JP3080776B2 - Method for producing 4-alkoxyanilines - Google Patents

Method for producing 4-alkoxyanilines

Info

Publication number
JP3080776B2
JP3080776B2 JP04136802A JP13680292A JP3080776B2 JP 3080776 B2 JP3080776 B2 JP 3080776B2 JP 04136802 A JP04136802 A JP 04136802A JP 13680292 A JP13680292 A JP 13680292A JP 3080776 B2 JP3080776 B2 JP 3080776B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
recovered
present
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04136802A
Other languages
Japanese (ja)
Other versions
JPH05331115A (en
Inventor
秀樹 水田
雄 西村
勉 椿原
輝幸 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP04136802A priority Critical patent/JP3080776B2/en
Publication of JPH05331115A publication Critical patent/JPH05331115A/en
Application granted granted Critical
Publication of JP3080776B2 publication Critical patent/JP3080776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は染料及び医薬品等の重要
な中間原料である4−アルコキシアニリン類を対応する
ニトロ化合物よりバンバーガー型転位反応を利用して製
造する際に使用する貴金属触媒のリサイクル方法に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a noble metal catalyst used in the production of 4-alkoxyanilines, which are important intermediates such as dyes and pharmaceuticals, from corresponding nitro compounds by utilizing a Bamberger-type rearrangement reaction. Recycling method.

【0002】[0002]

【従来の技術】ニトロベンゼン類よりバンバーガー型転
位反応を利用し、接触還元により一段で4−アミノフェ
ノール及び4−アルコキシアニリン類を製造する方法は
既に知られている(特公昭45−29811、特開昭6
0−115556等)。その際触媒として高価な貴金属
触媒を使用するため、回収、再使用される。通常は濾過
により還元反応終了液から回収され再使用されるが、反
応中に生成するタールの付着及び濾過操作時の空気接触
等による失活が避けられない。これらの問題の改良のた
め上述特公昭45−29811(ニトロベンゼンより4
−アミノフェノールの製造方法)では反応を途中で止
め、未反応ニトロベンゼン中に含まれる貴金属触媒を分
液して回収し再使用する方法を提案している。
2. Description of the Related Art A method for producing 4-aminophenols and 4-alkoxyanilines in a single step by catalytic reduction using a Bamberger-type rearrangement reaction from nitrobenzenes has already been known (Japanese Patent Publication No. 45-29811, Japanese Patent Publication No. Kaisho 6
0-115556). At that time, since an expensive noble metal catalyst is used as a catalyst, it is recovered and reused. Usually, the solution is recovered from the end of the reduction reaction by filtration and reused. However, it is unavoidable that tar generated during the reaction adheres and deactivation due to air contact during the filtration operation. To improve these problems, Japanese Patent Publication No. 45-29811 (4 times higher than nitrobenzene)
-Aminophenol production method) proposes a method in which the reaction is stopped halfway, the noble metal catalyst contained in the unreacted nitrobenzene is separated, recovered and reused.

【0003】[0003]

【発明が解決しようとする課題】本発明に係る4−アル
コキシアニリン類の製造に於いては、反応液は二相とは
ならず、前述4−アミノフェノールの製造時の様に転化
率を落として貴金属触媒をほぼ全量含み得る程度のニト
ロ化合物を残し再使用すると云う方法を採用する事はで
きない。従って、反応終了後濾過して回収し再使用する
こととなるが失活は避けられず、30%程度多く新触媒
を追加する必要があった。
In the production of 4-alkoxyanilines according to the present invention, the reaction solution does not become two-phase, and the conversion is reduced as in the production of 4-aminophenol. However, it is not possible to adopt a method of reusing and leaving a nitro compound which can contain almost all of the noble metal catalyst. Therefore, after the completion of the reaction, the solution is collected by filtration and reused, but deactivation is inevitable, and it is necessary to add a new catalyst by about 30%.

