JPS6110963B2 - - Google Patents

Info

Publication number
JPS6110963B2
JPS6110963B2 JP53064380A JP6438078A JPS6110963B2 JP S6110963 B2 JPS6110963 B2 JP S6110963B2 JP 53064380 A JP53064380 A JP 53064380A JP 6438078 A JP6438078 A JP 6438078A JP S6110963 B2 JPS6110963 B2 JP S6110963B2
Authority
JP
Japan
Prior art keywords
coating
glass
weight
sio
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53064380A
Other languages
Japanese (ja)
Other versions
JPS54156199A (en
Inventor
Toshihiko Funabashi
Toshiro Ichida
Shigeru Kobayashi
Hiroshi Shimanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6438078A priority Critical patent/JPS54156199A/en
Publication of JPS54156199A publication Critical patent/JPS54156199A/en
Publication of JPS6110963B2 publication Critical patent/JPS6110963B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ガラス質中に結晶相を析出させた絶
縁被膜(以下単に結晶化ガラス質の絶縁被膜とい
う)を有する方向性珪素鋼板に関するものであ
る。 特に本発明は、鉄損および磁歪特性を改善さ
せ、かつ耐熱性が良好な結晶化ガラス質の絶縁被
膜を有する方向性珪素鋼板に関するものである。 方向性珪素鋼板は、Siを多くとも4重量%、普
通には約3重量%含む珪素鋼鋼塊あるいはスラブ
に適当な圧延および熱処理を施して商業的に製造
されており、磁化容易軸が圧延方向に揃つた
cube−on―edgeまたはMiller indexで表わして
(110)〔001〕結晶組織を有している。 方向性珪素鋼板は、大部分積層して組み立てら
れ電力用変圧器として使用される。近年の都市部
への人口集中と電力需要の増大によつて大容量の
変圧器が人家の密集地に設置されるようになり、
変圧器から発生する騒音が公害として問題となつ
ている。 変圧器騒音の主原因は、素材の面からは鉄心と
して使用される方向性珪素鋼板の磁歪である。こ
れは鋼板を交流磁化する際に鋼板が伸縮振動する
現象であり、この原因は鋼板の磁化過程が90゜磁
壁移動および回転磁化を含むことに起因してお
り、鋼板に圧延方向の圧縮応力が付加された場
合、磁歪は著しく増大する。方向性珪素鋼板を積
層して変圧器を組み立てる時には不可避的に圧縮
応力が付加されて磁歪が増大し、変圧器騒音の増
大の原因となる。従つてもし、表面の絶縁被膜な
どによつて鋼板にあらかじめ引張応力を与えてお
けば、変圧器を組み立てる時に不可避的に発生す
る圧縮応力を相殺し、磁歪の増大を防止する。 表面の絶縁被膜などによつて与えられる引張応
力は、方向性珪素鋼板の磁歪の圧縮応力特性を改
善するばかりでなく、鉄損の改善にも有効である
ことが知られている。特に、最近の方向性がよく
揃つた高磁束密度方向性珪素鋼板の場合、その効
果が大きい。 方向性珪素鋼板の表面被膜は、普通、高温仕上
焼鈍中に形成された結晶質のフオルステライト質
被膜とその上に施されるリン酸塩系被膜とから成
り立つている。このうち鋼板に引張応力を与える
のは上塗り被膜であるが、その形成方法は、ガ
ラスフリツトを懸濁物にして塗布・焼付ける方法
とリン酸塩とコロイド状シリカを配合した液を
塗布・焼付ける方法と二つに大別される。に属
するのは、たとえば、特公昭31―8242号、特公昭
46―18603号に開示されている方法であり、に
属するのは、たとえば、特開昭48―39338号、あ
るいは、特開昭50―79442号に開示されている方
法である。 これらの方法のうち、ガラスフリツトを用いる
の方法によつて形成される被膜(以下単にガラ
ス質被膜と称す)の方が、リン酸塩とコロイド状
シリカを用いるの方法によつて形成される被膜
(以下単にリン酸塩系被膜と称す)よりも大きな
引張応力を鋼板に与える。しかも、同じ熱膨脹係
数を有するガラス質被膜とリン酸塩系被膜で比較
しても鋼板に与える引張応力は前者の方が大き
い。この理由について詳細は明らかではないが、
ガラス質被膜の方は鋼板上で溶融造膜するのでリ
ン酸塩系被膜よりも緻密で、かつ、最終焼鈍時に
形成するフオルステライト質被膜とよく反応した
被膜を形成し、鋼板に引張応力を与える目的には
ガラス質被膜の方が適しているためと推定され
る。 このようにガラス質被膜は方向性珪素鋼板の引
張応力付加用上塗り被膜として非常に優れてる
が、ガラスが高温で軟化するためにガラス質被膜
を有する方向性珪素鋼板を積層して800℃程度の
温度で歪取焼鈍を施した場合、隣接する被膜どう
しが融着し、層間抵抗ひいては磁気特性の劣化を
引起し、ラツプコアー型の巻鉄芯の場合には、組
み立てるために無理に剥がすと被膜が剥離し、組
み立て作業はできなくなるというように耐熱性あ
るいは耐融着性の面で難点がある。特に巻鉄芯型
の変圧器を組み立てる時には、被膜の耐熱性は重
要であり、このためガラス質被膜は引張り応力付
加用被膜として優れてるにも拘らず、リン酸塩系
被膜と比べて工業上実用化することは困難であつ
た。 本発明は、前記のガラス質被膜の有する耐熱性
の少ないという欠点を除去・改善し、かつ引張応
力を増加させて磁歪特性を改善した絶縁被膜を有
する方向性珪素鋼板を提供することを目的とする
ものである。 すなわち本発明は、低熱膨脹性の絶縁被膜を有
する方向性珪素鋼板であつて、上記絶縁被膜は、
8.5×10-6/℃以下の低い熱膨脹係数を有するガ
ラスフリツトの溶融造膜により生じたガラス質被
膜中に、融点が900℃以上の結晶相を5〜70重量
%の範囲において析出させたものである、耐熱性
および磁歪特性に優れた結晶化ガラス質の絶縁被
膜を有する方向性珪素鋼板である。 次に本発明を詳細に説明する。 本発明者等は、前述のガラス質被膜の欠点であ
る耐熱性を改善し、従来のガラス質被膜以上に鋼
板に与える引張応力を増加させて磁歪特性を改善
する方策としてガラスの結晶化という現象を利用
してガラス質被膜中に高融点で低熱膨脹の結晶相
が析出している結晶化ガラス質被膜に想到し、
種々の検討を行なつた。その結果、ガラスフリツ
トを珪素鋼板上に塗布・焼付けてガラス質被膜を
形成すると同時に、900℃以上の融点を有する結
晶相を5〜70重量%ガラス質被膜中に析出させる
ことによつて耐熱性を改善し、結晶化に伴つて被
膜が低熱膨脹化することより、鋼板に与える引張
応力を増大させて磁歪特性を改善できることを新
規に見い出した。 ガラス結晶化は、近年、セラミツク工業の分野
で注目されている技術であり、それによつてガラ
ス材料の高強度化と耐熱衝撃性の改善が達成さ
れ、ガラスセラミツクとして各種材料に実用化さ
れるようになつた。例えばガラス成分系を適当に
選んで結晶化させることにより、その熱膨脹係数
を大幅に低下させることのできることは周知され
ており、近年耐熱食器として実用化されている結
晶化ガラスの高耐熱衝撃性は材料の低熱膨脹によ
るものである。 本発明は、こうしたガラスの結晶化という技術
を利用して方向性珪素鋼板の上塗り絶縁被膜の特
性を向上させようとするものである。 方向性珪素鋼板の上塗りのガラス質被膜の形成
方法としては特公昭46―18603号が知られている
が、そこに示されている方法は、8.5×10-6/℃
以下の低熱膨脹性ガラスのフリツトを塗布・焼付
けて上塗りのガラス質被膜を形成し、該ガラス質
被膜を有する珪素鋼板を加熱し、層間のガラス質
被膜を融着させて変圧器を製造するというもので
あつて、ガラス質被膜中に結晶相を析出させるこ
とによつて耐融着性を改善する本発明とはその構
成が根本的に異なるものである。 またガラス質被膜の耐熱性を改善する方法とし
て、ガラスフリツトに高融点の酸化物粉末を添加
する方法が考えられるが、この方法によれば耐熱
性の改善は十分ではなく、却つて被膜の密着性が
劣化して好ましくない。 本発明において、前述の如く結晶相を晶出する
ガラスフリツトを用いるが、このガラスフリツト
は特定な成分系に限定される必要はなく、本発明
において使用されるガラスフリツトは焼付け後5
〜70%の結晶相を晶出するものであればよく、好
適な成分系を挙げれば、例えばLi2O―A2O3
ZnO―SiO2系、Li2O―A2O3―PbO―GiO2系、
SiO2―B2O3―ZnO系を用いることができ、これ
らの成分系のガラスフリツトを珪素鋼板上に塗
布・焼付けた場合にガラス質被膜中にLi2O・A
2O3・2SiO2(β―ユークリプタイト)、2ZnO・
SiO2(ウイレマイト)あるいは5ZnO・2B2O3
結晶が析出する。 本発明の最も好適な実施例は、SiO2―B2O3
ZnO系のガラスフリツトを用いる場合で、SiO23
〜25重量%、B2O320〜45重量%、残部ZnOより
なる基本組成物100部と必要に応じLi2O,Na2O,
K2O,MgO,CaO,SrO,BaO,A2O3
P2O5,TiO2,Cr2O3,Fe2O3,CoO,NiO,ZnO2
のうちから運ばれる何れか1種または2種以上15
部以下とよりなるガラスフリツトを方向性珪素鋼
板上に塗布し、750〜950℃の温度で30秒〜20分焼
付けてガラス質被膜を形成すると同時に、該ガラ
ス質被膜中に900℃以上の融点を有する結晶相を
5〜70重量%析出させるものであつて、磁歪特性
に優れ鉄損を改善し、耐熱性、密着性にも優れた
結晶化ガラス質の絶縁被膜を形成させることがで
きる。 本発明において、ガラスフリツトの熱膨脹係数
を8.5×10-6/℃以下に限定する理由は、熱膨脹
係数が8.5×10-6/℃より大きいと、ガラス質被
膜が鋼板に与える引張応力は小さく、磁歪特性を
改善する効果がないので使用するガラスフリツト
の熱膨脹係数は8.5×10-6/℃以下に限定する必
要がある。ガラス被膜中に析出させる結晶相の融
点を900℃以上に限定する理由は、方向性珪素鋼
板の歪取焼鈍温度は、通常800℃程度であり、900
℃よりも低い融点の結晶相では、耐熱性を改善す
る効果はなく、900℃以上の融点を有する結晶相
を析出させる必要がある。 本発明においてガラス質被膜の耐熱性を改善す
るために、該ガラス質被膜中に900℃以上の融点
を有する結晶相を5〜70重量%析出させるが、結
晶相の割合、すなわち、結晶化度と結晶化ガラス
質被膜の耐熱性との関係は以下の方法によつて調
べた。 フオルステライト質の被膜を有する方向性珪素
鋼板に本発明のガラスフリツトを2ミクロンの膜
厚の被膜となるように塗布し、焼付けの熱処理時
間を変えて様々な結晶化度を有する結晶化ガラス
質被膜を得た後それらを50×50mm試験片10枚に剪
断して10枚を1組として積層し、820℃の温度で
2Kg/cm2の圧縮荷重下において焼鈍を行なう。焼
鈍後10枚の試験片は層間の被膜の融着によつて一
体となつているが、その融着の強さを分銅を上か
ら落下させて衝撃を与えた時の10枚の試験片の分
離状況および衝撃を与えて分離した試験片の層間
の被膜剥離の有無から調べることができる。衝撃
は1Kgの分銅を5cmの高さから5cm間隔で50cmま
で順番に落下させて与えられる。この圧縮荷重焼
鈍後の層間被膜の融着の強さを調べる方法によつ
て被膜の耐熱性を厳密に評価することができる。 第1図は、Li2O7重量%、A2O38重量%、
ZnO35重量%、SiO250重量%の組成を有するガラ
スフリツトを2ミクロンの膜厚の被膜が得られる
ように鋼板上に塗布し、900℃で30秒から40分焼
付け時間を変えて得られた種々の結晶化度を有す
る結晶化ガラス質被膜について調べた耐熱性と結
晶化度との関係を示す図である。同図中○印は10
枚に完全に分離するもの、●印は10枚に完全に分
離するが、融着による被膜剥離のあるもの、△印
は一部分離するもの、▲印は一部分離するが、融
着による被膜剥離のあるもの、×印は全く分離し
ないものである。第2図はSiO210重量%、
B2O328重量%、ZnO62重量%の組成を有するガ
ラスフリツトを、第1図の場合と同様に、2ミク
ロンの膜厚となるように鋼板上に塗布し、850℃
で30秒から30分焼付け時間を変えて得られ種々の
結晶化度を有する結晶化ガラス質被膜について調
べた図である。析出結晶種は第1図の場合は、
2ZnO,SiO2(ウイレマイト)、Li2O・A2O3
2SiO2(β―ユークリプタイト)で、第2図の場
合は、2ZnO・SiO2,5ZnO・2B2O3が主で、その
ほかにZnO・B2O3が析出していた。結晶化度は
熱処理時間が長くなる程大きくなつた。なお同図
中諸印は第1図と同一のものを表す。 第1図、第2図から明らかなように結晶化ガラ
ス質被膜の耐熱性は析出する結晶相の種類あるい
は結晶の析出形態に依存するよりもガラス質被膜
中に析出した結晶相の割合、すなわち結晶化度に
強く依存することが、本発明の研究により判つ
た。結晶化度が5重量%より小さいと、10枚の単
板の試験片に分離するためには1Kgの分銅を30cm
以上の高さから落下させる必要があり、しかも、
この場合には層間の被膜相互の融着の強さの方が
被膜自体の密着の強さよりも大きく、そのために
衝撃試験後には必らず融着による被膜剥離を生
じ、重大な欠陥となつた。したがつて、結晶化ガ
ラス質被膜の耐熱性を改善するために5重量%以
上結晶相を析出させる必要がある。 本発明においてガラス質被膜の耐熱性の改善の
ために結晶相を5〜70重量%析出させるが、この
結晶化度の範囲の下限値は、前述の圧縮荷重焼鈍
後の融着強度試験によつて決定でき、上限値は、
結晶化ガラス質被膜の表面粗さを測定することに
よつて決定できる。第3図は、第2図と同様な方
法で調製した結晶ガラス被膜の表面粗さと結晶化
度との関係を示す図である。第3図から明らかな
ように中心線平均粗さ(Ra:0.8mmcut off)は70
重量%を境にして急激に大きくなり、占積率を劣
化させるので結晶化度は70重量%以下に限定する
必要がある。 本発明において、前述した如く耐熱性の優れた
結晶化ガラス質被膜が形成されると共に結晶化を
利用して鋼板に与える引張応力を従来のガラス質
被膜以上に増大し、磁歪特性を改善することがで
きるが、この引張応力の増大はガラス質被膜が結
晶化に伴なつて低熱膨脹化することによるのであ
る。 第4図はSiO2―B2O3―ZnO系ガラスの結晶化
に伴つて起こる熱膨脹特性の変化を示す。
SiO213重量%、B2O326重量%、ZnO59重量%、
TiO22重量%の組成のガラスを棒状に成型し、
800℃、850℃で1時間結晶化のための熱処理を施
した棒状試料について熱膨脹特性と結晶化度を測
定した。図中にはそれぞれの試料の結晶化度と熱
膨脹曲線から求めた100〜400℃の平均の熱膨脹係
数を示す。熱膨脹係数は結晶化に伴なつて大幅に
低下することがわかる。第4図からわかるように
棒状試料の場合、結晶化しても残留するガラスに
よつて700℃前後で軟化するが、本発明の結晶化
ガラス質被膜の場合、軟化しても高融点の結晶相
が表面に存在しているので、800℃程度の歪取焼
鈍に際して優れた耐熱性を示す。SiO2―B2O3
ZnO系のほかに結晶化によつて低熱膨脹化できる
例として下記第1表に示すNo.1〜5の成分のガラ
スを挙げることができる。
The present invention relates to a grain-oriented silicon steel sheet having an insulating coating in which a crystalline phase is precipitated in a vitreous material (hereinafter simply referred to as a crystallized glass insulating coating). In particular, the present invention relates to a grain-oriented silicon steel sheet having a crystallized glass insulating coating that improves iron loss and magnetostriction characteristics and has good heat resistance. Grain-oriented silicon steel sheets are manufactured commercially by appropriately rolling and heat treating silicon steel ingots or slabs containing at most 4% by weight, but usually about 3% by weight, of Si, such that the axis of easy magnetization aligned in the direction
It has a (110) [001] crystal structure as expressed by cube-on-edge or Miller index. Grain-oriented silicon steel sheets are mostly laminated and assembled and used as power transformers. In recent years, with the concentration of population in urban areas and the increase in demand for electricity, large-capacity transformers are being installed in densely populated areas.
