JPS6110926B2 - - Google Patents
Info
- Publication number
- JPS6110926B2 JPS6110926B2 JP53021885A JP2188578A JPS6110926B2 JP S6110926 B2 JPS6110926 B2 JP S6110926B2 JP 53021885 A JP53021885 A JP 53021885A JP 2188578 A JP2188578 A JP 2188578A JP S6110926 B2 JPS6110926 B2 JP S6110926B2
- Authority
- JP
- Japan
- Prior art keywords
- flame
- rubber
- retardant
- layer
- outer sheath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010410 layer Substances 0.000 claims description 44
- 239000000463 material Substances 0.000 claims description 36
- 239000003063 flame retardant Substances 0.000 claims description 31
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 30
- 229920001971 elastomer Polymers 0.000 claims description 26
- 239000005060 rubber Substances 0.000 claims description 26
- 239000011253 protective coating Substances 0.000 claims description 16
- 239000012212 insulator Substances 0.000 claims description 15
- 229920001084 poly(chloroprene) Polymers 0.000 claims description 8
- 229920003023 plastic Polymers 0.000 claims description 7
- 239000004033 plastic Substances 0.000 claims description 7
- 238000001125 extrusion Methods 0.000 claims description 5
- 229920002681 hypalon Polymers 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 229920001296 polysiloxane Polymers 0.000 claims 1
- 239000004800 polyvinyl chloride Substances 0.000 description 17
- 229920000915 polyvinyl chloride Polymers 0.000 description 17
- 229920003020 cross-linked polyethylene Polymers 0.000 description 16
- 239000004703 cross-linked polyethylene Substances 0.000 description 16
- 239000004020 conductor Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 10
- 238000009413 insulation Methods 0.000 description 9
- 239000004698 Polyethylene Substances 0.000 description 7
- 238000007765 extrusion coating Methods 0.000 description 7
- -1 polyethylene Polymers 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000012768 molten material Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229920005549 butyl rubber Polymers 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229920006267 polyester film Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 235000017899 Spathodea campanulata Nutrition 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/14—Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables
Landscapes
- Insulated Conductors (AREA)
Description
【発明の詳細な説明】
この発明は給配電や制御、計装あるいは通信用
として使用される電線ケーブルに関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric wire cable used for power supply and distribution, control, instrumentation, or communication.
一般に各種プラント設備やビル等には給配電用
や制御用、計装用あるいは通信用として各種の電
線ケーブルが多量に使用されているが、これらの
プラント設備やビル等においては火災対策上の観
点から電線ケーブルに耐燃性が強く要求されるよ
うになつている。 In general, various types of electric wires and cables are used in large quantities for power supply and distribution, control, instrumentation, and communication in various plant equipment and buildings. There is a strong demand for fire resistance for electric wires and cables.
従来一般の電線ケーブルの絶縁体あるいは外被
用のシースとしては、ポリエチレン、架橋ポリエ
チレン、ポリ塩化ビニル等の合成樹脂やEPゴ
ム、クロロプレンゴム、ブチルゴムあるいはクロ
ルスルホン化ポリエチレン等の合成ゴム材料が主
として使用されている。これらの材料の内、ポリ
エチレンや架橋ポリエチレン、EPゴム、ブチル
ゴム等は比較的燃焼し易く、その他のクロロプレ
ンゴムやポリ塩化ビニル等は難燃性であることが
知られている。後者のクロロプレンゴムやポリ塩
化ビニルのみによつて絶縁体や外部シースを構成
した電線ケーブルでは耐燃性がきわめて高いが、
実際には電線ケーブルの使用目的や電気的特性あ
るいは価格等の観点から難燃性材料と比較的燃焼
し易い材料とを組合わせて使用することが多い。
例えば高圧電力ケーブルでは、第1図に示す如き
構造の架橋ポリエチレン絶縁・ポリ塩化ビニルシ
ースケーブルが広く使用されている。この第1図
の構造のケーブルについて説明すれば、導体1上
に半導電層2と架橋ポリエチレン絶縁体層3とが
順次形成され、その上に外部導電層としてのカー
ボンテープ4が重ね巻きされ、さらに銅テープ5
とカーボン紙6が順次重ね巻きされ、このように
して作られた線心が3本撚り合された後ジユート
等の介在物7を介してポリ塩化ビニルの外部シー
ス8が形成されている。 Conventionally, synthetic resins such as polyethylene, cross-linked polyethylene, and polyvinyl chloride, and synthetic rubber materials such as EP rubber, chloroprene rubber, butyl rubber, and chlorosulfonated polyethylene have been mainly used as insulation or outer sheaths for general electric wire cables. has been done. Among these materials, polyethylene, crosslinked polyethylene, EP rubber, butyl rubber, etc. are relatively easily combustible, while other materials such as chloroprene rubber and polyvinyl chloride are known to be flame retardant. The latter, electric cables whose insulators and outer sheaths are made only of chloroprene rubber or polyvinyl chloride, have extremely high flame resistance;
In reality, flame-retardant materials and relatively easily combustible materials are often used in combination from the viewpoint of the purpose of use, electrical characteristics, price, etc. of electric wires and cables.
