JPS61108951A - X-ray goniometer - Google Patents

X-ray goniometer

Info

Publication number
JPS61108951A
JPS61108951A JP59230578A JP23057884A JPS61108951A JP S61108951 A JPS61108951 A JP S61108951A JP 59230578 A JP59230578 A JP 59230578A JP 23057884 A JP23057884 A JP 23057884A JP S61108951 A JPS61108951 A JP S61108951A
Authority
JP
Japan
Prior art keywords
goniometer
detector
spring
holder
drive shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59230578A
Other languages
Japanese (ja)
Inventor
Akio Hori
彰男 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP59230578A priority Critical patent/JPS61108951A/en
Publication of JPS61108951A publication Critical patent/JPS61108951A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • G01N23/20016Goniometers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To obtain a goniometer having high accuracy without using a mechanism having high accuracy by driving a fine adjusting mechanism for correcting errors by a piezo-electric element. CONSTITUTION:A detector holding arm 7 of the goniometer is mechanismically connected to a theta driving shaft so that the arm rotates by as much as twice the rotating angle of the theta driving shaft. The lower part of a sample holder 2 is a circular cylindrical part 2a coaxial with the theta driving shaft 1 and is fitted to a cylindrical sleeve 4 in a tight slide fitting state. The holder 2 is made rotatable within the range of the elastic torsion of a leaf spring 3. A base 5 is formed to the sleeve 4 and the rear end of the piezo-electric element 6 having the expanding and contracting direction in the direction tangential to the outside surface of the part 2a in fixed and rear end thereof is kept always in slight contact with the attaching step surface 16 of the spring 3 of the sample holder. The piezo-electric element expands and presses further the one side of the spring 3 when a voltage is impressed thereto. The spring 3 is therefore twisted by receiving the torsional torque by which the holder 2 is rotated at a slight angle with the shaft 1 to correct the error of the rotating angle of the shaft 1.

Description

【発明の詳細な説明】 イ・産業上の利用分野 本発明はX線回折装置などに使用するゴニオメータの高
精度化に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to increasing the precision of goniometers used in X-ray diffraction devices and the like.

口・ 従来の技術 X線回折装置のゴニオメータは第4図に示すような構成
になっている。この図でXはX線、Sは試料、〕はX線
検出器であって、ゴニオメータは試料Sの回転角θに対
して検出器りを20回転させるものであるが、従来のゴ
ニオメータでは、試・料の回転角θ及び検出器の回転角
2θの角度の絶対精度はゴニオメータの機械精度によっ
て決定され、角度の正確さは0・01°〜0.005°
の程度であり、これよシ高精度のものは極めて高価であ
った。また回転角度の正確さは回転部分の外周部分の回
転による移動量がどこまで正確に規制できるかで決マシ
、この移動量の正確さは機構の寸法精度で決まり、現在
の加工技術では±2μm程度は容易である。つまシ回転
角の精度は同じ加工精度であれば回転半径が大きい程良
くなる。このことはゴニオメータを小型化することの妨
げとなっている。
A goniometer of a conventional X-ray diffraction apparatus has a configuration as shown in FIG. In this figure, X is an X-ray, S is a sample, ] is an X-ray detector, and the goniometer rotates the detector 20 times with respect to the rotation angle θ of the sample S. In the conventional goniometer, The absolute angular accuracy of the sample rotation angle θ and the detector rotation angle 2θ is determined by the mechanical accuracy of the goniometer, and the angular accuracy is 0.01° to 0.005°.
, and those with higher precision were extremely expensive. In addition, the accuracy of the rotation angle is determined by how accurately the amount of movement due to the rotation of the outer circumference of the rotating part can be regulated.The accuracy of this amount of movement is determined by the dimensional accuracy of the mechanism, and with current processing technology, it is approximately ±2 μm. is easy. The accuracy of the pick rotation angle improves as the rotation radius increases if the machining accuracy is the same. This hinders the miniaturization of goniometers.

ハ・発明が解決しようとする問題点 上述した所からゴニオメータの回転角度の精度を向上さ
せるためには機構の加工精度を上げるか、ゴニオメータ
の半径を大きくするか或はその両方を併用するかの何れ
かと云うことになるが、本発明は全く別の方向からゴニ
オメータの回転角度の精度向上を計るものである。
C. Problems to be solved by the invention From the above points, in order to improve the accuracy of the rotation angle of the goniometer, it is necessary to increase the processing accuracy of the mechanism, increase the radius of the goniometer, or use both. In any case, the present invention aims to improve the accuracy of the rotation angle of the goniometer from a completely different direction.