Noise generated from transformers has become a pollution problem. The main cause of transformer noise is the magnetostriction of the grain-oriented silicon steel plate used as the iron core. This is a phenomenon in which the steel plate stretches and vibrates when it is magnetized with alternating current.The cause of this is that the magnetization process of the steel plate includes 90° domain wall movement and rotational magnetization, and compressive stress in the rolling direction is applied to the steel plate. When added, magnetostriction increases significantly. When assembling a transformer by laminating grain-oriented silicon steel plates, compressive stress is inevitably added, increasing magnetostriction and causing an increase in transformer noise. Therefore, if tensile stress is applied to the steel plate in advance through an insulating coating on the surface, the compressive stress that inevitably occurs when assembling the transformer can be canceled out, and an increase in magnetostriction can be prevented. It is known that the tensile stress imparted by the surface insulation coating is effective not only in improving the magnetostrictive compressive stress characteristics of grain-oriented silicon steel sheets, but also in improving core loss. This effect is particularly great in the case of recent high magnetic flux density grain-oriented silicon steel sheets with well-aligned orientation. The surface coating of grain-oriented silicon steel sheets usually consists of a crystalline forsterite coating formed during high-temperature finish annealing and a phosphate-based coating applied thereon. Of these, the top coat is what applies tensile stress to the steel plate, and this can be formed by coating and baking a suspension of glass frit, or by coating and baking a liquid containing phosphate and colloidal silica. It is broadly divided into two methods. For example, Tokko Sho 31-8242, Tokko Sho No.
The method disclosed in Japanese Patent Application Laid-Open No. 46-18603 belongs to, for example, the method disclosed in Japanese Patent Application Publication No. 48-39338 or Japanese Patent Application Publication No. 50-79442. Of these methods, the coating formed by the method using glass frit (hereinafter simply referred to as vitreous coating) is superior to the coating formed by the method using phosphate and colloidal silica (hereinafter simply referred to as vitreous coating). (hereinafter simply referred to as a phosphate-based coating), it applies a greater tensile stress to the steel sheet. Furthermore, even if a glassy coating and a phosphate coating have the same coefficient of thermal expansion, the tensile stress imparted to the steel sheet is greater in the former. Although the details of this reason are not clear,
Since the glassy coating is melt-formed on the steel plate, it is denser than the phosphate coating, and forms a coating that reacts well with the forsterite coating formed during final annealing, giving tensile stress to the steel plate. It is presumed that this is because a glassy coating is more suitable for the purpose. In this way, the vitreous coating is very good as a top coating for adding tensile stress to grain-oriented silicon steel sheets, but since glass softens at high temperatures, grain-oriented silicon steel sheets with vitreous coatings are laminated and heated at temperatures of around 800°C. When stress relief annealing is performed at high temperature, adjacent coatings fuse together, causing deterioration of interlayer resistance and magnetic properties.In the case of wrap-core type wound iron cores, the coating may be removed if forcibly peeled off for assembly. It has drawbacks in terms of heat resistance and fusion resistance, as it peels off and makes assembly impossible. Particularly when assembling wound iron core type transformers, the heat resistance of the coating is important, and for this reason, although glass coatings are excellent as coatings for applying tensile stress, they are less suitable for industrial use than phosphate coatings. It was difficult to put it into practical use. An object of the present invention is to provide a grain-oriented silicon steel sheet having an insulating coating that eliminates and improves the shortcoming of the glassy coating, such as low heat resistance, and improves magnetostrictive properties by increasing tensile stress. It is something to do. That is, the present invention provides a grain-oriented silicon steel sheet having a low thermal expansion insulating coating, the insulating coating comprising:
A crystalline phase with a melting point of 900°C or higher is precipitated in a range of 5 to 70% by weight in a glassy film formed by melting a glass frit with a low coefficient of thermal expansion of 8.5×10 -6 /°C or less. This is a grain-oriented silicon steel sheet that has a crystallized glass-like insulating coating that has excellent heat resistance and magnetostrictive properties. Next, the present invention will be explained in detail. The present inventors have developed a phenomenon called crystallization of glass as a measure to improve the heat resistance, which is a drawback of the glassy coating mentioned above, and to increase the tensile stress applied to the steel sheet more than the conventional glassy coating, thereby improving the magnetostrictive properties. Using this, we conceived of a crystallized glass film in which a crystalline phase with a high melting point and low thermal expansion is precipitated in the glass film.
Various studies were conducted. As a result, we coated and baked glass frit onto a silicon steel plate to form a glassy coating, and at the same time, precipitated 5 to 70% by weight of a crystalline phase with a melting point of 900°C or higher into the glassy coating, thereby improving heat resistance. It has been newly discovered that the magnetostrictive properties can be improved by increasing the tensile stress applied to the steel sheet by reducing the thermal expansion of the coating as it crystallizes. Glass crystallization is a technology that has been attracting attention in the ceramic industry in recent years, and it has led to the achievement of higher strength and improved thermal shock resistance of glass materials, and is expected to be put to practical use in various materials as glass ceramics. It became. For example, it is well known that by appropriately selecting a glass component system and crystallizing it, the coefficient of thermal expansion can be significantly lowered. This is due to the low thermal expansion of the material. The present invention aims to improve the characteristics of the top insulating coating of grain-oriented silicon steel sheets by utilizing the technique of glass crystallization. Japanese Patent Publication No. 18603 (1973) is known as a method for forming a glassy coating as a top coat on grain-oriented silicon steel sheets, and the method described therein is 8.5×10 -6 /℃.
The following low thermal expansion glass frit is coated and baked to form a top glass film, and the silicon steel plate with the glass film is heated to fuse the glass film between the layers to manufacture the transformer. The structure is fundamentally different from that of the present invention, which improves fusion resistance by precipitating a crystalline phase in a glassy coating. In addition, one possible method to improve the heat resistance of the glassy coating is to add high-melting-point oxide powder to the glass frit, but this method does not improve the heat resistance sufficiently, and on the contrary, the adhesion of the coating deteriorates. deteriorates and is not desirable. In the present invention, a glass frit that crystallizes a crystalline phase is used as described above, but this glass frit does not need to be limited to a specific component system.
It is sufficient as long as it crystallizes ~70% of the crystal phase, and examples of suitable component systems include, for example, Li 2 O—A 2 O 3
ZnO―SiO 2 system, Li 2 O―A 2 O 3 -PbO―GiO 2 system,
SiO 2 ―B 2 O 3 ―ZnO system can be used, and when glass frit with these components is coated and baked on a silicon steel plate, Li 2 O・A is formed in the glassy coating.
2 O 3・2SiO 2 (β-eucryptite), 2ZnO・