For example, in high-voltage power cables, crosslinked polyethylene insulated/polyvinyl chloride sheathed cables having a structure as shown in FIG. 1 are widely used. To explain the cable having the structure shown in FIG. 1, a semiconductive layer 2 and a crosslinked polyethylene insulating layer 3 are sequentially formed on a conductor 1, and a carbon tape 4 as an external conductive layer is wrapped thereon. Further copper tape 5
and carbon paper 6 are sequentially wound one on top of the other, and three of the wire cores thus made are twisted together to form an outer sheath 8 of polyvinyl chloride with an inclusion 7 such as jute interposed therebetween.
上述のように架橋ポリエチレンやポリエチレン
が絶縁体に使用されているのは、架橋ポリエチレ
ン等が絶縁体としての電気的特性に優れているた
めであり、高圧電力ケーブルの他、通信用、計装
用、あるいは制御用のケーブルにも広く使用され
ている。この場合第1図に示したように外部シー
スとしてはポリ塩化ビニル等の難燃性材料を使用
するのが通常であるが、このようにシースに難燃
性材料を用いたものでも、内部の絶縁体が比較的
燃焼し易ければ実際には顕著な耐燃性を得ること
ができない。 As mentioned above, cross-linked polyethylene and polyethylene are used as insulators because they have excellent electrical properties as insulators, and are used for communication, instrumentation, and high-voltage power cables. It is also widely used in control cables. In this case, as shown in Figure 1, flame-retardant materials such as polyvinyl chloride are usually used for the outer sheath, but even if the sheath is made of flame-retardant materials, the inner If the insulation is relatively combustible, no significant flame resistance can be achieved in practice.
すなわち、難燃性を評価するための実用的な実
験方法として、米国において原子力発電所用1E
級電気機器、ケーブル等の品質認定試験規格
IEEE−383に制定された垂直トレイ燃焼試験
と、この垂直トレイ試験のトレイにダクトを附加
して垂直トレイ燃焼試験よりも苛酷な条件で試験
するダクト付垂直トレイ燃焼試験とが知られてお
り、絶縁体とシースとの両者を難燃性のポリ塩化
ビニルで構成した電線では両試験に共に耐え得る
が、絶縁体として比較的燃焼し易いポリエチレン
を用いると共にシースとして難燃性のポリ塩化ビ
ニルを使用した電線では前者の垂直トレイ燃焼試
験に耐えても後者のダクト付垂直トレイ試験には
耐え得ないものがほとんどである。 In other words, as a practical experimental method for evaluating flame retardancy, 1E for nuclear power plants was developed in the United States.
Quality certification test standards for grade electrical equipment, cables, etc.
The vertical tray combustion test established by IEEE-383 and the vertical tray combustion test with duct, in which a duct is added to the tray of the vertical tray test and tested under harsher conditions than the vertical tray combustion test, are known. An electric wire whose insulator and sheath are both made of flame-retardant polyvinyl chloride can withstand both tests, but it is better to use relatively easily flammable polyethylene as the insulator and flame-retardant polyvinyl chloride as the sheath. Most of the electric wires used can withstand the former vertical tray combustion test, but cannot withstand the latter vertical tray test with duct.