【0004】[0004]

【課題を解決するための手段】本発明者等はこれらの課
題を解決するために鋭意検討した結果、反応終了後濾過
した回収触媒を湯洗する事により、回収触媒の活性が向
上し、新触媒の追加量が少なくて済むことを見出し本発
明を完成した。即ち、本発明は一般式(1)(化2)
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve these problems, and as a result, the activity of the recovered catalyst was improved by washing the recovered catalyst after the reaction with hot water. The present inventors have found that an additional amount of the catalyst is small and completed the present invention. That is, the present invention provides a compound represented by the general formula (1)

【0005】[0005]

【化2】 Embedded image

【0006】〔式中、Rは水素原子、ハロゲン原子、低
級アルキル基、低級アルコキシ基を意味し、Rが水素原
子以外の置換基の場合はニトロ基に対しo−位又はm−
位を表す。nは1〜2の整数〕で示されるニトロベンゼ
ン類を低級脂肪族アルコール及び硫酸系中で貴金属触媒
存在下、接触水素化反応を行い4−アルコキシアニリン
類を製造する方法に於いて、反応終了後濾過回収された
貴金属触媒を湯洗して再使用する事を特徴とする、4−
アルコキシアニリン類の製造方法である。
[Wherein, R represents a hydrogen atom, a halogen atom, a lower alkyl group or a lower alkoxy group, and when R is a substituent other than a hydrogen atom, it is in the o-position or m-position with respect to the nitro group.
Represents the position. n is an integer of 1 to 2] in a method of producing a 4-alkoxyaniline by catalytic hydrogenation of a nitrobenzene represented by the following formula in a lower aliphatic alcohol and sulfuric acid system in the presence of a noble metal catalyst. Characterized in that the precious metal catalyst recovered by filtration is washed with hot water and reused.
This is a method for producing an alkoxyaniline.

【0007】本発明方法で用いられるニトロベンゼン類
としては、例えば、ニトロベンゼン、o−クロルニトロ
ベンゼン、m−クロルニトロベンゼン、o−ニトロトル
エン、m−ニトロトルエン、o−ニトロアニソール、m
−ニトロアニソール、o−ニトロフェネト−ル、m−ニ
トロフェネト−ル等が挙げられる。
The nitrobenzenes used in the method of the present invention include, for example, nitrobenzene, o-chloronitrobenzene, m-chloronitrobenzene, o-nitrotoluene, m-nitrotoluene, o-nitroanisole and m-chlorotoluene.
-Nitroanisole, o-nitrophenetol, m-nitrophenetol and the like.

【0008】本発明の方法に於いて用いられるアルコー
ル、硫酸の混合溶剤はその中の水含有量が2〜30重量
%からなるものであり、好適には3〜10重量%の水を
含んだ混合溶剤である。水含有量がこの範囲外の場合は
4−ヒドロキシアニリン類及びアニリン類の副生が増し
得策ではない。
The mixed solvent of alcohol and sulfuric acid used in the method of the present invention has a water content of 2 to 30% by weight, and preferably contains 3 to 10% by weight of water. It is a mixed solvent. If the water content is out of this range, 4-hydroxyanilines and anilines are by-produced, which is not a measure.

【0009】本発明で用いられるアルコールの種類とし
ては、メタノール、エタノール等の低級アルコール類が
挙げられ、用いられる量は原料であるニトロベンゼン類
に対し10倍モル以上、好ましくは20〜100倍モ
ル、さらに好ましくは30〜60倍モルが良い。
Examples of the type of alcohol used in the present invention include lower alcohols such as methanol and ethanol. The amount of alcohol used is at least 10 times mol, preferably 20 to 100 times mol, of nitrobenzene as a raw material. More preferably, the molar ratio is 30 to 60 times.

【0010】本発明で用いられる硫酸の量は、原料ニト
ロベンゼン類に対し0.5〜20倍モル、好ましくは1
〜10倍モル、さらに好ましくは2〜7倍モルが良い。
硫酸量がこの範囲外にある時はアニリン類及び未知のタ
ール成分の増加が認められる。
The amount of sulfuric acid used in the present invention is 0.5 to 20 moles, preferably 1 to 20 moles per mole of the starting nitrobenzenes.
The molar ratio is preferably 10 to 10 times, more preferably 2 to 7 times.
When the amount of sulfuric acid is out of this range, an increase in anilines and unknown tar components is observed.