Crystals of SiO 2 (willemite) or 5ZnO.2B 2 O 3 precipitate. The most preferred embodiment of the present invention is SiO 2 --B 2 O 3 --
When using ZnO-based glass frit, SiO 2 3
~25% by weight, 20~45% by weight of B2O3 , and 100 parts of the basic composition consisting of the balance ZnO and Li2O , Na2O , as necessary.
K2O , MgO, CaO, SrO, BaO, A2O3 ,
P2O5 , TiO2 , Cr2O3 , Fe2O3 , CoO , NiO, ZnO2
Any one or two or more types transported from 15
A glass frit consisting of less than It precipitates 5 to 70% by weight of the crystalline phase having the above properties, and can form a crystallized glass-like insulating film that has excellent magnetostrictive properties, improves iron loss, and has excellent heat resistance and adhesion. In the present invention, the reason why the coefficient of thermal expansion of the glass frit is limited to 8.5×10 -6 /℃ or less is that when the coefficient of thermal expansion is larger than 8.5×10 -6 /℃, the tensile stress that the glassy coating gives to the steel sheet is small, and the magnetostrictive Since there is no effect of improving the properties, the coefficient of thermal expansion of the glass frit used must be limited to 8.5×10 -6 /°C or less. The reason why the melting point of the crystalline phase to be precipitated in the glass coating is limited to 900°C or higher is that the strain relief annealing temperature of grain-oriented silicon steel sheets is usually around 800°C,
A crystalline phase with a melting point lower than 900°C has no effect on improving heat resistance, and it is necessary to precipitate a crystalline phase with a melting point of 900°C or higher. In the present invention, in order to improve the heat resistance of the glassy coating, 5 to 70% by weight of a crystalline phase having a melting point of 900°C or higher is precipitated in the glassy coating. The relationship between the heat resistance and the heat resistance of the crystallized glass film was investigated using the following method. The glass frit of the present invention was applied to a grain-oriented silicon steel sheet having a forsterite coating to form a coating with a thickness of 2 microns, and the baking heat treatment time was varied to produce a crystallized glass-ceramic coating with various degrees of crystallinity. After the specimens were obtained, they were sheared into 10 specimens of 50 x 50 mm, stacked as a set of 10 specimens, and annealed at a temperature of 820° C. under a compressive load of 2 kg/cm 2 . After annealing, the 10 test pieces are united by the fusion of the film between the layers, but the strength of this fusion can be determined by dropping a weight from above and applying an impact to the 10 test pieces. This can be determined based on the state of separation and the presence or absence of film peeling between the layers of the test piece separated by impact. The shock is applied by dropping a 1 kg weight from a height of 5 cm to 50 cm at 5 cm intervals. The heat resistance of the coating can be strictly evaluated by this method of examining the strength of fusion of the interlayer coating after compressive load annealing. Figure 1 shows Li 2 O 7% by weight, A 2 O 3 8% by weight,
Glass frits having a composition of 5% by weight of ZnO and 50% by weight of SiO 2 were coated on a steel plate to obtain a film with a thickness of 2 microns, and baked at 900°C for 30 seconds to 40 minutes. FIG. 2 is a diagram showing the relationship between heat resistance and crystallinity of a glass-ceraminous film having a crystallinity of . The ○ mark in the same figure is 10.
Those marked with ● completely separate into 10 sheets, but the coating peels off due to fusion, △ indicates those that partially separate, ▲ indicates that they partially separate, but the coating peels off due to fusion. Those with a mark, and those marked with an x, are those that are not separated at all. Figure 2 shows SiO 2 10% by weight,
A glass frit having a composition of 28% by weight of B 2 O 3 and 62% by weight of ZnO was coated on a steel plate to a film thickness of 2 microns as in the case of Fig. 1, and heated at 850°C.
FIG. 2 is a diagram showing an investigation of crystallized glass films having various degrees of crystallinity obtained by varying the baking time from 30 seconds to 30 minutes. In the case of Fig. 1, the precipitated crystal seeds are as follows:
2ZnO, SiO 2 (willemite), Li 2 O・A 2 O 3
In the case of 2SiO 2 (β-eucryptite), in the case of Figure 2, 2ZnO·SiO 2 and 5ZnO·2B 2 O 3 were mainly precipitated, and ZnO·B 2 O 3 was also precipitated. The degree of crystallinity increased as the heat treatment time increased. Note that the various marks in the figure represent the same things as in Figure 1. As is clear from Figs. 1 and 2, the heat resistance of a crystallized glass coating depends more on the proportion of the crystalline phase precipitated in the glass coating than on the type of precipitated crystal phase or the form of crystal precipitation. It was found through the research of the present invention that it strongly depends on the degree of crystallinity. If the crystallinity is less than 5% by weight, it is necessary to use a 1 kg weight at 30 cm to separate 10 veneer specimens.
It is necessary to drop it from a higher height, and,
In this case, the strength of the fusion between the layers was greater than the strength of the adhesion between the films themselves, and as a result, after the impact test, the film inevitably peeled off due to fusion, resulting in a serious defect. . Therefore, in order to improve the heat resistance of the crystallized glass coating, it is necessary to precipitate 5% by weight or more of the crystalline phase. In the present invention, 5 to 70% by weight of crystalline phase is precipitated in order to improve the heat resistance of the glassy coating, but the lower limit of this crystallinity range was determined by the above-mentioned fusion strength test after compressive load annealing. The upper limit value is
It can be determined by measuring the surface roughness of the crystallized glass film. FIG. 3 is a diagram showing the relationship between surface roughness and crystallinity of a crystalline glass coating prepared by the same method as in FIG. 2. As is clear from Figure 3, the center line average roughness (Ra: 0.8mm cut off) is 70
The degree of crystallinity must be limited to 70% by weight or less because it increases rapidly after reaching % by weight and deteriorates the space factor. In the present invention, as described above, a crystallized glass coating with excellent heat resistance is formed, and the tensile stress applied to the steel sheet is increased by using crystallization more than that of conventional glass coatings, thereby improving magnetostrictive properties. However, this increase in tensile stress is due to the lower thermal expansion of the glassy coating as it crystallizes. FIG. 4 shows changes in thermal expansion characteristics that occur with crystallization of SiO 2 --B 2 O 3 --ZnO glass.
SiO 2 13% by weight, B 2 O 3 26% by weight, ZnO 59% by weight,
Glass with a composition of 2 % TiO 2 by weight is molded into a rod shape,
Thermal expansion characteristics and crystallinity were measured for rod-shaped samples that were heat-treated for crystallization at 800°C and 850°C for 1 hour. The figure shows the crystallinity of each sample and the average coefficient of thermal expansion between 100 and 400°C determined from the thermal expansion curve. It can be seen that the coefficient of thermal expansion decreases significantly with crystallization. As can be seen from Figure 4, in the case of a rod-shaped sample, it softens at around 700°C due to the glass that remains even after crystallization, but in the case of the crystallized glass film of the present invention, even if it softens, it has a high melting point crystalline phase. exists on the surface, it exhibits excellent heat resistance during strain relief annealing at approximately 800°C. SiO 2 ―B 2 O 3
In addition to ZnO-based glasses, examples of glasses that can be made to have low thermal expansion through crystallization include glasses having components No. 1 to 5 shown in Table 1 below.