二・ 問題点解決のための手段 本発明は通常のゴニオメータの構造において、試料回転
軸と試料との間及び検出器保持腕と検出器との間に夫々
圧電駆動手段を介在させ、同手段による試料及び検出器
の微動によって、試料及び検出器の各指定位置における
角度誤差を補償するものである。
2. Means for solving the problem The present invention provides a method for solving problems by interposing piezoelectric drive means between the sample rotation axis and the sample and between the detector holding arm and the detector in the structure of a normal goniometer. The micro-movement of the sample and detector compensates for angular errors at designated positions of the sample and detector.

ホ・作用 上述構成によるとゴニオメータ自体は通常精度のもので
充分であり、予め試料及び検出器の各角位置における機
構的角度誤差を測定して記憶しておけば、使用時には記
憶された誤差に比例する電圧を電圧駆動手段に印加する
ことで、試料及び検出器の角位置の誤差を補償でき、従
って通常精度の機構で高精度のゴニオメータが実現でき
ることになる。
E. Function According to the above-mentioned configuration, it is sufficient for the goniometer itself to have normal accuracy.If the mechanical angular error at each angular position of the sample and detector is measured and memorized in advance, the memorized error can be used when using the goniometer. By applying a proportional voltage to the voltage drive means, errors in the angular position of the sample and detector can be compensated for, thus providing a highly accurate goniometer with a normally accurate mechanism.

へ・実施例 第1図及び第2図に本発明の一実施例の機構要部を示す
。第1図はゴニオメータにおける中央のθ駆動軸と試料
ホルダとの連結部を示す。この図で1はθ駆動軸であシ
、ゴニオメータの中心に位置する。2は試料ホルダで、
θ駆動軸1の上端に共軸的に板ばね3を介して連結され
ている。試料ホルダ2下部はθ駆動軸1と共軸の円柱部
2aになっておシ、この部分はθ駆動軸1の上部に嵌着
した円筒鞘4に緊密な滑台状態で嵌合させてあシ、試料
ホルダ2は板ばね3の弾性的捩れの範囲で回接線方向に
伸縮方向を有する圧電素子6の後端が固定され、同圧電
素子の先端が試料ホルダの板ばね3取付段面16に常時
若干の接触圧力で当接するようになっている。この構成
で圧電素子6の両電極間に電圧を印加すると同素子は伸
張し、板ばね3の一方側を更に押圧する。このため板ば
ね3は捩シトルクを受けて捩れ、試料ホルダ2がθ駆動
軸に対して微小角度回転する。この回転によってθ駆動
軸1の回転角度誤差を補償するのである。
Embodiment FIGS. 1 and 2 show the main parts of the mechanism of an embodiment of the present invention. FIG. 1 shows the connection between the central θ drive shaft and the sample holder in the goniometer. In this figure, 1 is the θ drive shaft, which is located at the center of the goniometer. 2 is a sample holder;
It is coaxially connected to the upper end of the θ drive shaft 1 via a leaf spring 3. The lower part of the sample holder 2 is a cylindrical part 2a coaxial with the θ drive shaft 1, and this part is fitted into the cylindrical sheath 4 fitted on the upper part of the θ drive shaft 1 in a tight sliding state. In the sample holder 2, the rear end of the piezoelectric element 6, which extends and contracts in the tangential direction within the range of the elastic twist of the plate spring 3, is fixed, and the tip of the piezoelectric element 6 is attached to the plate spring 3 mounting step surface 16 of the sample holder. It is designed to be in constant contact with a slight contact pressure. With this configuration, when a voltage is applied between both electrodes of the piezoelectric element 6, the element expands and further presses one side of the leaf spring 3. Therefore, the leaf spring 3 is twisted by the torsional shift torque, and the sample holder 2 is rotated by a small angle with respect to the θ drive shaft. This rotation compensates for the rotation angle error of the θ drive shaft 1.