このように外部保護用のシースに難燃性材料を
用いても絶縁体が比較的燃焼し易い材料で作られ
ている電線ケーブルの耐燃性が劣る原因について
この発明の発明者が研究を重ねたところ、次のよ
うな知見が得られた。すなわち、外部シースとし
て難燃性のポリ塩化ビニル等を用いたものであつ
ても、内部の絶縁体としてポリエチレンや架橋ポ
リエチレン等の比較的燃焼し易い可塑性材料を用
いた電線ケーブルにあつては、外部からの加熱に
よつて内部の絶縁材料が溶融すると共にその一部
が気化して流出するか、或いはその圧力により外
部シースが膨張して破裂に至り、この破裂部分か
ら前記絶縁材料の溶融物や気化ガスが流出して溶
融物や気化ガスに着火し、さらに着火後には前記
溶融物が火玉となつて連続的に滴流し、このため
電線ケーブルを延焼させてしまうことが判明し
た。上述のような事態が生じるのは、一般に外部
シースがいわゆる外部保護被覆であつて耐衝撃
性、耐摩耗性、耐候性等、もつぱら内部を外側か
らの圧力や衝撃から保護するためのものであり、
内部からの気化ガスや溶融物の流出や内部からの
圧力に対してはまつたく考慮されていないからで
ある。 The inventor of this invention has conducted repeated research into the reasons why the flame resistance of electric cables made of materials that are relatively easily combustible even when flame-retardant materials are used for the external protective sheath is poor. However, the following findings were obtained. In other words, even if the outer sheath is made of flame-retardant polyvinyl chloride, the inner insulator is made of a relatively easily combustible plastic material such as polyethylene or cross-linked polyethylene. The internal insulating material melts due to external heating and a part of it vaporizes and flows out, or the external sheath expands and ruptures due to the pressure, and the molten material of the insulating material flows from the ruptured part. It has been found that the molten material and vaporized gas flow out and ignite the molten material and the vaporized gas, and furthermore, that after ignition, the molten material becomes a fireball and drips continuously, which causes the fire to spread to the electric wire cable. The above-mentioned situation generally occurs because the outer sheath is a so-called outer protective coating that has properties such as impact resistance, abrasion resistance, and weather resistance, and is designed to protect the inside from external pressure and impact. can be,
This is because no consideration is given to the outflow of vaporized gas or molten material from the inside, or the pressure from the inside.
この発明は以上のような背景からなされたもの
であり、導体を被覆する絶縁体としてポリエチレ
ン等の比較的燃焼し易い材料が使用されかつその
上方が外部シースによつて覆われたケーブルにお
いて、加熱時に前記絶縁体の溶融物や気化ガスが
外部へ流出しないようにして、耐燃性を向上させ
たものである。すなわちこの発明のケーブルは、
前述のように絶縁体層として比較的燃焼し易いプ
ラスチツク材料が使用されかつ外部シースによつ
て覆われたプラスチツク絶縁ケーブルにおいて、
前記絶縁体層が溶融や気化を起した際にその流出
を防止する難燃性のゴム系材料からなり、押出被
覆法で形成された保護被覆層、換言すれば前記絶
縁体層の溶融物や気化ガスの圧力等によつて変形
もしくは破裂しない程度の強度を有する難燃性ゴ
ム系材料からなる保護被覆層を前記絶縁体層と外
部シースとの間に設けたものである。 This invention was made against the above background, and it is a cable that uses a relatively easily combustible material such as polyethylene as an insulator covering a conductor, and whose upper part is covered with an external sheath. The flame resistance is improved by preventing the melted material and vaporized gas of the insulator from flowing out. In other words, the cable of this invention is
In a plastic insulated cable in which a relatively flammable plastic material is used as the insulation layer and is covered by an outer sheath as described above,
A protective coating layer made of a flame-retardant rubber material that prevents the insulating layer from flowing out when it melts or evaporates, and formed by an extrusion coating method, in other words, a molten product of the insulating layer or A protective coating layer made of a flame-retardant rubber-based material having a strength that does not deform or burst due to the pressure of vaporized gas is provided between the insulating layer and the outer sheath.