【表】【table】

【表】 析出結晶相であるLi2O・A2O3・2SiO2(β
―ユークリプタイト)は低熱膨脹性の結晶相とし
て良く知られたものであり、密着性が良ければ、
被膜の熱膨脹係数が低い程鋼板に与えられる引張
応力は大きくなると考えられる。本発明の結晶化
ガラス質被膜にあつては、鋼板上で溶融・被覆し
た後で結晶するために結晶化による密着性の劣化
は生起せず、鋼板の熱膨脹係数(13×106/℃)
と比べて著しく小さくなるので、リン酸塩系被膜
はもちろんのこと、従来のガラス質被膜よりも大
きな引張応力を鋼板に与えることができ、それに
よつてもたらされる磁歪特性の改善の効果は大き
い。 以上のように8.5×10-6以下の熱膨脹係数を有
するガラス質被膜中に900℃以上の融点を有する
結晶相を5〜70重量%析出させることによつて耐
熱性と磁歪特性を改善した結晶化ガラス質の絶縁
被膜を形成することができる。 方向性珪素鋼板に引張応力を与えるための上塗
り被膜を形成するガラスフリツトは小さい熱膨脹
係数と低いガラス軟化温度を有することが必要で
ある。方向性珪素鋼板の上塗り被覆の焼付けは、
通常、最終焼鈍後の鋼板の巻きぐせを除去する平
坦化焼鈍と同時に行なわれる。この熱処理は800
〜900℃の温度で1〜3分程度行なわれるにすぎ
ない。したがつて、鋼板上において平滑で緻密な
ガラス質被膜を形成するためにガラスフリツトは
800〜900℃で1〜3分程度の熱処理で溶融被覆す
る粘性状態(103〜104ポイズ)になる必要があ
る。 ガラス質被膜を結晶化させて耐熱性を改善し、
さらに鋼板に与える引張応力を増大させて磁歪特
性を改善するという本発明の目的に用いられるガ
ラスフリツトは熱膨脹係数が小さく、軟化温度が
低いばかりでなく、結晶化しやすいことが必要で
あり、これらの条件を満しているガラス成分系で
あれば、ガラスフリツトは特定な成分系に限定さ
れる必要はない。好適な成分系としては、たとえ
ば、前記第1表に示す如くSiO2を主体とする
Li2O―A2O3―PbO―SiO2系やLi2O―A2O3
―ZnO―SiO2系、あるいは、B2O3―ZnO系を主体
とするSiO2―B2O3―ZnO系を挙げることができ
る。SiO2を主体とする成分系のガラスは一般的
に結晶化しにくいので、結晶化を促進するために
必要に応じてTiO2,Cr2O3等の結晶核形成成分を
添加することは有利である。このように、適用さ
れるガラスフリツトは特定成分系に限定される必
要はないが、方向性珪素鋼板の上塗りの絶縁被膜
について要求される耐熱性、磁歪特性、耐吸湿
性、層間絶縁抵抗、密着性、占積率等多岐にわた
る被膜特性を満たすガラスフリツトの成分系につ
いて種々検討を行なつた結果、SiO2―B2O3
ZnO系のガラスフリツトを用いた場合に、最も優
れた被覆特性を有する結晶化ガラスの被膜が得ら
れることを知見したのである。 第5図にSiO2―B2O3―ZnO系のガラス化範囲
を示す。図中の斜線部分が、100gのガラスが得
られるようにSiO2,B2O3,ZnOの各成分を秤
量・調整したガラスバツチを1100〜1200℃で溶融
した後、水中に急冷して失透(結晶化)せずに
100%ガラスとして得られる領域である。従つて
本発明において好適なガラスフリツトの基本組成
はSiO23〜25重量%、B2O320〜45重量%、残部留
ZnOよりなる組成範囲である。この範囲が好適な
理由は、SiO2が3重量%よりも少ないと得られ
た被膜の耐吸湿性は十分でなく、25重量%を越え
ると第5図に示したガラス化範囲からはずれてし
まい、B2O3は20重量%よりも少ないと第5図に
示したガラス化範囲からはずれ、45重量%よりも
多いと被膜の耐吸湿性が悪くなる。したがつて、
ガラスフリツトの基本組成をSiO23〜25重量%、
B2O320〜45重量%、残部ZnOの組成範囲にとる
のが有利である。 方向性珪素鋼板の上塗りの絶縁被膜は、前述の
ように多くの被膜特性を満足せねばならない。
SiO2―B2O3―ZnO系結晶化ガラス質被膜の場
合、被膜特性はガラスフリツトの結晶化挙動の影
響を大きく受け、その中で結晶化速度が問題であ
る。結晶化速度はガラスフリツトの組成および焼
付けのための熱処理温度と時間に依存しており、
ガラスフリツトの組成と焼付け条件によつては結
晶化速度が大きすぎて70重量%よりも多く結晶化
して被膜が平滑でなくなつて占積率の劣つた被膜
しか得られなかつたり、逆に、結晶化速度が小さ
すぎて5重量%より少なくしか結晶化せずに耐熱
性の劣つた被膜しか得られない場合もあつた。し
かも、被膜の焼付けは、通常、平坦化焼鈍を兼ね
るので焼付け条件は制限をうける。こうした場合
に被膜特性を良好な状態で得るために、SiO2
B2O3―ZnO系ガラス結晶化速度を調整する目的
で必要に応じてLi2O,Na2O,K2O,MgO,
CaO,SrO,BaO,A2O3,P2O5,TiO2
Cr2O3,Fe2O3,CoO,NiO,ZrO2のうちから選
ばれる何れか1種または2種以上の成分を添加す
ることができる。本発明においてこれらの結晶化
速度調整成分は、SiO2,B2O3,ZnOの基本組成
物100部に対して15部以下を含有させるが、15部
以下にする理由は、15部を越えるとガラスの熱膨
脹係数が大きくなり、鋼板に引張応力を与える目
的には不利となるので15部以下にする。 本発明においてSiO2―B2O3―ZnO系のガラス
フリツトを珪素鋼板上に塗布・焼付けると同時に
900℃以上の融点を有する結晶相を5〜70重量%
析出させて耐熱性と磁歪特性を改善した結晶化ガ
ラス質の被膜を形成させる。析出結晶種の融点を
900℃以上に限定する理由は、方向性珪素鋼板の
歪取焼鈍温度は、通常、800℃前後であり、900℃
よりも低い融点の結晶相では耐熱性を改善するこ
とができず、900℃以上に限定する必要がある。
本発明のSiO2―B2O3―ZnO系の結晶化ガラス質
被膜の場合、析出結晶種は2ZnO,SiO2(ウイレ
マイト)、5ZnO・B2O3,ZnO・B2O3であり、そ
の融点はそれぞれ1512℃、1045℃、980℃であ
り、歪取焼鈍温度よりもはるかに高い。これが本
発明の結晶化ガラス質被膜が良好な耐熱性を有す
る理由である。析出結晶相の割合、すなわち、結
晶化度を5〜70重量%に限定する理由は、第2
図、第3図に示したように5重量%よりも少ない
と耐熱性が改善されず、70重量%よりも多いと被
膜表面が平滑でなくなり、表面粗さが増加して占
積率を低下させる。したがつて、結晶化ガラス質
被膜中の結晶相の割合は5〜70重量%に限定する
必要がある。 本発明においてSiO2―B2O3―ZnO系のガラス
フリツトを珪素鋼板上に塗布し、750〜950℃の温
度で30秒〜20分焼付けてガラス質被膜を形成する
と同時に、該ガラス質被膜中に結晶相を析出させ
る。焼付け温度を750〜950℃にする理由は、750
℃より低い温度ではガラス質被膜は形成される
が、該ガラス質被膜中に耐熱性の改善に必要な結
晶相が析出せず、950℃よりも高い温度で焼付け
ることは不経済であるばかりか、磁気特性の劣化
をもたらす。したがつて、焼付け温度は750〜950
℃にする必要がある。焼付け時間を30秒〜20分に
する理由は、30秒よりも短い時間の焼付けでは耐
熱性の改善に必要な結晶相を析出させることはで
きず、20分よりも長くなると生産性が低下する。
したがつて、焼付け時間は30秒〜20分にする必要
がある。 ガラスフリツトは焼付けの過程において鋼板上
で溶融被覆した後に結晶化するが、その速度はガ
ラスフリツトの組成おび焼付け温度と焼付け時間
という三つの因子の影響を受ける。良好な特性を
有する結晶化ガラス被膜を得るためにはガラスフ
リツト組成に合わせて適切な焼付け温度と焼付け
時間を設定することが必要である。SiO2―B2O3
―ZnO系ガラスフリツトの場合、SiO2含有量が結
晶化速度に大きな影響を与え、SiO2含有量が少
ない程、鋼板上で結晶化が速かに進む。したがつ
て、SiO2含有量の少ないガラスフリツトを焼付
ける場合、焼付け温度は低く、逆にSiO2含有量
の多いガラスフリツトの場合、焼付け温度は高く
設定される。第2表にガラスフリツト組成と焼付
け条件の具体例を得られた結晶化ガラス質被膜の
特性とともに示す。
[Table] Precipitated crystal phase Li 2 O・A 2 O 3・2SiO 2
- Eucryptite) is well known as a crystalline phase with low thermal expansion, and if it has good adhesion,
It is considered that the lower the coefficient of thermal expansion of the coating, the greater the tensile stress applied to the steel plate. In the case of the crystallized glass film of the present invention, since it crystallizes after being melted and coated on a steel plate, there is no deterioration in adhesion due to crystallization, and the coefficient of thermal expansion of the steel plate (13×10 6 /℃)
Since it is significantly smaller than that of phosphate coatings, it is possible to apply a larger tensile stress to the steel sheet than not only phosphate coatings but also conventional glass coatings, and the effect of improving magnetostrictive properties brought about by this is significant. As described above, crystals with improved heat resistance and magnetostrictive properties are obtained by precipitating 5 to 70% by weight of a crystalline phase having a melting point of 900°C or higher in a glassy coating having a thermal expansion coefficient of 8.5×10 -6 or lower. A vitrified insulating film can be formed. The glass frit forming the top coat for imparting tensile stress to the grain-oriented silicon steel plate is required to have a small coefficient of thermal expansion and a low glass softening temperature. Baking the top coat of grain-oriented silicon steel plate
Usually, this is carried out at the same time as flattening annealing to remove curls in the steel sheet after final annealing. This heat treatment is 800
It only takes about 1 to 3 minutes at a temperature of ~900°C. Therefore, glass frit is used to form a smooth and dense glassy coating on steel sheets.
It is necessary to achieve a viscous state (10 3 to 10 4 poise) that allows melting and coating by heat treatment at 800 to 900°C for about 1 to 3 minutes. Improves heat resistance by crystallizing the glassy coating,
Furthermore, the glass frit used for the purpose of the present invention, which is to improve the magnetostrictive properties by increasing the tensile stress applied to the steel sheet, must not only have a small coefficient of thermal expansion and a low softening temperature, but also be easily crystallized. As long as the glass component system satisfies the following, the glass frit need not be limited to a specific component system. Suitable component systems include, for example, those mainly composed of SiO 2 as shown in Table 1 above.
Li 2 O―A 2 O 3 ―PbO―SiO 2 system and Li 2 O―A 2 O 3
-ZnO-SiO 2 system, or SiO 2 -B 2 O 3 -ZnO system, which is mainly composed of B 2 O 3 -ZnO system. Glasses with a composition mainly composed of SiO 2 are generally difficult to crystallize, so it is advantageous to add crystal nucleation components such as TiO 2 and Cr 2 O 3 as necessary to promote crystallization. be. In this way, the glass frit to be applied does not need to be limited to a specific composition system, but the heat resistance, magnetostriction properties, moisture absorption resistance, interlayer insulation resistance, and adhesion required for the top-coating insulation coating of grain-oriented silicon steel sheets are important. As a result of various studies on the composition system of glass frit that satisfies a wide range of film characteristics such as space factor, SiO 2 ―B 2 O 3
