JPS61109759A - Production of 4-alkoxyaniline - Google Patents

Production of 4-alkoxyaniline

Info

Publication number
JPS61109759A
JPS61109759A JP59228860A JP22886084A JPS61109759A JP S61109759 A JPS61109759 A JP S61109759A JP 59228860 A JP59228860 A JP 59228860A JP 22886084 A JP22886084 A JP 22886084A JP S61109759 A JPS61109759 A JP S61109759A
Authority
JP
Japan
Prior art keywords
nitrobenzene
alcohol
mixed solvent
aliphatic carboxylic
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59228860A
Other languages
Japanese (ja)
Other versions
JPH0443900B2 (en
Inventor
Teruyuki Nagata
永田 輝幸
Akihiro Tamaoki
晃弘 玉置
Hiroki Onishi
大西 博喜
Hideki Mizuta
秀樹 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59228860A priority Critical patent/JPS61109759A/en
Publication of JPS61109759A publication Critical patent/JPS61109759A/en
Publication of JPH0443900B2 publication Critical patent/JPH0443900B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce the titled compound useful as an intermediate of dyes, pharmaceuticals, etc., in high yield and purity, without using a catalytic poison, by the catalytic hydrogenation of a nitrobenzene compound in a specific mixed solvent in the presence of a noble metal catalyst. CONSTITUTION:The objective compound can be produced by the catalytic hydrogenation of the nitrobenzene compound of formula (R is H, halogen, lower alkyl or lower alkoxy, when R is other than H, it is substituted to o- or m- position of nitro group; n is 1-2) in a mixed solvent consisting of a lower aliphatic alcohol, sulfuric acid and an aliphatic carboxylic acid or its aqueous solution, in the presence of a catalyst such as platinum, palladium, etc. supported by activated carbon, at 30-60 deg.C. The amounts of the alcohol and sulfuric acid are 20-100mol and 1-10mol per 1mol of the nitrobenzene compound of formula, and the content of the lower aliphatic carboxylic acid in the mixed solvent is preferably 1.5-10wt%.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は4−アルコキシアニリン類の製造方法に関する
。詳しくは貴金属触媒の存在下、下記−般式(I)で示
される 〔式(I)中、Rは水素原子、ハロゲン原子、低級アル
キル基、低級アルコキシ基を意味し、Rが水素原子以外
の置換基の場合はニトロ基に対し〇−位または/および
m−位を表わす。籠は1〜2の整数〕 ニトロベンゼン類をアルコール、硫酸、並びに脂肪族カ
ルボン酸またはその水溶液からなる混合溶剤中で、接触
水素添加することからなる4−アルコキシアニリン類の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing 4-alkoxyanilines. Specifically, in the presence of a noble metal catalyst, the following general formula (I) [in formula (I), R means a hydrogen atom, a halogen atom, a lower alkyl group, or a lower alkoxy group; In the case of a substituent, it represents the 0-position and/or the m-position with respect to the nitro group. The basket is an integer of 1 to 2.] The present invention relates to a method for producing 4-alkoxyanilines, which comprises catalytically hydrogenating nitrobenzenes in a mixed solvent consisting of alcohol, sulfuric acid, and an aliphatic carboxylic acid or an aqueous solution thereof.

従来の技術 4−アルコキシアニリン類は染料及び医薬品等の重要な
中間原料であり、工業的には従来ニトロベンゼン類から
多くの工程を経て製造されており全収率及び経済性にお
いて甚だ不満足なものでありた0 一方、上記一般式CI)のニトロベンゼン類から   
′貴金属触媒の存在下、アルコール並びに硫酸からなる
混合溶剤中で4−アルコキシアニリン類を一段で製造す
る試みも近年なされている。
Conventional technology 4 - Alkoxyanilines are important intermediate raw materials for dyes and pharmaceuticals, etc., and industrially they have traditionally been manufactured from nitrobenzenes through many processes, which is extremely unsatisfactory in terms of overall yield and economic efficiency. On the other hand, from the nitrobenzenes of the above general formula CI)
'Attempts have also been made in recent years to produce 4-alkoxyanilines in one step in a mixed solvent consisting of alcohol and sulfuric acid in the presence of a noble metal catalyst.

例えば日本化学会誌(I979(I1)。For example, Journal of the Chemical Society of Japan (I979 (I1)).

