを得、このものを
昇温ガスクロマトグララフイーにより分析した結
果を、表2に示す。 表中その他成分はβ−トリフルオロメチルピリ
ジン、ピリジン核に塩素原子を有するβ−ジクロ
ロメチルピリジン類、β−フルオロジクロロメチ
ルピリジン類、β−クロロジフルオロメチルピリ
ジン類などの合量である。
[Table] Example 4 As a reactor, the reaction section has an inner diameter of 82 mm and a height of 1100 mm.
A vertical Inconel reaction tube with a fluidized bed of catalyst was installed, with an internal diameter of 8.
Two connected Inconel preheating tubes with a length of 2000 mm were used, and the reaction tube and preheating tube were covered with an electric heater and a heat insulator so that the temperature could be controlled. As a catalyst, the activated catalyst used in Example 1 was pulverized to a particle size of 0.18 to 0.4 mm1.7
Kg was filled into the reaction section. The reactor was heated to 430°C and β-picoline was heated to 3.6
Mix at approximately 200°C through a preheating tube to mix nitrogen gas at a rate of 11.3 g/min and nitrogen gas at a rate of 11.3/min, and chlorine gas at a rate of 2.8/min and anhydrous hydrogen fluoride at a rate of 2.5/min. It was introduced as a gas into the reaction tube and reacted for about 5 hours.
The residence time of the reaction mixture in the tube was about 7 seconds. The gas discharged from the reactor was treated in the same manner as in Example 1 to obtain 1,680 g of an oily substance.Table 2 shows the results of analyzing this oily substance by heating gas chromatography. Example 5 In the same manner as in Example 4, β-picoline was supplied at a rate of 2.38 g/min, 3-trifluoromethylpyridine was supplied at a rate of 1.88 g/min, and nitrogen gas was supplied at a rate of 11.3/min. Chlorine gas was supplied at a rate of 2.8/min and anhydrous hydrogen fluoride at a rate of 2.5/min, and the reaction was carried out for about 3 hours. The residence time of the reaction mixture in the tube was about 7 seconds. The gas discharged from the reactor was treated in the same manner as in Example 1 to obtain 1090 g of an oily substance, which was analyzed by temperature-rising gas chromatography and the results are shown in Table 2. Other components in the table are the total amounts of β-trifluoromethylpyridine, β-dichloromethylpyridines having a chlorine atom in the pyridine nucleus, β-fluorodichloromethylpyridines, β-chlorodifluoromethylpyridines, and the like.

【表】 実施例 6 反応器として、反応部が内径97.1mm、高さ1570
mmの触媒流動床を有するインコネル製竪型反応官
を設置し、原料物質及び不活性希釈剤用に内径30
mm、長さ1000mmのインコネル製予熱管を2本接続
したものを使用し、反応管及び予熱管を温度制御
できるように電熱器及び断熱材で覆つた。 無水塩化第2鉄277gを粒径105〜250μの三弗
化アルミニウム2.2Kgに含浸させたものが触媒充
填部へ入れられ、200℃に加熱されて無水弗化水
素が2.3/分で1時間導入されて触媒の活性化
が行なわれた。 反応器を400℃に加熱し、β−ピコリンを6.8
g/分及び窒素ガスを9.9/分の割合になるよ
う予熱管を通じ、また塩素ガスを7.4/分及び
無水弗化水素を7.4/分の割合になるよう予熱
管を通じ、それぞれ約200℃の混合ガスとして反
応管に導入し、約30時間にわたつて反応させた。
この間活性化触媒は300g/時間の割合で連続的
に供給、排出された。反応混合物の管内滞留時間
は約3.4秒であつた。 反応器より排出するガスは水洗塔及びアルカリ
洗浄塔に通され、凝縮生成物が分解され、アンモ
ニア水溶液で中和されて水蒸気蒸留によつて油状
物19.11Kgを得た。この油状物を蒸留してβ−ト
リフルオロメチルピリジンを主成分とする初留分
1.53Kg、2−クロロ−5−トリフルオロメチルピ
リジンを主成分とする主留分9.56Kg及び後留分
7.62Kgを得た。なお、後留分には2−クロロ−5
−トリフルオロメチルピリジン3.7%、2−クロ
ロ−3−トリフルオロメチルピリジン14.5%、
2・6−ジクロロ−3−トリフルオロメチルピリ
ジン47.7%及びその他34.1%が含まれていた。
[Table] Example 6 As a reactor, the reaction part has an inner diameter of 97.1 mm and a height of 1570 mm.
An Inconel vertical reactor with a catalyst fluidized bed of 30mm internal diameter was installed for feed material and inert diluent.
Two connected Inconel preheating tubes with a length of 1000 mm were used, and the reaction tube and preheating tube were covered with an electric heater and a heat insulator so that the temperature could be controlled. 277g of anhydrous ferric chloride impregnated with 2.2Kg of aluminum trifluoride with a particle size of 105 to 250μ is placed in the catalyst packing section, heated to 200℃, and anhydrous hydrogen fluoride is introduced at a rate of 2.3/min for 1 hour. The catalyst was activated by The reactor was heated to 400℃ and β-picoline was heated to 6.8℃.
g/min and nitrogen gas at a rate of 9.9/min through a preheating tube, and chlorine gas at a rate of 7.4/min and anhydrous hydrogen fluoride through a preheating tube at a rate of 7.4/min, respectively, at approximately 200℃. It was introduced as a gas into the reaction tube and reacted for about 30 hours.
During this period, activated catalyst was continuously supplied and discharged at a rate of 300 g/hour. The residence time of the reaction mixture in the tube was about 3.4 seconds. The gas discharged from the reactor was passed through a water washing tower and an alkali washing tower, and the condensed product was decomposed, neutralized with an aqueous ammonia solution, and subjected to steam distillation to obtain 19.11 kg of oil. This oil is distilled to obtain an initial distillate containing β-trifluoromethylpyridine as the main component.
1.53Kg, main distillate 9.56Kg and tail distillate mainly composed of 2-chloro-5-trifluoromethylpyridine
Obtained 7.62Kg. In addition, 2-chloro-5 is included in the after-distillate.
-trifluoromethylpyridine 3.7%, 2-chloro-3-trifluoromethylpyridine 14.5%,
It contained 47.7% of 2,6-dichloro-3-trifluoromethylpyridine and 34.1% of others.