θ駆動軸1の回転角度誤差を最大±20′ とする。圧
電素子6に電圧を印加していないときのθ駆動軸1に対
する試料ホルダ20角度偏倚を一20′となるように設
定すると、角度誤差±20“を補償するための圧電素子
には−20“を補償する一定のバイアス電圧に角度誤差
を補償する正負の電圧を重畳して印加すればよい。この
ようにするのは、誤差の正負によって圧電素子の動作方
向を押しと引きと反対になるようにすると、圧電素子と
板ばね3との結合点に遊びを蛍じて誤差の補正が正確に
できなくなるからで、圧電素子の作用方向を押しだけに
することによって機械的な遊びの影響を回避しているの
である。
The rotation angle error of the θ drive shaft 1 is set to a maximum of ±20'. If the angular deviation of the sample holder 20 with respect to the θ drive axis 1 when no voltage is applied to the piezoelectric element 6 is set to -20', the piezoelectric element will have a deviation of -20' to compensate for the angular error of ±20'. It is sufficient to apply positive and negative voltages for compensating for angular errors superimposed on a constant bias voltage for compensating for angular error. The reason for doing this is that if the operating direction of the piezoelectric element is opposite to the pushing and pulling depending on the positive or negative error, play will be generated at the connection point between the piezoelectric element and the leaf spring 3, and the error can be corrected accurately. This is because the effect of mechanical play is avoided by limiting the direction of action of the piezoelectric element to only pushing.

第2図は検出器部分の角度誤差補償機構を示す。FIG. 2 shows the angular error compensation mechanism of the detector section.

この実施例は検出器保持腕に対してX線検出素子そのも
のを動かすのではなく、検出素子前面のスリットを微動
させて角度誤差を補償するものである。この図で7はゴ
ニオメータにおける検出器保持腕であり、”線検出素子
8が取付けられている。
In this embodiment, instead of moving the X-ray detection element itself relative to the detector holding arm, the slit in front of the detection element is slightly moved to compensate for angular errors. In this figure, 7 is a detector holding arm in the goniometer, and a line detection element 8 is attached to it.

9は検出素子8の前面に配置されたスリットでは圧電素
子の右端は腕7に固定されている。この構成で圧電素子
11は常時スリット9を介してばね10によシ張力を受
けておシ、電圧を印加されると長さが短縮してスリット
9を図で右方へ引張る。
Reference numeral 9 denotes a slit arranged in front of the detection element 8, and the right end of the piezoelectric element is fixed to the arm 7. With this configuration, the piezoelectric element 11 is always under tension by the spring 10 through the slit 9, and when a voltage is applied, its length is shortened and the slit 9 is pulled to the right in the figure.

との引張シによるスリットの移動で腕7の2θの回転角
の誤差を補償するのである。ゴニオメータの半径即ちゴ
ニオメータ中心からスリット9までの距離を’180m
m(これは通常のゴニオメータの大きさ)とすると、角
度1″に相当する圧電素子11の短縮量(スリット9の
移動量)は約6・8μmである。角度の補正量は±20
″であシ、この補正量の全域をカバーするための圧電素
子11の短縮量は40“相当で36μmである。
The error in the 2θ rotation angle of the arm 7 is compensated by the movement of the slit due to the tension between the arm 7 and the slit. The radius of the goniometer, that is, the distance from the center of the goniometer to the slit 9, is 180 m.
m (this is the size of a normal goniometer), the amount of shortening of the piezoelectric element 11 (the amount of movement of the slit 9) corresponding to an angle of 1'' is approximately 6.8 μm.The amount of angle correction is ±20 μm.
'', the shortening amount of the piezoelectric element 11 to cover the entire range of this correction amount is equivalent to 40'', which is 36 μm.

第3図は角度誤差補正回路の1例を示す。Pはゴニオメ
ータ中心のθ駆動軸を駆動するパルスモータでパルス発
生器Gから駆動パルスが供給され、この駆動パルスをカ
ウンタCで計数してθ駆動軸の回転角θが検出される。
FIG. 3 shows an example of an angular error correction circuit. P is a pulse motor that drives the θ drive shaft at the center of the goniometer, and drive pulses are supplied from a pulse generator G, and the drive pulses are counted by a counter C to detect the rotation angle θ of the θ drive shaft.