1532頁〕によれば、0−ニトロアニソールより反応
系に触媒毒物質であるジメチルスルフオキシド(以下D
MSOと略称)を添加することにより最高収率27.8
 %で2,4−ジメトキシアニリンを、同じく日本化学
会誌(I980(2)、245頁 〕によれば、ニニト
ロ化合物より2.2チのp−アニシジンが得られ、寥た
0−メチルニトロベンゼンを出発原料とする場合は、D
MSOを添加することにより最高収率70、fl(DM
SOを添〃口しない場合収率4s、al)で、2−メチ
ル−4−メトキシアニリンが得られている。さらには引
続き実験された日本化学会誌(I982(7)、123
7頁〕によれば、対応するニトロ化合物より、2.3−
ジメチル−p−アニンジン、2.6−ジメチル−p−ア
ニシジン、1−アミノ−4−メトキシ−ナフタレン、及
び1−アミノ−2−メチル−4−メトキシ−ナフタレン
をDMSOを添加することにより、それぞれを最高収率
67.4%CDMSOを添加しない場合s a、 7 
% )、72.1%(同じく45.2チ)、68チ、及
び55ts″c得ている。また古くはフェニルヒドロキ
シルアミンからもメタノール並びに硫酸の混合溶剤中に
於いてp−アニリンが収率約40チで得られている( 
Bar、 311500(I89B))。
According to [Page 1532], dimethyl sulfoxide (hereinafter referred to as D
The highest yield was 27.8 by adding MSO (abbreviated as MSO)
According to the Journal of the Chemical Society of Japan (I980 (2), p. 245), 2.2 p-anisidine was obtained from the ninitro compound, and starting from the obtained 0-methylnitrobenzene. When used as raw material, D
The highest yield 70, fl (DM
When SO was not added, 2-methyl-4-methoxyaniline was obtained in a yield of 4s, al). Furthermore, the Journal of the Chemical Society of Japan (I982(7), 123)
According to [Page 7], from the corresponding nitro compound, 2.3-
Dimethyl-p-anisidine, 2,6-dimethyl-p-anisidine, 1-amino-4-methoxy-naphthalene, and 1-amino-2-methyl-4-methoxy-naphthalene were each prepared by adding DMSO. Maximum yield 67.4% without adding CDMSO s a, 7
%), 72.1% (also 45.2%), 68%, and 55ts"c.In addition, in the past, p-aniline was obtained from phenylhydroxylamine in a mixed solvent of methanol and sulfuric acid. It is obtained for about 40 cm (
Bar, 311500 (I89B)).

発明が解決しようとする問題点 このようにBamberger型転位反応を応用し、貴
金属触媒の存在下、対応するニトロ化合物より接触水素
添加により一段で4−アルコキシアニリン類を製造する
方法は公知であるが、一般に収率力f低く、工業的製造
法とは言い難く、そのためこれらを改良した方法として
、上記の如(DMSOを添加して実用に供せる程度の収
率が得られている。
Problems to be Solved by the Invention As described above, there is a known method for producing 4-alkoxyanilines in one step by catalytic hydrogenation from the corresponding nitro compound in the presence of a noble metal catalyst by applying the Bamberger rearrangement reaction. In general, the yield power f is low, and it cannot be called an industrial production method.Therefore, as an improved method, as described above (DMSO is added), a yield that can be used practically has been obtained.

しかしながらこれらの方法で使用されるDMSOは極め
て強い触媒毒物質であり、回収した高価な貴金属触媒を
再使用することは実質上不可能であり、DMSOの使用
は工業的には著しく経済性の低い方法となる。
However, the DMSO used in these methods is an extremely strong catalyst poison, and it is virtually impossible to reuse the recovered precious metal catalyst, making the use of DMSO extremely uneconomical from an industrial perspective. It becomes a method.

問題を解決するための手段 本発明者等はDMi90を全く使用せず、且つ、高収率
でニトロベンゼン類より対応する目的物を得る為の工業
的に優位性の大きい接触水素化方法を鋭意検討した結果
、従来用いられてきた実質的に水を含まないアルコール
並びに硫酸からなる混合溶剤中に、所定量の水を添加し
た混合溶剤を用いて、所定量のアルコール及び硫酸を用
いることによりその目的が達せられることを見出し、先
に出願した。
Means for Solving the Problem The inventors of the present invention have intensively investigated a catalytic hydrogenation method that does not use DMi90 at all and is industrially superior in order to obtain the corresponding target product from nitrobenzenes in high yield. As a result, by using a mixed solvent consisting of alcohol and sulfuric acid, which has been used in the past, and which contains substantially no water, a predetermined amount of water is added, and by using a predetermined amount of alcohol and sulfuric acid, the desired purpose can be achieved. I discovered that this could be achieved and filed the application first.

本発明者等は、さらに検討して水の替りに脂肪族カルボ
ン酸またはその水溶液を添加しても同等もしくはそれ以
上の効果が得られることを見出し本発明を完成した。
The present inventors further investigated and found that the same or better effect can be obtained by adding an aliphatic carboxylic acid or an aqueous solution thereof instead of water, and completed the present invention.