They discovered that a crystallized glass coating with the best coating properties can be obtained when ZnO-based glass frit is used. Figure 5 shows the vitrification range of the SiO 2 --B 2 O 3 --ZnO system. The shaded area in the figure shows the glass batch prepared by weighing and adjusting each component of SiO 2 , B 2 O 3 , and ZnO to obtain 100 g of glass, melted at 1100 to 1200°C, and then rapidly cooled in water to devitrify. (crystallization) without
This is an area that can be obtained as 100% glass. Therefore, the basic composition of the glass frit suitable for the present invention is 3 to 25% by weight of SiO 2 , 20 to 45% by weight of B 2 O 3 , and the balance
This is a composition range consisting of ZnO. The reason why this range is preferable is that if SiO 2 is less than 3% by weight, the resulting film will not have sufficient moisture absorption resistance, and if it exceeds 25% by weight, it will deviate from the vitrification range shown in Figure 5. , B 2 O 3 falls outside the vitrification range shown in FIG. 5 when it is less than 20% by weight, and when it is more than 45% by weight, the moisture absorption resistance of the film becomes poor. Therefore,
The basic composition of glass frit is SiO 2 3-25% by weight,
Advantageously, the composition ranges from 20 to 45% by weight of B 2 O 3 and the balance ZnO. The top insulating coating for grain-oriented silicon steel sheets must satisfy many coating properties as described above.
In the case of SiO 2 --B 2 O 3 --ZnO-based crystallized glass coatings, the coating properties are greatly influenced by the crystallization behavior of the glass frit, and among these, the crystallization rate is an issue. The crystallization rate depends on the composition of the glass frit and the heat treatment temperature and time for baking.
Depending on the composition of the glass frit and the baking conditions, the crystallization rate may be too high and more than 70% by weight may crystallize, resulting in an uneven coating with a poor space factor, or conversely, crystallization In some cases, the rate of crystallization was so slow that less than 5% by weight crystallized, resulting in a coating with poor heat resistance. Moreover, since the baking of the coating usually also serves as flattening annealing, the baking conditions are subject to restrictions. In such cases, in order to obtain good film properties, SiO 2 -
B 2 O 3 - Li 2 O, Na 2 O, K 2 O, MgO,
CaO, SrO, BaO, A 2 O 3 , P 2 O 5 , TiO 2 ,
One or more components selected from Cr 2 O 3 , Fe 2 O 3 , CoO, NiO, and ZrO 2 can be added. In the present invention, these crystallization rate adjusting components are contained in an amount of 15 parts or less per 100 parts of the basic composition of SiO 2 , B 2 O 3 , and ZnO. The coefficient of thermal expansion of the glass becomes large, which is disadvantageous for the purpose of applying tensile stress to the steel plate, so it should be 15 parts or less. In the present invention, SiO 2 -B 2 O 3 -ZnO glass frit is applied and baked on a silicon steel plate at the same time.
5-70% by weight of crystalline phase with a melting point of 900℃ or higher
It is precipitated to form a glass-ceramic coating with improved heat resistance and magnetostriction properties. Melting point of precipitated crystal species
The reason for limiting the temperature to 900°C or higher is that the strain relief annealing temperature for grain-oriented silicon steel sheets is usually around 800°C;
A crystalline phase with a melting point lower than that cannot improve heat resistance, so it is necessary to limit the temperature to 900°C or higher.
In the case of the SiO 2 -B 2 O 3 -ZnO-based crystallized glassy coating of the present invention, the precipitated crystal species are 2ZnO, SiO 2 (willemite), 5ZnO・B 2 O 3 , ZnO・B 2 O 3 , Their melting points are 1512℃, 1045℃, and 980℃, respectively, which are much higher than the stress relief annealing temperature. This is the reason why the crystallized glass film of the present invention has good heat resistance. The reason for limiting the ratio of the precipitated crystal phase, that is, the degree of crystallinity, to 5 to 70% by weight is the second reason.
As shown in Figure and Figure 3, if it is less than 5% by weight, the heat resistance will not be improved, and if it is more than 70% by weight, the coating surface will not be smooth, the surface roughness will increase, and the space factor will decrease. let Therefore, the proportion of the crystalline phase in the crystallized glass film must be limited to 5 to 70% by weight. In the present invention, SiO 2 -B 2 O 3 -ZnO-based glass frit is coated on a silicon steel plate and baked at a temperature of 750 to 950°C for 30 seconds to 20 minutes to form a glassy coating, and at the same time, A crystalline phase is precipitated. The reason for setting the baking temperature to 750 to 950℃ is 750
Although a glassy film is formed at temperatures lower than 950°C, the crystalline phase required to improve heat resistance does not precipitate in the glassy film, and baking at temperatures higher than 950°C is simply uneconomical. or cause deterioration of magnetic properties. Therefore, the baking temperature is 750-950
It needs to be at ℃. The reason for setting the baking time to 30 seconds to 20 minutes is that if the baking time is shorter than 30 seconds, the crystal phase required to improve heat resistance cannot be precipitated, and if it is longer than 20 minutes, productivity will decrease. .
Therefore, the baking time needs to be 30 seconds to 20 minutes. Glass frit crystallizes after being fused and coated on a steel plate during the baking process, and the rate of crystallization is influenced by three factors: the composition of the glass frit, baking temperature, and baking time. In order to obtain a crystallized glass coating with good properties, it is necessary to set an appropriate baking temperature and baking time in accordance with the glass frit composition. SiO 2 -B 2 O 3
- In the case of ZnO-based glass frits, the SiO 2 content has a large effect on the crystallization rate, and the lower the SiO 2 content, the faster the crystallization progresses on the steel plate. Therefore, when glass frit with a low SiO 2 content is baked, the baking temperature is set low, and conversely, when glass frit with a high SiO 2 content is baked, the baking temperature is set high. Table 2 shows specific examples of the glass frit composition and baking conditions along with the characteristics of the crystallized glass coating obtained.