Claims (1)

【特許請求の範囲】 1 アルミニウム、クロム、鉄及びニツケルより
なる群から選ばれた少くとも一つの金属元素の弗
化物からなる触媒及び不活性希釈剤の存在下に、
一般式【式】 (式中X1、Y1は水素原子又は塩素原子である)で
表わされるピリジン化合物と塩素及び無水弗化水
素とを気相で反応させることを特徴とする、一般
式【式】(式中X2、Y2は水素原 子又は塩素原子、但し少くとも一方は塩素原子で
ある)で表わされるクロロβ−トリフルオロメチ
ルピリジン類の製造方法。
[Claims] 1. In the presence of a catalyst consisting of a fluoride of at least one metal element selected from the group consisting of aluminum, chromium, iron and nickel, and an inert diluent,
A pyridine compound represented by the general formula [formula] (wherein X 1 and Y 1 are hydrogen atoms or chlorine atoms) is reacted with chlorine and anhydrous hydrogen fluoride in a gas phase. A method for producing chloroβ-trifluoromethylpyridines represented by the formula (wherein X 2 and Y 2 are hydrogen atoms or chlorine atoms, at least one of which is a chlorine atom).
JP4473379A 1979-03-09 1979-04-12 Preparation of chloro-beta-trifluoromethylpyridines Granted JPS55147261A (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP4473379A JPS55147261A (en) 1979-04-12 1979-04-12 Preparation of chloro-beta-trifluoromethylpyridines
NZ192948A NZ192948A (en) 1979-03-09 1980-02-22 Preparation of beta-trifuloromethyl-pyridine derivatives directly from beta-picoline
US06/124,757 US4288599A (en) 1979-03-09 1980-02-26 Process for producing pyridine derivatives having a trifluoromethyl group at β-position thereof
DE19803008081 DE3008081A1 (en) 1979-03-09 1980-03-03 METHOD FOR PRODUCING PYRIDINE DERIVATIVES WITH TRIFLUORMETHYL GROUP IN BETA POSITION
NL8001312A NL191149C (en) 1979-03-09 1980-03-05 Process for the preparation of 3-trifluoromethylpyridine derivatives.
FR8004969A FR2450818A1 (en) 1979-03-09 1980-03-05 PROCESS FOR THE PRODUCTION OF PYRIDINE DERIVATIVES COMPRISING A TRIFLUOROMETHYL GROUP IN POSITION B, FROM B-PICOLINE
AU56191/80A AU532020B2 (en) 1979-03-09 1980-03-06 Production of pyridine derivatives having a beta- trifluoromethyl group
GB8007700A GB2045245B (en) 1979-03-09 1980-03-06 Process for producing pyridine derivatives having a trifluoromethyl group at -position thereof
CA347,229A CA1125290A (en) 1979-03-09 1980-03-07 PROCESS FOR PRODUCING PYRIDINE DERIVATIVES HAVING A TRIFLUOROMETHYL GROUP AT .beta.-POSITION THEREOF
SU802891746A SU1255049A3 (en) 1979-03-09 1980-03-07 Method of producing derivatives of beta-trifluormethyl pyridine
IT20423/80A IT1129728B (en) 1979-03-09 1980-03-07 PROCEDURE FOR THE PRODUCTION OF PYRIDINE DERIVATIVES HAVING A TRIFLUOROMETHYL GROUP IN THEIR BETA POSITION
CH184380A CH643543A5 (en) 1979-03-09 1980-03-07 METHOD FOR PRODUCING PYRIDINE DERIVATIVES WITH TRIFLUORMETHYL GROUP IN BETA POSITION.
IE475/80A IE49188B1 (en) 1979-03-09 1980-03-07 Process for producing pyridine derivatives having a trifluoromethyl grpup at beta-position thereof
PL1980222533A PL123917B1 (en) 1979-03-09 1980-03-07 Process for manufacturing derivatives of pyridine substituted in position beta with trifluormethyl group
BE0/199706A BE882121A (en) 1979-03-09 1980-03-07 PROCESS FOR THE PRODUCTION OF PYRIDINE DERIVATIVES COMPRISING A TRIFLUOROMETHYL GROUP IN THE BETA POSITION FROM BETA-PICOLINE
BR8001398A BR8001398A (en) 1979-03-09 1980-03-10 PROCESS FOR THE PRODUCTION OF A PYRIDINE DERIVATIVE HAVING A TRIFLUORMETHYL GROUP IN THE BETA POSITION OF THE SAME
SG834/84A SG83484G (en) 1979-03-09 1984-11-23 Process for producing pyridine derivatives having a trifluoromethyl group at beta-position thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4473379A JPS55147261A (en) 1979-04-12 1979-04-12 Preparation of chloro-beta-trifluoromethylpyridines