即ち、本発明はニトロベンゼン類を貴金属触媒の存在下
に、所定量のアルコール、硫酸、並びに脂肪族カルボン
酸またはその水溶液からなる混合溶剤中で接触水素添加
することにより、高収率且つ高純度で対応する4−アル
コキシアニリン類を製造する方法を提供するものである
That is, the present invention provides high yield and high purity nitrobenzenes by catalytic hydrogenation of nitrobenzenes in a mixed solvent consisting of a predetermined amount of alcohol, sulfuric acid, and an aliphatic carboxylic acid or an aqueous solution thereof in the presence of a noble metal catalyst. A method for producing the corresponding 4-alkoxyanilines is provided.

本発明方法において用いられるアルコール、IfE酸、
及び脂肪族カルボン酸の混合溶剤中には、水は共存して
いても全く差し支えなく、脂肪族カルボン酸は水溶液と
して用いてもよい。脂肪族カルボン酸またはその水溶液
ともに1.5〜20重量%の範囲内で使用するが、水溶
液として用いた場合は、脂肪族カルボン酸が少くとも1
.5重量%以上存在させるようにする。脂肪族カルボン
酸の含有量は好適には1.5〜10重量%を含んだ混合
溶剤に調整するのがよい。含有量がこの範囲外の場合は
、4−ヒドロキシ−アニリン類及び/もしくはアニリン
類の副生が増し得策ではない。アルコールは原料である
ニトロベンゼン類に対し10モル以上、好ましくは20
〜100モル、さらに好ましくは30〜60モルが良い
。硫酸は同じく原料ニトロベンゼン類に対し0.5〜2
0モル、好ましくは1〜10モル、さらに好ましくは2
〜7モルが良い。硫酸量がこの範囲外にある時はアニリ
ン類及び/もしくは未知のタール成分の増加が認められ
る。また、これら混合溶剤の量は目的物の収率が高く、
且つ、製品の取出しが繁雑とならない様、最適な原料ニ
トロベンゼン類の仕込濃度の面も考慮して選ばれるのは
当然である。
Alcohol used in the method of the present invention, IfE acid,
There is no problem even if water coexists in the mixed solvent of aliphatic carboxylic acid and aliphatic carboxylic acid, and the aliphatic carboxylic acid may be used as an aqueous solution. Both the aliphatic carboxylic acid and its aqueous solution are used within the range of 1.5 to 20% by weight, but when used as an aqueous solution, the aliphatic carboxylic acid contains at least 1% by weight.
.. It should be present in an amount of 5% by weight or more. The content of aliphatic carboxylic acid is preferably adjusted to a mixed solvent containing 1.5 to 10% by weight. If the content is outside this range, the by-product of 4-hydroxy-anilines and/or anilines will increase, which is not a good idea. The amount of alcohol is 10 moles or more, preferably 20 moles or more, based on the raw material nitrobenzene.
-100 mol, more preferably 30-60 mol. Similarly, the amount of sulfuric acid is 0.5 to 2 for the raw material nitrobenzene.
0 mol, preferably 1 to 10 mol, more preferably 2
~7 mol is good. When the amount of sulfuric acid is outside this range, an increase in anilines and/or unknown tar components is observed. In addition, the amount of these mixed solvents provides a high yield of the target product,
In addition, it is natural that the optimum concentration of raw material nitrobenzene should be selected in consideration of the concentration of the raw material nitrobenzene so as to avoid complication in taking out the product.

脂肪族カルボン酸としては、例えば酢酸、プロピオン酸
、醋酸、バレリアン酸等低級脂肪族モ/カルボン酸が好
適に用いられる。これらカルボン酸類のうち、酢酸及び
プロピオン酸が好ましく、特に酢酸が好ましい。
As the aliphatic carboxylic acid, lower aliphatic carboxylic acids such as acetic acid, propionic acid, acetic acid, and valeric acid are preferably used. Among these carboxylic acids, acetic acid and propionic acid are preferred, and acetic acid is particularly preferred.

反応温度は0℃から混合溶剤の沸点までの範囲。The reaction temperature ranges from 0°C to the boiling point of the mixed solvent.

好ましくは30〜60℃が選ばれる。Preferably, 30 to 60°C is selected.

反応圧力は大気圧から2に51/clIゲージ圧までの
範囲が実用的である。高い圧力は不必要であり、かえっ
てアニリン類のma−を増す傾向にある。
A practical reaction pressure ranges from atmospheric pressure to 2 to 51/clI gauge pressure. High pressures are unnecessary and tend to increase the ma- of the anilines.