【0011】本発明では触媒として、白金、パラジウ
ム、及びこれらの混合物が使用される。これらの金属触
媒は不活性固体を担体として用いるが、炭素が担体とし
て有利である。活性炭上に担持された1〜5%の白金及
び/またはパラジウムを含む触媒を使用することが好ま
しいが、但しこれらの金属を0.1〜20%含む触媒で
あれば使用して良い。用いられる量は反応させるニトロ
ベンゼン類基準で、0.01〜0.10重量%の白金、
又はパラジウムに相当する触媒量の支持触媒を使用する
ことが好ましい。
In the present invention, platinum, palladium, and a mixture thereof are used as the catalyst. These metal catalysts use an inert solid as a carrier, but carbon is advantageous as a carrier. It is preferable to use a catalyst containing 1 to 5% of platinum and / or palladium supported on activated carbon, but any catalyst containing 0.1 to 20% of these metals may be used. The amount used is 0.01 to 0.10% by weight of platinum, based on the nitrobenzenes to be reacted.
Alternatively, it is preferable to use a supported catalyst in a catalytic amount corresponding to palladium.

【0012】接触水素化反応に於ける反応温度は、0℃
から混合溶剤の沸点迄の範囲、好ましくは30〜60℃
が選ばれる。反応圧力は大気圧から2kg/cm2ゲー
ジ圧の範囲が実用的である。
The reaction temperature in the catalytic hydrogenation is 0 ° C.
To the boiling point of the mixed solvent, preferably 30 to 60 ° C.
Is selected. The reaction pressure is practically in the range from atmospheric pressure to 2 kg / cm 2 gauge pressure.

【0013】本発明に於ける湯洗処理では、反応終了後
濾過した回収触媒をそのまま温水洗浄してもよいが、反
応液と濾別した触媒を温水にてリスラリーを行い、濾過
後再び反応に使用する方が効果的である。
In the hot water washing treatment according to the present invention, the recovered catalyst filtered after the reaction may be washed with hot water as it is. However, the catalyst separated from the reaction solution by filtration is reslurried with hot water, filtered, and then re-slurried. It is more effective to use.

【0014】本発明で使用される温水の温度は40℃以
上なら特に限定はされない。それ以下であれば、回収触
媒の活性は向上せず、新触媒の追加量は多くなるという
不都合が生じるので好ましくは40〜90℃、さらに好
ましくは、50〜70℃である。又、水蒸気、若しくは
加圧下、水の沸点以上の温水を用いても差し支えないが
加圧装置等必要であり経済的に不利である。
The temperature of the hot water used in the present invention is not particularly limited as long as it is 40 ° C. or higher. If it is less than this, the activity of the recovered catalyst will not be improved, and the added amount of the new catalyst will increase, so that it is preferably 40 to 90 ° C, more preferably 50 to 70 ° C. In addition, steam or hot water having a boiling point equal to or higher than the boiling point of water under pressure may be used, but a pressurizing device or the like is required, which is economically disadvantageous.

【0015】本発明で使用される温水の量は、特に限定
はされないが好適には、回収触媒の重量の10倍以上あ
れば何ら差し支えない。少ない場合は、回収触媒の活性
が向上しないという不都合が生じる。多い場合は、装
置、排水量増大等経済的に不利であり、好ましくは回収
された触媒重量の50〜200倍あれば十分であり、さ
らに好ましくは80〜120倍である。
[0015] The amount of hot water used in the present invention is not particularly limited, but is preferably 10 or more times the weight of the recovered catalyst. If the amount is small, there is a disadvantage that the activity of the recovered catalyst is not improved. If the amount is large, it is economically disadvantageous, such as an increase in the amount of wastewater and the like, and preferably 50 to 200 times the weight of the recovered catalyst is sufficient, and more preferably 80 to 120 times.