Publications (2)

Publication Number Publication Date
JPS55147261A JPS55147261A (en) 1980-11-17
JPS6130666B2 true JPS6130666B2 (en) 1986-07-15

Family

ID=12699639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4473379A Granted JPS55147261A (en) 1979-03-09 1979-04-12 Preparation of chloro-beta-trifluoromethylpyridines

Country Status (1)

Country Link
JP (1) JPS55147261A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3608309B1 (en) 2017-04-04 2022-07-13 Ishihara Sangyo Kaisha, Ltd. Method for purifying trifluoromethylpyridine compound
JP2020023489A (en) 2018-08-07 2020-02-13 石原産業株式会社 Method for separating and purifying 2-chloro-3-trifluoromethyl pyridine

Also Published As

Publication number Publication date
JPS55147261A (en) 1980-11-17

Similar Documents

Publication Publication Date Title
US4288599A (en) Process for producing pyridine derivatives having a trifluoromethyl group at β-position thereof
US4241213A (en) Process for producing 2-chloro-5-trichloromethyl pyridine
CA1125763A (en) PROCESS FOR PRODUCING CHLORO .beta.-TRIFLUORO- METHYLPYRIDINES
EP0078410B1 (en) Process for producing 3-chloro-5-trifluoromethylpyridines
US4429132A (en) Production of 3-trichloromethyl- and 3-trifluoromethyl-pyridines
KR100618465B1 (en) Method for the preparation of 1,1,1,3,3-pentafluoropropene and 1,1,1,3,3-pentafluoropropane
EP0042696B1 (en) Process for producing trifluoromethylpyridines
JPS6315270B2 (en)
US4417055A (en) Process for producing a β-trifluoromethylpyridine
US4110408A (en) Preparation of 1-chloro-2-trifluoromethyl-3,3,3-trifluoropropene from isobutylene
WO2018186460A1 (en) Method for purifying trifluoromethylpyridine compound
JPS6130666B2 (en)
JPS6130667B2 (en)
JPH0656782A (en) Selective vapor-phase chlorination of polychlorinated beta-picoline to produce 2,3,5,6-tetrachloropyridine and itsprecursor
JPH0219108B2 (en)
US3020281A (en) Method of preparing quinoline
KR840000698B1 (en) Process for producing pyridine derivatives having a trifluoromethyl group atbeta-position thereof
US4801716A (en) Process for preparing 2,3,4,5-tetrachloro-6-(trichloromethyl) pyridine
US3020280A (en) Quinoline synthesis
JPS6130665B2 (en)
JPS6134415B2 (en)
EP0007160A1 (en) Preparation of polychlorinated pyridines from 2,4-dichloro-6-(trichloromethyl)pyridine
JPS6130663B2 (en)
JPS6130664B2 (en)
EP0402536A1 (en) Preparation of 2,3,4,6-tetrachloropyridine