使用できる触媒としては白金、パラジウム、及びこれら
の混合物である。これらの金属触媒は不活性固体を担体
として用いるが、炭素が担体として有利である。活性炭
上に担持された1〜5%の白金及び/またはパラジウム
を含む触媒を使用することが好ましいが、ただしこれら
の金属を0.1〜20チ含む触媒であれば使用してよい
。また反応させるべきニトロベンゼン類基準で0.01
〜0.10重量%の白金またはパラジウムに相当する触
媒量の支持触媒を使用することが好ましい。
Catalysts that can be used are platinum, palladium, and mixtures thereof. These metal catalysts use inert solids as supports; carbon is preferred as a support. It is preferred to use a catalyst containing 1 to 5% platinum and/or palladium supported on activated carbon, although any catalyst containing 0.1 to 20% of these metals may be used. Also, based on the nitrobenzenes to be reacted, it is 0.01
It is preferred to use a catalytic amount of supported catalyst corresponding to ~0.10% by weight of platinum or palladium.

アルコールの種類としてはメタノール、エタノール等低
級アルコール類が挙げられ、好ましくは炭素数3末での
アルコールが有利であるが、メタノールの場合は特に高
収率で目的生成物が得られるの℃もっとも好ましい。
The type of alcohol includes lower alcohols such as methanol and ethanol, and alcohols with 3 carbon atoms are preferred, but methanol is most preferred because it can obtain the desired product in a particularly high yield. .

以上のように条件下で水素添加反応を行った後、例えば
以下のようにして製品を取り出すことができる。即ち、
反°応終了液を濾過し触媒を回収する。
After carrying out the hydrogenation reaction under the conditions described above, the product can be taken out, for example, as follows. That is,
The reaction completed liquid is filtered to recover the catalyst.

この触媒は次回に再使用される。引き続き、アルコール
を留去し、必要ならば水を加え、 pH7〜8まで中和
する。この中和液に酢エチ、ベンゼン、もしくはモノク
ロルベンゼン箒適当な有機溶媒を加えて抽出し、油層を
減圧蒸留することにより4−アルコキシ−アニリン類を
得ることができる。
This catalyst will be reused next time. Subsequently, the alcohol is distilled off, and if necessary, water is added to neutralize to pH 7-8. A suitable organic solvent such as ethyl acetate, benzene, or monochlorobenzene is added to this neutralized solution for extraction, and the oil layer is distilled under reduced pressure to obtain 4-alkoxyanilines.

このようにして本発明方法は高収率で、しかもDMSO
などの接触水素化反応における触媒毒となるものは全く
使用されないので、高価な貴金属触媒はそのまま繰返し
使用しても、収率を落すことな〈実施でき、工業的に大
きなメリットを有する方法である。
In this way, the method of the present invention has a high yield, and moreover, DMSO
Since no catalyst poisons are used in catalytic hydrogenation reactions such as .

以下に実施例を挙げて本発明を具体的に説明する。The present invention will be specifically described below with reference to Examples.

実施例1゜ 撹拌機、温度計、及び水素導入管を備えた51容ガラス
製反応器に0−ニトロトルエン137.1g(I,0モ
ル)、98チ硫酸264.5督(2,5モル)、氷酢酸
68.6.9.メタノール1518.0g(47,4モ
ル)、及び3チ炭素担体白金触媒0.41gを仕込んだ
Example 1 Into a 51-volume glass reactor equipped with a stirrer, a thermometer, and a hydrogen inlet tube, 137.1 g (1,0 mol) of 0-nitrotoluene and 264.5 g (2,5 mol) of 98-thiosulfuric acid were added. , glacial acetic acid 68.6.9. 1518.0 g (47.4 mol) of methanol and 0.41 g of tricarbon carrier platinum catalyst were charged.

反応は50℃において水素を加えながら20〜30CI
!水柱に維持された微加圧の下で行われた。
The reaction was carried out at 50°C with addition of hydrogen at 20-30 CI.
! This was done under slight pressure maintained in the water column.

反応時間は300分を要し、52.51の水素が吸収さ
れて終了した。その時点では反応液中に0−ニトロトル
エンはほとんど残存していなかりた。
The reaction time required 300 minutes and ended with 52.51 hydrogen absorbed. At that point, almost no 0-nitrotoluene remained in the reaction solution.

引き続き、反応液を濾過し触媒を分離した。Subsequently, the reaction solution was filtered to separate the catalyst.

F液中のメタノールを留去後蒸留水500gを亦えて、
28%アンモニア水で中和しpH7,2とした。
After distilling off the methanol in liquid F, add 500 g of distilled water,
It was neutralized with 28% ammonia water to a pH of 7.2.