【0016】本発明に於ける湯洗処理の時間は特に限定
されないが、数分以上あれば十分であり、又、湯洗処理
の回数も特に限定されないが、1回以上行えば十分であ
り、上述の温水量を数回に分けて行っても何ら差し支え
ない。
In the present invention, the time of the hot water washing treatment is not particularly limited, but it is sufficient if it is several minutes or more. Also, the number of times of hot water washing is not particularly limited, but it is sufficient if it is performed once or more. Even if the above-mentioned amount of warm water is divided into several times, there is no problem.

【0017】次に本発明を実施するには、通常行われて
いる方法例えば、バンバーガー型転位反応で得られた反
応マスを濾過後、濾過液は精製工程へ送り、濾過機上に
残った回収触媒は温水にてリスラリーを行い、再濾過後
少量の水と混合し反応系へリサイクルすればよい。
Next, in order to carry out the present invention, the reaction mass obtained by a usual method, for example, a Bamberger-type rearrangement reaction is filtered, and the filtrate is sent to a purification step, and remains on a filter. The recovered catalyst may be reslurried with warm water, re-filtered, mixed with a small amount of water, and recycled to the reaction system.

【0018】[0018]

【実施例】以下に実施例及び比較例で本発明を詳細に説
明する。 実施例1 攪拌機、温度計、及び水素導入管を備えた5lガラス製
反応器にo−ニトロトルエン137.1g、98%硫酸
264.5g、蒸留水68.6g、メタノール151
8.0g、及び3%炭素担体白金触媒0.41gを仕込
んだ。
The present invention will be described in detail below with reference to examples and comparative examples. Example 1 In a 5 l glass reactor equipped with a stirrer, a thermometer, and a hydrogen inlet tube, 137.1 g of o-nitrotoluene, 264.5 g of 98% sulfuric acid, 68.6 g of distilled water, and 151 of methanol
8.0 g and 0.41 g of a 3% carbon-supported platinum catalyst were charged.

【0019】反応は50℃に於いて水素を加えながら2
0〜30cm水柱に維持された微加圧下で行われた。反
応時間は300分を要し、52.5lの水素が吸収され
て終了した。その時点では反応液中にはo−ニトロトル
エンはほとんど残存していなかった。
The reaction is carried out at 50 ° C. while adding hydrogen.
Performed under slight pressure maintained at 0-30 cm water column. The reaction time required 300 minutes, and the reaction was completed when 52.5 l of hydrogen was absorbed. At that time, almost no o-nitrotoluene remained in the reaction solution.

【0020】引き続き、反応液を濾過し触媒を分離し、
回収された触媒を50mlのビーカーに移し70℃の温
水約40mlを加え、湯浴中で60〜65℃に保ちなが
ら10分間攪拌した。再び濾過し湯洗処理された触媒
(水を含む)0.81gを得た。湯洗処理後の濾液は黒
褐色を呈していた。
Subsequently, the reaction solution was filtered to separate the catalyst,
The recovered catalyst was transferred to a 50 ml beaker, about 40 ml of 70 ° C warm water was added, and the mixture was stirred for 10 minutes while maintaining the temperature at 60 to 65 ° C in a hot water bath. It was filtered again to obtain 0.81 g of a catalyst (including water) which had been washed with hot water. The filtrate after the hot water washing treatment had a dark brown color.

【0021】触媒を濾別した反応液は、メタノールを留
去後蒸留水500gを加えて28%アンモニア水で中和
しpH.7.2とした。その中和液にトルエン200g
を加え抽出した。分液したトルエン層を希苛性水で洗浄
後トルエン層を濃縮し、減圧下に蒸留して、初留分とし
て22.8gのo−トルイジンと主留分として96.8
g(収率70.0%)の2−メチル−4−メトキシアニ
リンを得た。主留分のガスクロマトグラフによる純度は
99.2%であった。
After the methanol was distilled off, the reaction solution from which the catalyst had been removed by filtration was added with 500 g of distilled water, neutralized with 28% aqueous ammonia, and then neutralized with a pH. 7.2. 200 g of toluene in the neutralized solution
And extracted. After the separated toluene layer was washed with dilute caustic water, the toluene layer was concentrated and distilled under reduced pressure to obtain 22.8 g of o-toluidine as an initial fraction and 96.8 as a main fraction.
g (70.0% yield) of 2-methyl-4-methoxyaniline was obtained. The purity of the main fraction determined by gas chromatography was 99.2%.