この検出された回転角のデータはコンピュータCPHに
読込まれる。検出器保持腕(第3図では示されていない
)はθ駆動軸と機構的に連結されてθ駆動軸の回転角の
2倍だけ回転するようになっている。従ってθ駆動軸の
回転角θのデータを読込めば検出器保持腕の名目上の角
位置は自然に分る。Ml、M2は第1及び第2のメモリ
で、Mlにはθ駆動軸のカウンタCの計数によって検出
される回転角におけるθ駆動軸の角位置の誤差とθとの
関係表が記憶させである。M2には検出器保持腕の名目
上の角位置とそれに対する誤差との関係表(具体的には
θ駆動軸の角位置と検出器保持腕の角位置の誤差の関係
表)が記憶させである。CPUはカウンタCの計数を読
込むと、その計数値に対応するメモ17 Ml、M2内
の誤差のデータを読出し、DA変換器DAI、DA2を
介して電圧信号に変換し、アンプ番経て圧電素子6,1
1にその電圧を印加し、θ駆動軸及び検出器保持腕の角
位置の誤差を補正する。メモリMl、M2に格納する誤
差のデータは実際にゴニオメータを駆動し、θ駆動軸及
び検出器保持腕の名目上の角位置に対する誤差を実測し
たものである。
This detected rotation angle data is read into the computer CPH. The detector holding arm (not shown in FIG. 3) is mechanically connected to the θ drive shaft so that it rotates by twice the rotation angle of the θ drive shaft. Therefore, by reading the data of the rotation angle θ of the θ drive shaft, the nominal angular position of the detector holding arm can be found naturally. Ml and M2 are first and second memories, and Ml stores a relational table between θ and the error in the angular position of the θ drive shaft at the rotation angle detected by the count of the counter C of the θ drive shaft. . M2 stores a relational table between the nominal angular position of the detector holding arm and the error thereof (specifically, a relational table between the angular position of the θ drive shaft and the error between the angular position of the detector holding arm). be. When the CPU reads the count of the counter C, the CPU reads out the error data in the memo 17 Ml and M2 corresponding to the count value, converts it into a voltage signal via the DA converters DAI and DA2, and sends it to the piezoelectric element 6 via the amplifier. ,1
1 to correct errors in the angular position of the θ drive shaft and the detector holding arm. The error data stored in the memories M1 and M2 is obtained by actually driving the goniometer and actually measuring the error with respect to the nominal angular position of the θ drive axis and the detector holding arm.

上述実施例では試料ホルダ及び検出器スリットは何れも
弾性体を介してθ駆動軸とか検出器腕に結合されておシ
、試料ホルダ及び検出器スリットと夫々相手のθ駆動軸
等との間に機構的な遊びが全熱ない。
In the above embodiment, both the sample holder and the detector slit are connected to the θ drive shaft or the detector arm via an elastic body, and there is no space between the sample holder or the detector slit and the θ drive shaft, etc. of each other. There is no mechanical play at all.

ト効果 本発明ゴニオメータは上述したような構成で、機械構造
の精度は従来の通常のゴニオメータと同程度で充分であ
り、誤差を補正する微動機構が圧電素子で駆動されるの
で、圧電素子が本質的に微量駆動に適するものである所
から、誤差補正機構は大へん簡単にでき、結果的には格
別高精度の機構を用いないできわめて高精度のゴニオノ
ー。夕が得られるのであり、始めに述べたように、ゴニ
オメータの精度を上げようとするとゴニオメータの半径
を大きくせねばならないが、本発明では誤差補正で高精
度を得ているので、ゴニオメータを小型化しても高精度
が得られるのでアシ、ゴニオメータの小型化も実現でき
るのである。
Effects The goniometer of the present invention has the above-described configuration, and the accuracy of the mechanical structure is sufficient to be on the same level as that of a conventional ordinary goniometer.The fine movement mechanism for correcting errors is driven by a piezoelectric element, so the piezoelectric element is essentially Since it is suitable for minute drive, the error correction mechanism can be made very easily, and as a result, an extremely high-precision goniometer can be achieved without using a particularly high-precision mechanism. As mentioned at the beginning, in order to improve the accuracy of a goniometer, the radius of the goniometer must be increased, but in the present invention, high accuracy is achieved through error correction, so the goniometer can be made smaller. Since high accuracy can be obtained even when using a high-speed goniometer, it is possible to downsize the reed and goniometer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例ゴニオメータにおけるθ駆動
軸部の斜視図、第2図は同じく検出器保持腕の検出器取
付は部付近の斜視図、第3図は同実施例の角度誤差補正
回路のブロック図で、第4図はX線ゴニオメータの平面
図である。 代理人 弁理士  係   浩  介 第1図
Fig. 1 is a perspective view of the θ drive shaft section in a goniometer according to an embodiment of the present invention, Fig. 2 is a perspective view of the detector holding arm near the detector mounting section, and Fig. 3 is an angular error of the same embodiment. FIG. 4 is a block diagram of the correction circuit, and FIG. 4 is a plan view of the X-ray goniometer. Agent: Patent Attorney Kosuke Figure 1