その中和液にトルエン200gを加え抽出した0分液し
たトルエン層を希苛性水で洗浄後トルエン層を濃縮し、
減圧下に蒸留して、初留分としてzl、51のo−トル
第ジンと主留分として99.5g(収率72.0チ)の
2−メチル−4−メトキシ−アニリン(沸点136〜1
38℃/20■Hg)を得た。主留分のガスクロマトグ
ラフィーによる純度は99.2チであった。
200 g of toluene was added to the neutralized solution, extracted, the separated toluene layer was washed with dilute caustic water, and the toluene layer was concentrated.
Distillation under reduced pressure yielded zl, 51 o-toluzine as the first distillate and 99.5 g (yield 72.0 g) of 2-methyl-4-methoxy-aniline (boiling point 136 ~ 1
38° C./20 μHg) was obtained. The purity of the main fraction by gas chromatography was 99.2%.

計算値(チ)   70.0  8.08  10.2
実施例2゜ 実施例1.で使用したのと同じ反応器に、実施例1と全
く同量の0−ニトロトルエン137.1 g(I,0モ
ル)、98チ硫酸264.5jl(2,5モル)、氷酢
酸ss、s11.メタノール1518.0II(47,
4モル)、及び実施例1から回収された触媒C,SSg
(水を含む)を仕込んだ。
Calculated value (ch) 70.0 8.08 10.2
Example 2゜Example 1. In the same reactor used in Example 1, 137.1 g (I, 0 mol) of 0-nitrotoluene, 264.5 jl (2,5 mol) of 98-thiosulfuric acid, and glacial acetic acid ss, s11 were added. .. Methanol 1518.0II (47,
4 mol), and catalyst C recovered from Example 1, SSg
(including water) was prepared.

反応は実施例1と同様に行9た。反応時間は310分を
要し、52.OJの水素が吸収されて終了した。
The reaction was carried out in the same manner as in Example 1. The reaction time required 310 minutes, 52. The hydrogen from OJ was absorbed and the process ended.

引き続き実施例1と同様に処理し、0−トルイジン20
.119及び2−メチル−4−メトキシ−アニリンto
2.0Jil(収率73.8チ)を得た。2−メチル−
4−メトキシ−アニリンのガスクロマトグラフィーによ
る純度は99.2csであった。
Subsequently, treatment was carried out in the same manner as in Example 1, and 0-toluidine 20
.. 119 and 2-methyl-4-methoxy-aniline to
2.0 Jil (yield: 73.8 Jil) was obtained. 2-methyl-
The purity of 4-methoxy-aniline by gas chromatography was 99.2 cs.

実施例3 さらに触媒を加えることなしに実施例2と同様にして、
さらに3回引続き還元接触反応を実施した。反応に要し
た時間は、それぞれ310分、320分、及び320分
であり、2−メチル−4−メトキシ−アニリンの収率は
、それぞれ73.6チ、74.ロー及び73.8チであ
った。
Example 3 Similar to Example 2 without adding further catalyst.
The reduction catalytic reaction was carried out three more times. The times required for the reactions were 310 minutes, 320 minutes, and 320 minutes, respectively, and the yields of 2-methyl-4-methoxy-aniline were 73.6 and 74.6 minutes, respectively. It was low and 73.8 chi.

実施例4゜ 第5回目の反応から回収した触媒に0.139の実施例
1に用いた新触媒を加えて実施例2の通り還元反応を行
った。反応は290分を要し、53、54の水素を吸収
して終うた。実施例1の通り処理して0−トルイジン2
0.8Ii及び2−メチル−4−メトキシ−アニリンx
oo、sl(収率73.2*)を得た。2−メチル−4
−メトキシアニリンのガスクロマトグラフィーによる純
度は99.4チであった。
Example 4 A reduction reaction was carried out as in Example 2 by adding 0.139 of the new catalyst used in Example 1 to the catalyst recovered from the fifth reaction. The reaction took 290 minutes and ended after absorbing 53 and 54 hydrogen atoms. Treated as in Example 1 to give 0-toluidine 2
0.8Ii and 2-methyl-4-methoxy-aniline x
oo, sl (yield 73.2*) was obtained. 2-methyl-4
- The purity of methoxyaniline by gas chromatography was 99.4%.

実施例5 0−ニトロトルエンを68.6JI(0,5モル)用い
た以外は実施例1と同様に還元反応を行った。
Example 5 A reduction reaction was carried out in the same manner as in Example 1 except that 68.6 JI (0.5 mol) of 0-nitrotoluene was used.