以下この発明をより具体的に説明する。 This invention will be explained in more detail below.
この発明において絶縁体層を囲続する保護被覆
層を形成する難燃性のゴム系材料としては、元々
難燃性を有するクロロプレンゴム、クロルスルホ
ン化ポリエチレン、シリコーンゴムから選ばれた
1種以上の難燃性ゴム系材料あるいは天然ゴム、
EPゴム、ブチルゴム等のゴム系材料に難燃化
剤、例えば水酸化アルミニウムやハロゲン系難燃
剤と三酸化アンチモン等を配合して難燃化した難
燃化ゴム系材料が用いられる。この難燃化の度合
は酸素指数で30%以上とされる。 In this invention, the flame-retardant rubber-based material forming the protective coating layer surrounding the insulator layer is one or more selected from chloroprene rubber, chlorosulfonated polyethylene, and silicone rubber, which are inherently flame-retardant. Flame retardant rubber material or natural rubber,
A flame retardant rubber material is used, which is made by blending a rubber material such as EP rubber or butyl rubber with a flame retardant, such as aluminum hydroxide or a halogen flame retardant, and antimony trioxide. The degree of flame retardation is said to be 30% or more based on the oxygen index.
これらの難燃性ゴム系材料の保護被覆層を絶縁
体層と外部シースとの間に形成する方法として
は、絶縁線心上に前述のゴム系材料をジヤケツト
として押出被覆する方法がある。また特に多心ケ
ーブルの場合には、絶縁線心を撚り合わせた後、
前述のゴム系材料を充実状に押出被覆するかまた
は介在物を入れてパイプ状に押出被覆する方法等
がある。なお前述の介在物としては保護被覆層に
使用する難燃性ゴム系材料を使用することが望ま
しい。このようにして難燃性のゴム系材料からな
る保護被覆層を形成した後には、ポリ塩化ビニル
等からなる外部シースを従来と同様に押出被覆等
によつて形成する。 As a method for forming the protective coating layer of these flame-retardant rubber-based materials between the insulating layer and the outer sheath, there is a method of extrusion coating the above-mentioned rubber-based material as a jacket onto the insulated wire core. In addition, especially in the case of multi-core cables, after twisting the insulated wire cores,
There are methods such as extrusion coating the above-mentioned rubber material in a solid shape or extrusion coating it in a pipe shape with inclusions. It is preferable to use a flame-retardant rubber material used for the protective coating layer as the above-mentioned inclusions. After forming the protective coating layer made of a flame-retardant rubber-based material in this manner, an outer sheath made of polyvinyl chloride or the like is formed by extrusion coating or the like in the conventional manner.
上述の説明において、難燃性ゴム系材料もしく
は難燃化ゴム系材料からなる保護被覆層の厚みの
最適値はそのケーブルの使用目的や径等によつて
異なるが、要は加熱した際に絶縁体層の溶融また
は気化による内圧によつて膨張変形もしくは破裂
しない程度の強度が得られる厚みとすれば良く、
通常は数mmの厚さがあれば充分である。なお前記
ゴム系材料は加硫、未加硫のいずれでも良い。 In the above explanation, the optimal value for the thickness of the protective coating layer made of flame-retardant rubber material or flame-retardant rubber material differs depending on the intended use and diameter of the cable, but the important point is that the insulation will The thickness may be such that it has enough strength to prevent expansion deformation or rupture due to internal pressure caused by melting or vaporization of the body layer.
Usually, a thickness of several mm is sufficient. Note that the rubber material may be either vulcanized or unvulcanized.
以下にこの発明の実施例を記す。 Examples of this invention are described below.