【0022】実施例2〜9 以下、実施例1で得られた回収触媒を用い、リサイクル
時には毎回実施例1と同様の湯洗処理を行い、9回リサ
イクル使用した。尚、リサイクル5回目迄は新触媒の追
加は行わず、6回目以降は実施例1に用いた新触媒を毎
回0.04g追加し反応を行った。結果を表1に示す。
Examples 2 to 9 Using the recovered catalyst obtained in Example 1, the same hot water washing treatment as in Example 1 was carried out every time during recycling, and the recycled catalyst was used 9 times. The addition of the new catalyst was not performed until the fifth recycling, and the reaction was performed by adding 0.04 g of the new catalyst used in Example 1 every time after the sixth recycling. Table 1 shows the results.

【0023】[0023]

【表1】 [Table 1]

【0024】比較例1 実施例1で使用したのと同じ反応器に、実施例1と全く
同量の原料、及び触媒を仕込み実施例1と同様に反応を
行った。反応に要した時間は300分であった。
Comparative Example 1 The same reactor as used in Example 1 was charged with exactly the same amounts of raw materials and catalyst as in Example 1, and reacted in the same manner as in Example 1. The time required for the reaction was 300 minutes.

【0025】引き続き、反応液を濾過し触媒を分離し、
回収された触媒を50mlのビーカーに移し、20℃の
水約40.0mlを加え、室温で約1時間攪拌した。再
び濾過し洗浄された触媒(水を含む)0.82gを得
た。水洗処理後の濾液は薄茶色を呈していた。
Subsequently, the reaction solution was filtered to separate the catalyst,
The recovered catalyst was transferred to a 50 ml beaker, about 40.0 ml of water at 20 ° C. was added, and the mixture was stirred at room temperature for about 1 hour. 0.82 g of the filtered and washed catalyst (including water) was obtained again. The filtrate after the water washing treatment exhibited a light brown color.

【0026】触媒を濾別した反応液は実施例1と同様の
処理を行い、得られた2−メチル−4−メトキシアニリ
ンの収率は70.6%、純度は99.2%であった。
The reaction solution from which the catalyst was filtered off was subjected to the same treatment as in Example 1, and the yield of 2-methyl-4-methoxyaniline obtained was 70.6% and the purity was 99.2%. .

【0027】比較例2〜10 以下、比較例1で得られた回収触媒を用い、リサイクル
時には毎回比較例1と同様の水洗処理を行い、9回リサ
イクル使用した。尚、リサイクル5回目までは新触媒の
追加は行わず、6〜8回目までは実施例1で用いた新触
媒を毎回0.08g、9回目は0.21g追加し反応を
行った。結果を表2に示す。
Comparative Examples 2 to 10 Hereinafter, using the recovered catalyst obtained in Comparative Example 1, the same water washing treatment as in Comparative Example 1 was carried out every time during recycling, and the recycled catalyst was used 9 times. The addition of a new catalyst was not performed until the fifth recycle, and the reaction was performed by adding 0.08 g of the new catalyst used in Example 1 every time from the sixth to the eighth and adding 0.21 g of the new catalyst at the ninth time. Table 2 shows the results.

【0028】[0028]

【表2】 [Table 2]

【0029】比較例11 実施例1で使用したのと同じ反応器に、実施例1と全く
同量の原料、及び触媒を仕込み実施例1と同様に反応を
行った。反応に要した時間は300分であった。
Comparative Example 11 The same reactor as used in Example 1 was charged with exactly the same amounts of raw materials and catalyst as in Example 1, and the reaction was carried out in the same manner as in Example 1. The time required for the reaction was 300 minutes.