反応は220分を要し、水素が26.41吸収されて終
了した。実施例1と同様に処理して、0−トルイジン9
.0.9と2−メチル−4−メトキシアニリン53.1
.9(収率76.6%)を得た。2−メチル−4−メト
キシアニリンのガスクロマトグラフィーによる純度は9
9.0%でありた。
The reaction took 220 minutes and was completed with 26.41 hydrogen absorbed. Treated in the same manner as in Example 1, 0-toluidine 9
.. 0.9 and 2-methyl-4-methoxyaniline 53.1
.. 9 (yield 76.6%) was obtained. The purity of 2-methyl-4-methoxyaniline by gas chromatography is 9
It was 9.0%.

比較例 氷酢酸を仕込まなかった以外実施例1と同様に還元反応
した。反応は1100分を要し、57.Olの水素が吸
収されて終了した。実施例1と同様に処理したが、0−
トルイジンj4.3JFと2−メチル−4−メトキシア
ニリン72.5J+(収率52.51)を得たにすぎな
かった。2−メチル−4−メトキシアニリンのガスクロ
マトグラフィーによる純度は99.3 %であった。
Comparative Example A reduction reaction was carried out in the same manner as in Example 1 except that glacial acetic acid was not charged. The reaction took 1100 minutes, 57. The hydrogen of Ol was absorbed and the process was completed. The treatment was carried out in the same manner as in Example 1, but 0-
Only 4.3 JF of toluidine j and 72.5 J+ of 2-methyl-4-methoxyaniline (yield 52.51) were obtained. The purity of 2-methyl-4-methoxyaniline by gas chromatography was 99.3%.

実施例6 0−ニトロトルエン137.111C1,0モル)の替
りに0−クロルニトロベンゼン157. s I (I
,0モル)を使用し氷酢酸の替りに50%酢酸水溶液を
用いた以外実施例蓋と全く同様の還元反応をした。反応
は480分を要し、53.(I’の水素が吸収されて終
了した。引き続き実施例1と同様に処理後、初留分とし
て8.5gの0−クロルアニリンと主留分として103
.7Ii(収率65.5チ)の2−クロル−4−メトキ
シアニリン(沸点141−143℃720 mHg )
を得た。主留分のガスクロマトグラフィーによる純度は
99.5%でありた。
Example 6 157.1C of 0-chloronitrobenzene was used instead of 137.111C of 0-nitrotoluene (1.0 mol). s I (I
, 0 mol) and a 50% acetic acid aqueous solution was used instead of glacial acetic acid. The reaction took 480 minutes, 53. (Hydrogen of I' was absorbed and the process was completed. After treatment in the same manner as in Example 1, 8.5 g of 0-chloroaniline was used as the first distillate and 103 g of 0-chloroaniline was used as the main fraction.
.. 7Ii (yield: 65.5 h) of 2-chloro-4-methoxyaniline (boiling point: 141-143°C, 720 mHg)
I got it. The purity of the main fraction by gas chromatography was 99.5%.

計算II[(チ)   53.3  5.12  8.
89 22.5測定値(チ”)   53.2  5,
09  8.84 22.2実施例7 0−ニトロトルエン1a7.l、?(t、oモル)の替
りにニトロベンゼン123.1g(Iモル)を使用した
以外実施例1と同様に還元反応した。反応は280分を
要し、55.51の水素が吸収されて終了したう引き続
き実施例1と同様に処理後、初留分として28.0II
のアニリンと主留分としてrl、21c収率53.0チ
)のP−アニシジンとO−アニシジンの混合物を得た。
Calculation II [(ch) 53.3 5.12 8.
89 22.5 Measured value (chi”) 53.2 5,
09 8.84 22.2 Example 7 0-Nitrotoluene 1a7. l,? A reduction reaction was carried out in the same manner as in Example 1 except that 123.1 g (1 mol) of nitrobenzene was used instead of (t, o mol). The reaction took 280 minutes and was completed with the absorption of 55.51% of hydrogen. After that, the reaction was continued in the same manner as in Example 1, and 28.0II of hydrogen was absorbed as the first distillate.
A mixture of P-anisidine and O-anisidine was obtained with aniline as the main fraction and 21c (yield: 53.0 h).

主留分のガスクロマトグラフィーによる純度は99.3
%でありだ。
The purity of the main fraction by gas chromatography is 99.3
It's %.