実施例 1
この実施例は、導体の公称断面積38mm2の3心の
6KV用架橋ポリエチレン電力ケーブルに適用した
ものであり、第2図に示す如く導体1上に内部半
導電層2と架橋ポリエチレン絶縁体層3を順次形
成し、その上に外部半導電層としてのカーボンテ
ープ4を重ね巻きした後さらに銅テープ5を重ね
巻きし、その上にポリエステルフイルム・テープ
6を重ね巻きした。このようにして得られた線心
を3本撚り合わせた後、介在物であるジユート7
を沿わせ、さらに難燃性ゴム系材料である未加硫
クロロプレンゴムを厚さ2mmに押出被覆して保護
被覆層9を形成し、この上にポリ塩化ビニルの外
部シース8を押出により形成した。Example 1 This example uses a three-core conductor with a nominal cross-sectional area of 38 mm2 .
This is applied to a 6KV cross-linked polyethylene power cable, and as shown in Fig. 2, an inner semi-conducting layer 2 and a cross-linked polyethylene insulating layer 3 are sequentially formed on a conductor 1, and a carbon layer is formed as an outer semi-conducting layer on top of this. After the tape 4 was wound in layers, a copper tape 5 was further wound in layers, and a polyester film tape 6 was wound on top of it. After twisting the three wire cores obtained in this way,
A protective coating layer 9 was formed by extrusion coating unvulcanized chloroprene rubber, which is a flame-retardant rubber material, to a thickness of 2 mm, and an outer sheath 8 made of polyvinyl chloride was formed on this by extrusion. .
実施例 2
この実施例は、導体の公称断面積100mm2の単心
6KV用架橋ポリエチレン絶縁・ポリ塩化ビニルシ
ースの電力ケーブルに適用したものであり、実施
例1と同様に導体上に内部半導電層と架橋ポリエ
チレン絶縁体層とを順次形成した後、この上に外
部半導体層としてのカーボン紙を重ね巻きし、さ
らにシールドテープおよびポリエステルフイル
ム・テープを重ね巻きした。この上に難燃性ゴム
系材料であるクロロスルホン化ポリエチレン(デ
ユポン社の商品名“ハイパロン”)を約3mm厚で
押出被覆して保護被覆層を形成し、さらにこの上
にポリ塩化ビニルの外部シースを押出被覆した。Example 2 This example uses a single-core conductor with a nominal cross-sectional area of 100 mm2 .
This is applied to a power cable with cross-linked polyethylene insulation and polyvinyl chloride sheath for 6KV, and as in Example 1, an internal semiconducting layer and a cross-linked polyethylene insulating layer are sequentially formed on the conductor, and then an external semiconductor layer is formed on the conductor. Carbon paper was layered, and shield tape and polyester film tape were layered. On top of this, a flame-retardant rubber-based material, chlorosulfonated polyethylene (trade name "Hypalon" manufactured by DuPont), is extruded and coated to a thickness of about 3 mm to form a protective coating layer. The sheath was extrusion coated.
実施例 3
この実施例は、実施例1と同様に、導体の公称
断面積38mm2の3心3KV用架橋ポリエチレン絶縁・
ポリ塩化ビニルシースの電力ケーブルに適用した
ものであり、導体上に内部半導電層と架橋ポリエ
チレン絶縁体層とを順次形成した後、これを3本
撚り合わせ、その上に難燃性ゴム系材料であるク
ロロプレンゴムを1mm厚で充実状に押出披覆して
保護被覆層を形成した。この上にポリエステルフ
イルム・テープを重ね巻きし、さらにシールドテ
ープと布テープを重ね巻きした後、ポリ塩化ビニ
ルの外部シースを押出被覆した。Example 3 This example, similar to Example 1, uses a three-core 3KV cross-linked polyethylene insulator with a nominal cross-sectional area of the conductor of 38 mm2 .
This is applied to power cables with a polyvinyl chloride sheath. After forming an internal semiconducting layer and a crosslinked polyethylene insulating layer on the conductor, three strands are twisted together, and then a flame-retardant rubber material is layered on top. A protective coating layer was formed by extruding a certain chloroprene rubber into a solid shape with a thickness of 1 mm. A polyester film tape was overlaid on this, and a shield tape and a cloth tape were further overlaid, and then an outer sheath of polyvinyl chloride was extrusion coated.