【表】 フオルステライト質の被膜を有する0.30mm板厚
の方向性珪素鋼板に第2表に示した組成のガラス
フリツトを2ミクロンの膜厚の被膜となるように
塗布し、同表に示した焼付け条件で熱処理を行な
つて得れた結晶化ガラス被膜の特性を調べたもの
である。焼付け温度が高い程、また、焼付け時間
が長い程、結晶化ガラス質被膜の結晶化度は大き
くなり、耐熱性は向上するが、占積率は若干低下
する。焼付け温度と焼付け時間は、ガラスフリツ
トの結晶化特性と得られた被膜の特性を総合的に
秤価して決定される。第2表の実験No.11,13は、
SiO2―B2O3―ZnO系のみからなるガラスフリツ
トでは同表に示した焼付け条件で処理した場合、
占積率、耐熱性の劣つた被膜しか得られない例
で、これに結晶化速度調整成分を加えて実験No.
12,14に示すように被膜特性を改善することがで
きる。 第6図はSiO210重量%、B2O330重量%、
ZnO60重量部合計100部に対しA2O3を6部を加
えて調整したガラスフリツトをフオルステライト
質被膜を有する珪素鋼板上に2ミクロンの膜厚の
被膜となるように塗布し、850℃で1分窒素雰囲
気中で焼付けて得られた結晶化ガラス質被膜の表
面の走査顕微鏡写真を示す。被膜表面には2〜3
ミクロン程度の微細な結晶が一様に析出している
のがわかる。 第7図、第8図は、0.35mm板厚の最終焼鈍後の
コイルの相隣接する位置から剪断し、歪取焼鈍を
施して調製した30×280mmエプスタイン試験片に
本発明のガラスフリツトおよび特開昭50―79442
号に開示されているコーテイング処理液をそれぞ
れ塗布・焼付けて2ミクロンの膜厚を有する結晶
化ガラス質被膜およびリン酸塩系の被膜を形成さ
せた方向性珪素鋼板の磁歪の圧縮応力特性を示
す。ガラスフリツト組成は、SiO213重量部、
B2O331重量部、ZnO56重量部、合計100重量部に
対し、TiOを2重量部を加えたものであり、リン
酸塩系のコーテイング処理液は、SiO2を20重量
%含有するコロイド状シリカ水分散液100mに
対して35重量%の第1リン酸マグネシウム溶液を
50m、無水クロム酸を3gの割合で配合したも
のである。前述のエプスタイン試験片に塗布し、
800℃で1分窒素雰囲気中で焼付けたものと、そ
れをさらに800℃で3時間窒素雰囲気中で歪取焼
鈍を施したものについての磁歪の圧縮応力特性を
示す。第7図、第8図から明らかなように本発明
の結晶化ガラス質被膜は、従来の引張応力付加を
目的としたリン酸塩系被膜と比べて圧縮応力によ
る磁歪の増加ははるかに少なく、鋼板に強い引張
応力を与えていることを示している。 次に、本発明の結晶化ガラス質被膜中に占める
結晶相の割合、すなわち、結晶化度についてその
測定方法を述べる。鋼板上の薄膜状ガラスの結晶
化は塊状のガラスの結晶化よりも短時間の熱処理
で起こるので実状に即した測定を行なうために本
発明の場合における結晶化度の測定は、ステンレ
ス板上に塗布し、方向性珪素鋼板に塗布したのと
同じ焼付け条件で熱処理した後、それを剥離して
得た剥離粉末について行なつた。結晶化は一般的
に2種以上の結晶相が同時に析出して起るので粉
末X線回折図形における結晶性の回折ピークの高
さから結晶化度を求めることは難しい。ガラス粉
末X線回折図形は非晶質材料特有の回折ピークの
ないブロードを非結晶性散乱による回折パターン
を与える。この非結晶性散乱の強度はガラスの結
晶化とともに連続的に減少する。本発明における
結晶化度は、結晶性の回折ピークのない特定2θ
位置での非結晶性散乱強度の減少の度合から次の
式によつて求めた。 α=(Ig―Ix)×100/(Ig―Ic) ここで、αは結晶化度(重量%)で、Ig,Ix,
Icはそれぞれ、全く結晶化してないガラス、試料
および完全に結晶化したガラスの非結晶性散乱強
度を示す。 本発明に用いられるガラスフリツトは、ほうろ
う工業用ガラスフリツトと同様な方法によつて製
造することができる。すなわち、所定の組成のガ
ラスが得られるように秤量された各種原料を十分
粉砕混合して高温にて反応溶融させた後、溶融流
動物を高温から常温の水中に投入・急冷してガラ
ス粗砕物を得る方法や水冷されている金属ロール
の間を通してガラス薄片を得る方法などがある。
それらをボールミル等によつて微粉砕してガラス
フリツトを調製する。ガラスフリツトを製造する
過程において本発明に記載のない成分が不可避的
に混入する場合があるが、これらの成分は少量で
ガラスフリツトの熱膨脹係数や結晶化特性に影響
を与えない範囲内で許容することができる。ガラ
スフリツトの粒度は、2ミクロン程度の膜厚の平
滑で緻密な被膜を得るためになるべく細かい方が
望ましい。 鋼板への塗布はガラスフリツトを水に分散して
得たガラスフリツトに鋼板を浸漬後、ゴムロール
で絞るという通常のコーテイング方法によつて連
続的に行なうことができる。塗布量は被膜の焼付
け後の厚みが1〜3ミクロンとなるように塗布さ
れるのが望ましい。焼付け雰囲気は鋼板自体の酸
化を避けるために中性、あるいは還元性の雰囲気
が好ましい。 方向性珪素鋼板の上塗り被膜は、通常、最終焼
鈍時に形成されるフオルステライト質の被膜表面
に塗布・焼付けられるが、本発明の結晶化ガラス
質被膜は、フオルステライト質の被膜を有する珪
素鋼板上にも、あるいは、焼鈍分離剤としてマグ
ネシアの代わりにアルミナ等を用いて製造される
フオルステライト質の被膜を有しない金属光沢を
有する珪素鋼板上にも形成可能であり、いずれも
平滑で緻密を引張応力付加用被膜が形成される。 以下本発明を実施例ならびに比較例について説
明する。 実施例 方向性珪素鋼板厚み0.30mmの最終焼鈍後、表面
のマグネシア未反応分離剤を除去したコイルの相
隣接する位置から30×280mmエプスタイン試験片
を剪断・採取し、歪取焼鈍を行なつてコーテイン
グ用素材を調製した。これらの試料に第3表に示
す本発明の3種類のガラスフリツト、比較例とし
て特公昭46―18603号公報記載の2種類のガラス
フリツトとSiO2を主体とするガラスとして代表
的なピンガラス組成を有するガラスフリツトを溝
付きゴムロールにより塗布し、窒素雰囲気中で第
3表に示した焼付け条件で熱処理を行ない2ミク
ロンの膜厚の被膜を有する珪素鋼板を得た。これ
らの被膜付き珪素鋼板とフオルステライト質被膜
のみを有するコーテイング用素材の特性を第3表
に示す。実施例1〜3の本発明の結晶化ガラス質
の被膜は、比較例に示した従来のガラス質被膜と
比べて耐熱性と磁歪特性が優れていることがわか
る。
[Table] Glass frit having the composition shown in Table 2 was applied to a 0.30 mm thick grain-oriented silicon steel plate having a forsterite film to form a 2 micron thick film, and baked as shown in the table. The characteristics of crystallized glass coatings obtained by heat treatment under these conditions were investigated. The higher the baking temperature and the longer the baking time, the greater the degree of crystallinity of the glass-ceramic coating, and the heat resistance improves, but the space factor slightly decreases. The baking temperature and baking time are determined by comprehensively weighing the crystallization characteristics of the glass frit and the characteristics of the resulting coating. Experiments No. 11 and 13 in Table 2 are
When a glass frit consisting only of the SiO 2 -B 2 O 3 -ZnO system is processed under the baking conditions shown in the table,
This is an example in which a film with poor space factor and heat resistance was obtained, and by adding a crystallization rate adjusting component to this, Experiment No.
As shown in 12 and 14, the film properties can be improved. Figure 6 shows SiO 2 10% by weight, B 2 O 3 30% by weight,
A glass frit prepared by adding 6 parts of A 2 O 3 to a total of 100 parts by weight of 60 ZnO was coated on a silicon steel plate having a forsterite coating to a film thickness of 2 microns, and heated at 850°C for 1 hour. This figure shows a scanning micrograph of the surface of a crystallized glass film obtained by baking in a nitrogen atmosphere. 2-3 on the coating surface
It can be seen that fine crystals on the order of microns are uniformly precipitated. Figures 7 and 8 show a 30 x 280 mm Epstein specimen prepared by shearing a 0.35 mm thick coil from adjacent positions after final annealing and subjecting it to strain relief annealing. Showa 50-79442
This figure shows the magnetostrictive compressive stress characteristics of a grain-oriented silicon steel sheet on which a crystallized glass film and a phosphate film with a film thickness of 2 microns were formed by coating and baking the coating treatment solution disclosed in the above issue. . Glass frit composition: 13 parts by weight of SiO 2
2 parts by weight of TiO was added to 31 parts by weight of B 2 O 3 , 56 parts by weight of ZnO, a total of 100 parts by weight, and the phosphate coating treatment liquid was a colloid containing 20% by weight of SiO 2 . Add 35% by weight monomagnesium phosphate solution to 100m of aqueous silica dispersion.
50m and 3g of chromic anhydride. Apply it to the Epstein test piece mentioned above,