実施例8 0−ニトロトルエン137.11IC1,0モル)の替
りに2−メトキシ−ニトロベンゼン153.IJl(I
,0モル)を使用した以外実施例1と同様に還元反応し
た。反応は250分を要し、62.01の水素が吸収さ
れて終了した。引き続き実施例1と同様に処理後、初留
分として50.3gの0−アニシジンと主留分として5
5.9g(収率43.0%)の2.4−ジメトキシ−ア
ニリンと2.6−シメトキシーアニリンの混合物を得た
Example 8 2-Methoxy-nitrobenzene 153.1 instead of 0-nitrotoluene (137.11 IC 1.0 mol) IJl(I
The reduction reaction was carried out in the same manner as in Example 1 except that 0 mol) was used. The reaction took 250 minutes and ended with 62.01 hydrogen absorbed. Subsequently, after treatment in the same manner as in Example 1, 50.3 g of 0-anisidine was added as the first fraction and 50.3 g of 0-anisidine as the main fraction.
5.9 g (yield 43.0%) of a mixture of 2.4-dimethoxy-aniline and 2.6-simethoxyaniline was obtained.

実施例9 0−ニトロトルエン137.111C1,0モル)の替
りに2−6−シメチル−二トロベンゼン151.2g(
I,oモル)を使用した以外実施例1と同様に還元反応
した。反応は290分を要し、53.01の水素が吸収
されて終了した。引き続き実施[pHと同様に処理後、
初留分として23.3Iの2.6−シメチルーアニリン
と主留分としてIXt、3g(収率73.4チ)の2,
6−シメチルー4−2トキシーアニリンを得た。主留分
のガスクロマトグラフ゛ イーによる純度は99.7%
であった。
Example 9 151.2 g of 2-6-dimethyl-nitrobenzene (137.111 C1.0 mol) of 0-nitrotoluene
The reduction reaction was carried out in the same manner as in Example 1 except that 1,0 mol) was used. The reaction took 290 minutes and ended with 53.01 hydrogen absorbed. Continue to carry out [after treatment in the same way as pH,
23.3I of 2,6-dimethylaniline as the first fraction and IXt as the main fraction, 3g (yield 73.4ti) of 2,
6-dimethyl-4-2 toxic aniline was obtained. The purity of the main fraction by gas chromatography is 99.7%.
Met.

実施例1O 氷酢酸がプロピオン酸である以外実施例1と同様に還元
反応を行った。反応は320分で終了した。実施例1と
同様に処理して、22.01Fの〇−トルイジンと2−
メチル−4−メトキシ−アニリン98.3#(収率71
.1チ)を得た。
Example 1O A reduction reaction was carried out in the same manner as in Example 1 except that propionic acid was used instead of glacial acetic acid. The reaction was completed in 320 minutes. In the same manner as in Example 1, 22.01F 〇-toluidine and 2-
Methyl-4-methoxy-aniline 98.3# (yield 71
.. 1) was obtained.

特許比−人 三井東圧化学株式会社Patent ratio - people Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1 式( I )▲数式、化学式、表等があります▼( I
) 〔式( I )中、Rは水素原子、ハロゲン原子、低級ア
ルキル基、低級アルコキシ基を意味し、Rが水素原子以
外の置換基の場合はニトロ基に対しo−位または/およ
びm−位を表わす。 nは1〜2の整数〕 で示されるニトロベンゼン類を、低級脂肪族アルコール
、硫酸、及び低級脂肪カルボン酸またはその水溶液1.
5〜20重量%を含む混合溶剤中で、ニトロベンゼン類
に対しアルコールを少くとも10モル倍以上、硫酸を少
くとも0.5モル倍以上用いて、貴金属触媒の存在下、
接触水素化反応をおこなうことを特徴とする4−アルコ
キシアニリン類の製造方法。 2 アルコールをニトロベンゼン類に対し、20〜10
0モル倍用いる特許請求の範囲第1項記載の方法。 3 硫酸をニトロベンゼン類に対し、1〜10モル倍用
いる特許請求の範囲第1項記載の方法。 4 低級脂肪族アルコールがメタノールである特許請求
の範囲第1項記載の方法。 5 低級脂肪族カルボン酸が酢酸である特許請求の範囲
第1項記載の方法。 6 混合溶剤中の低級脂肪族カルボン酸が1.5〜10
重量%である特許請求の範囲第1項記載の方法。
[Claims] 1 Formula (I)▲There are mathematical formulas, chemical formulas, tables, etc.▼(I
) [In formula (I), R means a hydrogen atom, a halogen atom, a lower alkyl group, or a lower alkoxy group, and when R is a substituent other than a hydrogen atom, it is at the o-position or/and m-position with respect to the nitro group. represents rank. n is an integer of 1 to 2] A nitrobenzene represented by the following is mixed with a lower aliphatic alcohol, sulfuric acid, and a lower aliphatic carboxylic acid or an aqueous solution thereof.
In a mixed solvent containing 5 to 20% by weight, using at least 10 times more alcohol and at least 0.5 times more sulfuric acid by mole than nitrobenzene, in the presence of a noble metal catalyst,
A method for producing 4-alkoxyanilines, which comprises carrying out a catalytic hydrogenation reaction. 2 Alcohol to nitrobenzene, 20 to 10
The method according to claim 1, which uses 0 times the mole amount. 3. The method according to claim 1, in which sulfuric acid is used in an amount of 1 to 10 times the amount of nitrobenzene by mole. 4. The method according to claim 1, wherein the lower aliphatic alcohol is methanol. 5. The method according to claim 1, wherein the lower aliphatic carboxylic acid is acetic acid. 6 The lower aliphatic carboxylic acid in the mixed solvent is 1.5 to 10
% by weight.
JP59228860A 1984-11-01 1984-11-01 Production of 4-alkoxyaniline Granted JPS61109759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59228860A JPS61109759A (en) 1984-11-01 1984-11-01 Production of 4-alkoxyaniline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59228860A JPS61109759A (en) 1984-11-01 1984-11-01 Production of 4-alkoxyaniline