実施例 4
この実施例は、導体の公称断面積3.5mm2の3心
600V用架橋ポリエチレン絶縁・ポリ塩化ビニル
シースの電線に適用したものであり、導体上に架
橋ポリエチレン絶縁体層を形成した後、これを3
本撚り合わせ、この上に難燃性ゴム系材料である
クロロプレンゴムを1mm厚で充実状に押出被覆し
て保護被覆層を形成し、この上にポリ塩化ビニル
の外部シースを形成した。Example 4 This example uses a three-core conductor with a nominal cross-sectional area of 3.5 mm2 .
This is applied to wires with cross-linked polyethylene insulation and polyvinyl chloride sheath for 600V, and after forming a cross-linked polyethylene insulation layer on the conductor, this is
After the final twisting, chloroprene rubber, which is a flame-retardant rubber-based material, was extruded and coated in a solid shape to a thickness of 1 mm to form a protective coating layer, and an outer sheath of polyvinyl chloride was formed on this.
以上の各実施例の電線ケーブルを前記ダクト付
垂直トレイ燃焼試験(すなわちIEEE383の垂直
トレイ試験におけるトレイにダクトを付加して燃
焼条件を苛酷にしたもの)によつて試験したとこ
ろ、20分間の加熱で全焼しないことが判明した。 When the electric wire cables of each of the above examples were tested in the ducted vertical tray combustion test (i.e., the IEEE383 vertical tray test in which a duct was added to the tray to make the combustion conditions more severe), the results were as follows: It turned out that it did not burn down.
以上の説明で明らかなようにこの発明のケーブ
ルは、ポリエチレンや架橋ポリエチレン等の比較
的燃焼し易いプラスチツク材料を絶縁体層に用い
かつ通常の外部シースを備えたプラスチツク絶縁
ケーブルにおいて、絶縁体層と外部シースとの間
に、絶縁体層が溶融および/または気化を生じた
際にその流出を防止する難燃性のゴム系材料から
なる保護被覆層を設けたものであるから、加熱時
に絶縁体層の溶融物や気化ガスが外部へ流出して
着火したり着火後に延焼することが防止され、か
つ電気的、機械的特性も保障され、従来のこの種
ケーブルと比較し格段に難燃性が向上する。ま
た、保護被覆層は押出被覆によつて形成されるの
で、その製造にあつては生産性が高く、特に介在
物と同時に押出被覆することも可能であり、製造
工程の短縮化を計ることもできる。 As is clear from the above description, the cable of the present invention is a plastic insulated cable that uses a relatively easily combustible plastic material such as polyethylene or cross-linked polyethylene for the insulating layer and has a normal outer sheath. A protective coating layer made of a flame-retardant rubber material is provided between the outer sheath and the insulator layer to prevent it from flowing out when it melts and/or vaporizes. It prevents the molten material and vaporized gas in the layer from leaking out to the outside and igniting it, or from spreading the fire after ignition.It also guarantees electrical and mechanical properties, and is much more flame retardant than conventional cables of this type. improves. In addition, since the protective coating layer is formed by extrusion coating, its production is highly productive, and in particular, it is possible to extrusion coat it at the same time as inclusions, which can shorten the manufacturing process. can.
第1図は従来の架橋ポリエチレン絶縁・ポリ塩
化ビニル絶縁の3心高圧電力ケーブルを示す断面
図、第2図はこの発明の実施例1のケーブルを示
す断面図である。
1……導体、3……絶縁体層、7……介在物、
8……外部シース、9……保護被覆層。
FIG. 1 is a cross-sectional view showing a conventional three-core high-voltage power cable with crosslinked polyethylene insulation and polyvinyl chloride insulation, and FIG. 2 is a cross-sectional view showing a cable according to Embodiment 1 of the present invention. 1... Conductor, 3... Insulator layer, 7... Inclusion,
8...Outer sheath, 9...Protective coating layer.