Claims (1)

【特許請求の範囲】[Claims] ゴニオメータの中心に位置するθ駆動軸と、同軸の角度
θの回転に対して角2θだけ回転するようにθ駆動軸と
連動された検出器保持腕とよりなり、θ駆動軸に同軸と
共軸かつ同軸に対し小角度回転可能に連結された試料ホ
ルダと、同ホルダをθ駆動軸に対し回転駆動する圧電素
子と、検出器保持腕に同腕に対しゴニオメータの角度方
向に可動に取付けられた検出器と、同検出器を検出器保
持腕に対し駆動する圧電素子とを有し、上記両圧電素子
に角度誤差補正電圧を印加するようにしたX線ゴニオメ
ータ。
It consists of a θ drive shaft located at the center of the goniometer, and a detector holding arm that is linked to the θ drive shaft so that it rotates by an angle 2θ relative to the rotation of the coaxial angle θ. A sample holder is connected to the sample holder so as to be rotatable at a small angle relative to the same axis, a piezoelectric element is rotatably driven to rotate the holder relative to the θ drive axis, and a piezoelectric element is attached to the detector holding arm so as to be movable in the angular direction of the goniometer with respect to the arm. An X-ray goniometer comprising a detector and a piezoelectric element for driving the detector with respect to a detector holding arm, and applying an angular error correction voltage to both piezoelectric elements.
JP59230578A 1984-10-31 1984-10-31 X-ray goniometer Pending JPS61108951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59230578A JPS61108951A (en) 1984-10-31 1984-10-31 X-ray goniometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59230578A JPS61108951A (en) 1984-10-31 1984-10-31 X-ray goniometer

Publications (1)

Publication Number Publication Date
JPS61108951A true JPS61108951A (en) 1986-05-27

Family

ID=16909936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59230578A Pending JPS61108951A (en) 1984-10-31 1984-10-31 X-ray goniometer

Country Status (1)

Country Link
JP (1) JPS61108951A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249737A (en) * 1990-12-30 1992-09-04 Horiba Ltd Checking method of dehumidifier in gas analyzing apparatus
JP2008039436A (en) * 2006-08-01 2008-02-21 Rigaku Corp Angle correction method in x-ray diffraction measurement and x-ray diffraction system
JP2016038278A (en) * 2014-08-07 2016-03-22 富士通株式会社 X-ray reflectance measurement device and x-ray reflectance measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249737A (en) * 1990-12-30 1992-09-04 Horiba Ltd Checking method of dehumidifier in gas analyzing apparatus
JP2008039436A (en) * 2006-08-01 2008-02-21 Rigaku Corp Angle correction method in x-ray diffraction measurement and x-ray diffraction system
JP2016038278A (en) * 2014-08-07 2016-03-22 富士通株式会社 X-ray reflectance measurement device and x-ray reflectance measurement method

Similar Documents

Publication Publication Date Title
JP3311779B2 (en) Rotational displacement measuring device
US4377911A (en) Contour measuring instrument
US7535193B2 (en) Five axis compensated rotating stage
US4445857A (en) Dental cavity measuring instrument
JP3390030B2 (en) X-ray analyzer
JPS61108951A (en) X-ray goniometer
US4870272A (en) Transducer adjustment apparatus for shaft encoder
US4134062A (en) Limited rotation instrument rebalance apparatus employing a wiper having vibration damping
JPH01177938A (en) Accurate positioning device
JP3634058B2 (en) Inclination angle measuring device
JP3170527B2 (en) X-ray diffraction goniometer
JPS60172486A (en) Robot hand
SU1585643A1 (en) Device for measuring linear displacement of one element with respect to the other
JPH10179588A (en) Ultrasonic probe
US4122906A (en) Load coupling device
JPS6222002A (en) Displacement detection head
JPS6146406Y2 (en)
JPS5825284Y2 (en) Naisokukuteiki
JPH06109481A (en) Code disk mounting position adjusting device
JP2560479Y2 (en) Parallelism measuring device
SU1516746A1 (en) Rheostat transducer of linear movements
JP3221751B2 (en) X-ray diffraction goniometer
US4453168A (en) Rectilinear pen movement apparatus for recording galvanic skin resistance
JP2526365Y2 (en) Photodiode support for optical pickup
JPS6025527Y2 (en) Wire diameter measuring device