Publications (2)

Publication Number Publication Date
JPS61109759A true JPS61109759A (en) 1986-05-28
JPH0443900B2 JPH0443900B2 (en) 1992-07-20

Family

ID=16883015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59228860A Granted JPS61109759A (en) 1984-11-01 1984-11-01 Production of 4-alkoxyaniline

Country Status (1)

Country Link
JP (1) JPS61109759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103193660A (en) * 2013-03-30 2013-07-10 浙江工业大学 Synthetic method of 4-alkoxy phenylamine compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335064A (en) * 1976-09-08 1978-04-01 Enshu Seisaku Kk Device for braking gripper in gripper loom
JPS5384925A (en) * 1977-01-06 1978-07-26 Yamamoto Keiki Process for preparing alkoxyaniline
JPS5459239A (en) * 1977-10-14 1979-05-12 Osamu Manabe Production of dimethoxyaniline
JPS572247A (en) * 1980-06-05 1982-01-07 Sugai Kagaku Kogyo Kk Preparation of 4-alkoxy-2,3-dimethylaniline

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335064A (en) * 1976-09-08 1978-04-01 Enshu Seisaku Kk Device for braking gripper in gripper loom
JPS5384925A (en) * 1977-01-06 1978-07-26 Yamamoto Keiki Process for preparing alkoxyaniline
JPS5459239A (en) * 1977-10-14 1979-05-12 Osamu Manabe Production of dimethoxyaniline
JPS572247A (en) * 1980-06-05 1982-01-07 Sugai Kagaku Kogyo Kk Preparation of 4-alkoxy-2,3-dimethylaniline

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103193660A (en) * 2013-03-30 2013-07-10 浙江工业大学 Synthetic method of 4-alkoxy phenylamine compound
CN103193660B (en) * 2013-03-30 2015-03-04 浙江工业大学 Synthetic method of 4-alkoxy phenylamine compound

Also Published As

Publication number Publication date
JPH0443900B2 (en) 1992-07-20

Similar Documents

Publication Publication Date Title
JPH107627A (en) Preparation of 4-aminodiphenylamines, as necessary, substituted
JPH0446264B2 (en)
JP2690333B2 (en) Process for producing amino-1,3-benzenediol
JPS5827262B2 (en) Seizouhouhou
JPS61171454A (en) Manufacture of 4-aminophenylamine
JP2984047B2 (en) Method for producing 1-amino-4-alkoxybenzenes
JPS61109759A (en) Production of 4-alkoxyaniline
US20020103401A1 (en) Process for the production of 1,5-naphthalenediamine
JPH06298709A (en) Production of n-substituted n'-phenyl-p-phenylene diamine
KR100707050B1 (en) Method of preparing 10H-Dibenzo[b,f][1,4]thiazepine-11-one
JPH04506353A (en) Method for producing N-alkyl-halogenoaniline
CA1216862A (en) Process for producing aminobenzylamine
JP2537528B2 (en) Process for producing 2- (0-aminophenyl) ethanol
JP3080776B2 (en) Method for producing 4-alkoxyanilines
JP2922590B2 (en) Production of 4-halomononitrotoluenes
KR860000997B1 (en) Process for the preparation of 3,3'-or 3,4'-diamino phenylmethane
EP0207123A1 (en) Method for preparing nitrobibenzyl systems
JP2686947B2 (en) Method for producing 2- (phenylureido) aminophenols
JPS62129257A (en) Production of benzylamine
JPS6259253A (en) Production of urea
CN117402090A (en) Application of DES catalyst in ortho-position amino bromide and synthesis method of ortho-position amino bromide
JPH05262708A (en) New production of aminohydroxybenzoic acids
JPS62123162A (en) Production of cyano-substituted aniline compound
JPS6396166A (en) Production of aromatic hydrazo compound
JPH0446263B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term