Claims (1)
なる絶縁体層およびその上方に設けた外部シース
を有するプラスチツク絶縁ケーブルにおいて、 前記絶縁体層と外部シースの間に、ポリクロロ
プレン、シリコーンゴム、クロルスルホン化ポリ
エチレンの内から選ばれた1種以上の難燃性ゴム
系材料あるいはゴム系材料に難燃化剤を配合して
酸素指数30%以上とした難燃化ゴム系材料を押出
被覆して形成した保護被覆層を設けたことを特徴
とする難燃性ケーブル。[Claims] 1. A plastic insulated cable having an insulator layer made of a relatively combustible plastic insulating material and an outer sheath provided above the insulator layer, wherein between the insulator layer and the outer sheath, polychloroprene, silicone, etc. Extrusion of one or more flame-retardant rubber-based materials selected from rubber and chlorosulfonated polyethylene, or flame-retardant rubber-based materials with an oxygen index of 30% or more by blending flame retardants with rubber-based materials. A flame-retardant cable characterized by being provided with a protective coating layer formed by coating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2188578A JPS54114788A (en) | 1978-02-27 | 1978-02-27 | Fire-proof cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2188578A JPS54114788A (en) | 1978-02-27 | 1978-02-27 | Fire-proof cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54114788A JPS54114788A (en) | 1979-09-07 |
JPS6110926B2 true JPS6110926B2 (en) | 1986-04-01 |
Family
ID=12067559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2188578A Granted JPS54114788A (en) | 1978-02-27 | 1978-02-27 | Fire-proof cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS54114788A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4950515B2 (en) * | 2006-03-01 | 2012-06-13 | 株式会社オートネットワーク技術研究所 | Shield conductive path |
US10907785B2 (en) | 2014-11-24 | 2021-02-02 | Jin Choi Shine | Modular lighting system |
CN109119187A (en) * | 2018-08-22 | 2019-01-01 | 安徽明星电缆有限公司 | A kind of superfine flame-proof wire |
-
1978
- 1978-02-27 JP JP2188578A patent/JPS54114788A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS54114788A (en) | 1979-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102038707B1 (en) | fire resistant cable for medium or high voltage and manufacturing method of the same | |
EP2577683B1 (en) | Electrical cable with semi-conductive outer layer distinguishable from jacket | |
US3775548A (en) | Filled telephone cable | |
US2800524A (en) | Electric cable | |
US20020046871A1 (en) | Insulated electrical conductor with preserved functionality in case of fire | |
JPH07312121A (en) | Fireproof wire | |
US4310597A (en) | Low voltage electrical wire | |
JPS6110926B2 (en) | ||
CN109461536A (en) | Fire protection flame retarding waterproof anti-corrosion power cable and manufacture craft | |
CN111081418A (en) | High-performance tensile tear-resistant flame-retardant cable and manufacturing method thereof | |
JPS6168809A (en) | Flame resistant cable | |
CN213781625U (en) | Compound insulating flexible fireproof cable | |
CN215988203U (en) | Safety protection type power cable | |
RU2808049C1 (en) | Method of manufacturing power cable and cable manufactured by this method | |
CN212411653U (en) | Mineral insulated cable with fire-resistant embossing aluminum sheath | |
RU214876U1 (en) | Three-phase power cable | |
JPS6070604A (en) | High voltage flame resistant cable | |
CN219349861U (en) | Rated voltage 6kV to 35kV medium-voltage power environment-friendly fireproof waterproof cable | |
JP2001136650A (en) | Joint of high voltage fire-resistant cables | |
CN217134061U (en) | Fire-resistant flame retarded cable of crosslinked polyethylene | |
US2155243A (en) | Electrical cable | |
JPH0326568Y2 (en) | ||
CN114446520B (en) | High-temperature vibration impact resistant flexible cable | |
CN221899787U (en) | Shielded communication cable with fire-resistant and rat-proof and termite-proof characteristics | |
CN209199660U (en) | Fire protection flame retarding waterproof anti-corrosion power cable |