【0030】引き続き、反応液を濾過し触媒を分離し、
回収された触媒を100mlのビーカーに移し、メタノ
ール約50mlを加え、室温で約1時間攪拌した。再び
濾過し洗浄された触媒(メタノール、水を含む)0.8
0gを得た。メタノール処理後の濾液は薄茶色を呈して
いた。
Subsequently, the reaction solution was filtered to separate the catalyst,
The recovered catalyst was transferred to a 100 ml beaker, about 50 ml of methanol was added, and the mixture was stirred at room temperature for about 1 hour. The filtered and washed catalyst (including methanol and water) 0.8
0 g was obtained. The filtrate after the methanol treatment exhibited a light brown color.

【0031】触媒を濾別した反応液は実施例1と同様の
処理を行い、得られた2−メチル−4−メトキシアニリ
ンの収率は70.5%、純度は99.3%であった。
The reaction solution from which the catalyst was filtered off was subjected to the same treatment as in Example 1. The yield of 2-methyl-4-methoxyaniline obtained was 70.5% and the purity was 99.3%. .

【0032】比較例12〜20 以下、比較例11で得られた回収触媒を用い、リサイク
ル時には毎回比較例11と同様のメタノール洗浄処理を
行い、9回リサイクル使用した。尚、リサイクル5回目
迄は新触媒の追加は行わず、リサイクル6〜8回目迄は
実施例1で用いた新触媒を毎回0.08g、9回目は
0.21gを追加し反応を行った。結果を表3に示す。
COMPARATIVE EXAMPLES 12-20 Hereinafter, using the recovered catalyst obtained in Comparative Example 11, the same methanol washing treatment as in Comparative Example 11 was carried out every time during recycling, and the recycled catalyst was used 9 times. The addition of the new catalyst was not performed until the fifth recycling, and the reaction was performed by adding 0.08 g of the new catalyst used in Example 1 every time until the sixth to eighth recycling, and adding 0.21 g at the ninth recycling. Table 3 shows the results.

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【発明の効果】本発明によれば、回収された触媒の活性
低下を抑制し、新触媒の追加量を低減できることによ
り、経済的に有利な生産性の向上が達成できる。即ち、
本発明の範囲外である比較例1〜20では、回収触媒を
リサイクルする際、回収触媒の活性が明らかに低下して
おり、新触媒の追加量を多くしなければ反応速度の維持
は不可能であり、経済的に不利である。これに対し、回
収触媒をリサイクルする際、実施例1〜9に示すように
湯洗処理を施せば新触媒の追加量は少なくて済み、経済
的に大幅な生産性の向上をもたらすことは明白であり、
本発明の意義は大きい。
According to the present invention, a reduction in the activity of the recovered catalyst can be suppressed, and the amount of the new catalyst added can be reduced, whereby an economically advantageous improvement in productivity can be achieved. That is,
In Comparative Examples 1 to 20, which are out of the scope of the present invention, when the recovered catalyst is recycled, the activity of the recovered catalyst is clearly reduced, and the reaction rate cannot be maintained unless the amount of the new catalyst is increased. Which is economically disadvantageous. On the other hand, when the recovered catalyst is recycled, if the hot water washing treatment is performed as shown in Examples 1 to 9, the additional amount of the new catalyst can be reduced, and it is obvious that the productivity is greatly improved economically. And
The significance of the present invention is great.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−115556(JP,A) 特開 平2−160048(JP,A) (58)調査した分野(Int.Cl.7,DB名) C07C 217/84 B01J 23/96 B01J 38/48 C07C 213/00 C07B 61/00 300 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-115556 (JP, A) JP-A-2-160048 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C07C 217/84 B01J 23/96 B01J 38/48 C07C 213/00 C07B 61/00 300