The magnetostrictive compressive stress characteristics are shown for those baked at 800°C for 1 minute in a nitrogen atmosphere and those subjected to strain relief annealing at 800°C for 3 hours in a nitrogen atmosphere. As is clear from FIGS. 7 and 8, the crystallized glass coating of the present invention exhibits far less increase in magnetostriction due to compressive stress than conventional phosphate coatings intended for adding tensile stress. This shows that strong tensile stress is applied to the steel plate. Next, a method for measuring the proportion of the crystalline phase in the crystallized glass film of the present invention, that is, the degree of crystallinity, will be described. Crystallization of thin glass on a steel plate takes a shorter heat treatment time than crystallization of bulk glass, so in order to make measurements that are more in line with actual conditions, the degree of crystallinity in the case of the present invention is measured using a stainless steel plate. After coating and heat-treating under the same baking conditions as those used for coating grain-oriented silicon steel sheets, the peeled powder obtained by peeling it was tested. Since crystallization generally occurs when two or more types of crystal phases precipitate simultaneously, it is difficult to determine the degree of crystallinity from the height of the crystalline diffraction peak in the powder X-ray diffraction pattern. The glass powder X-ray diffraction pattern gives a broad diffraction pattern due to amorphous scattering without any diffraction peaks characteristic of amorphous materials. The intensity of this amorphous scattering decreases continuously as the glass crystallizes. The degree of crystallinity in the present invention refers to a specific 2θ without a crystalline diffraction peak.
It was calculated from the degree of decrease in the amorphous scattering intensity at each position using the following formula. α=(Ig-Ix)×100/(Ig-Ic) Here, α is the degree of crystallinity (wt%), and Ig, Ix,
Ic denotes the amorphous scattering intensity of completely uncrystallized glass, sample and completely crystallized glass, respectively. The glass frit used in the present invention can be manufactured by the same method as the glass frit for the enamel industry. That is, various raw materials weighed so as to obtain glass of a predetermined composition are sufficiently pulverized and mixed, reacted and melted at high temperature, and then the molten fluid is poured into water at room temperature from high temperature and quenched to form a crushed glass material. There are several methods to obtain glass flakes, including passing them between water-cooled metal rolls.
Glass frit is prepared by pulverizing them using a ball mill or the like. In the process of manufacturing glass frit, components not described in the present invention may be unavoidably mixed, but these components can be tolerated in small amounts within a range that does not affect the coefficient of thermal expansion or crystallization characteristics of glass frit. can. The particle size of the glass frit is preferably as fine as possible in order to obtain a smooth and dense coating with a thickness of about 2 microns. The coating on the steel plate can be carried out continuously by the usual coating method in which the steel plate is immersed in glass frit obtained by dispersing glass frit in water and then squeezed with a rubber roll. The coating amount is preferably such that the thickness of the coating after baking is 1 to 3 microns. The baking atmosphere is preferably a neutral or reducing atmosphere to avoid oxidation of the steel plate itself. The top coat of grain-oriented silicon steel sheet is usually applied and baked on the surface of the forsterite coating formed during final annealing, but the crystallized vitrified coating of the present invention can be applied onto the silicon steel sheet having the forsterite coating. It can also be formed on a silicon steel sheet with a metallic luster and without a forsterite film, which is produced by using alumina or the like instead of magnesia as an annealing separator. A stress applying coating is formed. The present invention will be described below with reference to Examples and Comparative Examples. Example After final annealing of a grain-oriented silicon steel plate with a thickness of 0.30 mm, a 30 x 280 mm Epstein test piece was sheared and collected from a position adjacent to the coil from which the unreacted separator of magnesia on the surface had been removed, and strain relief annealing was performed. A material for coating was prepared. These samples include the three types of glass frits of the present invention shown in Table 3, the two types of glass frits described in Japanese Patent Publication No. 18603/1983 as comparative examples, and a glass frit having a typical pin glass composition as a glass mainly composed of SiO2 . Glass frit was applied using a grooved rubber roll and heat treated in a nitrogen atmosphere under the baking conditions shown in Table 3 to obtain a silicon steel plate having a coating with a thickness of 2 microns. Table 3 shows the properties of these coated silicon steel sheets and coating materials having only the forsterite coating. It can be seen that the crystallized glass-ceramic coatings of the present invention in Examples 1 to 3 have superior heat resistance and magnetostrictive properties compared to the conventional glass-ceramic coatings shown in the comparative examples.

【表】【table】

【表】【table】

【表】 実施例1〜3と同様にしてコーテイング用素材
を調整した。第4表に示すSiO2−B2O3―ZnO系
の6種類のガラスフリツトを塗布し、表中に示し
た焼付け条件で熱処理を行なつて2ミクロンの膜
厚の被膜を有する珪素鋼板を得た。第4表にこれ
らの珪素鋼板の特性を示す。実施例4〜7に示す
本発明のSiO2―B2O3―ZnO系のガラスフリツト
は800〜850℃で1〜2分という短時間の焼付けに
よつて鉄損、磁歪特性を改善し、良好な占積率と
密着性を有する結晶化ガラス質被膜を形成し、さ
らに歪取焼鈍時にも全く融着せず歪取焼鈍後も平
滑で美麗な外観を呈していた。
[Table] Coating materials were prepared in the same manner as in Examples 1 to 3. Six types of SiO 2 -B 2 O 3 -ZnO glass frits shown in Table 4 were coated and heat treated under the baking conditions shown in the table to obtain a silicon steel plate with a coating of 2 microns thick. Ta. Table 4 shows the properties of these silicon steel sheets. The SiO 2 -B 2 O 3 -ZnO glass frits of the present invention shown in Examples 4 to 7 had improved iron loss and magnetostrictive properties by baking at 800 to 850°C for a short time of 1 to 2 minutes. A crystallized glass-like coating having a good space factor and adhesion was formed, and it did not adhere at all during strain relief annealing, and even after strain relief annealing, it had a smooth and beautiful appearance.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の結晶化ガラス質被膜
の結晶化度と被膜の耐熱性との関係を示す図、第
3図は本発明の結晶化ガラス質被膜の結晶化度と
被膜の表面粗さとの関係を示す図、第4図は本発
明の結晶化ガラスの結晶化に伴なう熱膨脹特性の
変化を示す線図、第5図はSiO2―B2O3―ZnO系
のガラス化範囲を示す図、第6図は本発明の結晶
化ガラス質被膜表面の走査型電子顕微鏡写真、第
7図は本発明の結晶化ガラス質被膜を有する方向
性珪素鋼板の磁歪の圧縮応力特性を示す線図、第
8図は特開昭50―79442号に開示されるリン酸塩
系被膜を有する方向性珪素鋼板の磁歪の圧縮応力
特性を示す線図である。
Figures 1 and 2 are diagrams showing the relationship between the degree of crystallinity of the vitrified coating of the present invention and the heat resistance of the coating, and Figure 3 is a diagram showing the relationship between the degree of crystallinity and the heat resistance of the vitrified coating of the present invention. Figure 4 is a diagram showing the change in thermal expansion characteristics due to crystallization of the crystallized glass of the present invention, and Figure 5 is a diagram showing the relationship between SiO 2 -B 2 O 3 -ZnO system. Figure 6 is a scanning electron micrograph of the surface of the crystallized vitrified coating of the present invention, and Figure 7 is the magnetostriction compression of the grain-oriented silicon steel sheet having the crystallized vitrified coating of the present invention. Diagram showing stress characteristics. FIG. 8 is a diagram showing magnetostrictive compressive stress characteristics of a grain-oriented silicon steel sheet having a phosphate coating disclosed in JP-A-50-79442.

Claims (1)

【特許請求の範囲】[Claims] 1 低熱膨脹性の絶縁被膜を有する方向性珪素鋼
板であつて、上記絶縁被膜は、8.5×10-6/℃以
下の低い熱膨脹係数を有するガラスフリツトの溶
融造膜により生じたガラス質被膜中に、融点が
900℃以上の結晶相を5〜70重量%の範囲におい
て析出させたものである、耐熱性および磁歪特性
に優れた、ガラス質中に結晶相を析出させた絶縁
被膜を有する方向性珪素鋼板。
1. A grain-oriented silicon steel sheet having an insulating coating with low thermal expansion, the insulating coating having a vitreous coating formed by melt-forming glass frit having a low coefficient of thermal expansion of 8.5×10 -6 /°C or less. melting point
A grain-oriented silicon steel sheet having an insulating coating with a crystalline phase precipitated in a vitreous material, which has excellent heat resistance and magnetostriction properties, and has an insulating coating in which a crystalline phase of 900°C or higher is precipitated in a range of 5 to 70% by weight.
JP6438078A 1978-05-31 1978-05-31 Directional silicon steel plate having crystal vitreous insulating film Granted JPS54156199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6438078A JPS54156199A (en) 1978-05-31 1978-05-31 Directional silicon steel plate having crystal vitreous insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6438078A JPS54156199A (en) 1978-05-31 1978-05-31 Directional silicon steel plate having crystal vitreous insulating film

Publications (2)

Publication Number Publication Date
JPS54156199A JPS54156199A (en) 1979-12-08
JPS6110963B2 true JPS6110963B2 (en) 1986-04-01

Family

ID=13256634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6438078A Granted JPS54156199A (en) 1978-05-31 1978-05-31 Directional silicon steel plate having crystal vitreous insulating film

Country Status (1)

Country Link
JP (1) JPS54156199A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090636A1 (en) * 2004-03-19 2005-09-29 Jfe Steel Corporation Electromagnetic steel sheet having insulating coating
JP2008127663A (en) * 2006-11-24 2008-06-05 Jfe Steel Kk Electromagnetic steel sheet with insulating coating film

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133801A (en) * 1980-03-21 1981-10-20 Res Inst Electric Magnetic Alloys Manufacture of insulating soft magnetic plate
JPS60263405A (en) * 1984-06-11 1985-12-26 Fujikura Ltd Manufacture of silicon steel strip core insulated substrate
JPH0658706A (en) * 1992-08-13 1994-03-04 Matsushita Electric Ind Co Ltd Strain sensor
JP3227836B2 (en) * 1992-10-15 2001-11-12 日本電気硝子株式会社 Crystalline sealing material
JP4620937B2 (en) * 2003-04-24 2011-01-26 新日本製鐵株式会社 Magnetic steel sheet for laminated iron core and manufacturing method thereof
JP6822501B2 (en) * 2018-02-28 2021-01-27 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet with insulating film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090636A1 (en) * 2004-03-19 2005-09-29 Jfe Steel Corporation Electromagnetic steel sheet having insulating coating
KR100816695B1 (en) * 2004-03-19 2008-03-27 제이에프이 스틸 가부시키가이샤 Electromagnetic steel sheet having insulating coating
JP2008127663A (en) * 2006-11-24 2008-06-05 Jfe Steel Kk Electromagnetic steel sheet with insulating coating film

Also Published As

Publication number Publication date
JPS54156199A (en) 1979-12-08

Similar Documents

Publication Publication Date Title
CN111268913B (en) Microcrystalline glass product for electronic device cover plate and microcrystalline glass
KR102609966B1 (en) Microcrystalline glass product and microcrystalline glass for electronic equipment cover plate
US4140645A (en) Glasses and glass-ceramics suitable for induction heating
US3997352A (en) Mica-spodumene glass-ceramic articles
DE10245234B4 (en) Crystallisable glass, its use for producing a highly rigid, break-resistant glass ceramic with a good polishable surface and use of the glass ceramic
JP2021520330A (en) Microcrystalline glass, microcrystalline glass products, and their manufacturing methods
US3732087A (en) Tetrasilicic mica glass-ceramic method
US3384508A (en) Method of glazing semicrystalline glass-ceramic articles and resultant intermediate layer containing composite
JP3187321B2 (en) Chemically strengthened glass composition and chemically strengthened glass article
US4985375A (en) Glass-ceramic article and method for its production
CA1202488A (en) Glass-ceramic articles having metallic surfaces
JPS63162545A (en) Translucent crystalline glass
JPS6159257B2 (en)
WO2020023205A1 (en) Magnesium aluminosilicate glass ceramics
JPS6110963B2 (en)
US3467534A (en) Barium silicate glass-ceramic body and method of making it
US4187115A (en) Anorthite glass-ceramics
CN113683303B (en) Alkali aluminosilicate glass and application thereof
CN114380496A (en) Glass composition, alkaline lithium aluminosilicate glass and application thereof
Lee et al. Glass formation and crystallization of barium ferrite in the Na 2 O-BaO-Fe 2 O 3-SiO 2 system
US4022627A (en) Crystallizable glasses and nephetine glass-ceramics containing ZrO2 and ZnO
JPS6036349A (en) Glass composition
US3460927A (en) Process for glass strengthening
JPH0446908B2 (en)
US3294557A (en) Electrically resistant glass compositions