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式(1)(化1) 【化1】 〔式中、Rは水素原子、ハロゲン原子、低級アルキル
基、低級アルコキシ基を意味し、Rが水素原子以外の置
換基の場合はニトロ基に対しo−位又はm−位を表す。
nは1〜2の整数〕で示されるニトロベンゼン類を低級
脂肪族アルコール及び硫酸系中で貴金属触媒存在下、接
触水素化反応を行い4−アルコキシアニリン類を製造す
る方法に於いて、反応終了後濾過回収された貴金属触媒
を湯洗して再使用することを特徴とする4−アルコキシ
アニリン類の製造方法。
1. A compound represented by the general formula (1): [Wherein, R represents a hydrogen atom, a halogen atom, a lower alkyl group or a lower alkoxy group, and when R is a substituent other than a hydrogen atom, it represents the o-position or the m-position with respect to the nitro group.
n is an integer of 1 to 2] in a method of producing a 4-alkoxyaniline by catalytic hydrogenation of a nitrobenzene represented by the following formula in a lower aliphatic alcohol and sulfuric acid system in the presence of a noble metal catalyst. A method for producing 4-alkoxyanilines, comprising washing and recycling a noble metal catalyst recovered by filtration.
JP04136802A 1992-05-28 1992-05-28 Method for producing 4-alkoxyanilines Expired - Fee Related JP3080776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04136802A JP3080776B2 (en) 1992-05-28 1992-05-28 Method for producing 4-alkoxyanilines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04136802A JP3080776B2 (en) 1992-05-28 1992-05-28 Method for producing 4-alkoxyanilines

Publications (2)

Publication Number Publication Date
JPH05331115A JPH05331115A (en) 1993-12-14
JP3080776B2 true JP3080776B2 (en) 2000-08-28

Family

ID=15183862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04136802A Expired - Fee Related JP3080776B2 (en) 1992-05-28 1992-05-28 Method for producing 4-alkoxyanilines

Country Status (1)

Country Link
JP (1) JP3080776B2 (en)

Also Published As

Publication number Publication date
JPH05331115A (en) 1993-12-14

Similar Documents

Publication Publication Date Title
JPH107627A (en) Preparation of 4-aminodiphenylamines, as necessary, substituted
JP2002515474A (en) Method for preparing 4-aminodiphenylamine
CA1215724A (en) Process for producing 4-alkoxyanilines
US4067905A (en) Preparation of 2-amino-n-butanol
JP3080776B2 (en) Method for producing 4-alkoxyanilines
JP2984047B2 (en) Method for producing 1-amino-4-alkoxybenzenes
US5922917A (en) Process for the preparation of 2-amino-1,3-propanediol
US6403833B1 (en) Single step hydrogenation of nitrobenzene to p-aminophenol
US5858321A (en) Preparation of substituted aromatic amines
TW593228B (en) Production of alkyl 6-aminocaproate
JPH04506353A (en) Method for producing N-alkyl-halogenoaniline
EP1229018B1 (en) Single step hydrogenation of nitrobenzene to p-aminophenol
JP3145804B2 (en) Process for producing a mixture of cyclohexylamine and dicyclohexylamine
JPH0443900B2 (en)
JP3218102B2 (en) Method for producing indole or indole derivative
JP3159522B2 (en) Method for producing high-purity m-phenylenediamine
JPH1112238A (en) Production of 1-(beta-hydroxyethyl)-2,5-diaminobenzene or its salt
US5292957A (en) Process for the preparation of N-alkylhalogenoanilines
EP0663394B1 (en) Process for preparing 5-aminodihydropyrrole, intermediate thereof and process for preparing said intermediate
JP3135436B2 (en) Method for producing diphenylamine or its nuclear-substituted product
KR100214102B1 (en) Process for preparation of n-alkyl-beta-hydroxyethylsulfon aniline derivative
JP2523140B2 (en) Method for producing (4-hydroxyphenyl) -cyclohexanecarboxylic acid
JP2795492B2 (en) Method for producing indole or indole derivative
JP3855513B2 (en) Method for producing 3,4-lower alkylenedioxy-N-alkylaniline
KR960011374B1 (en) Racemization of octahydroisoquinoline

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees