JPS61108414A - Method for controlling wall thickness of pipe in drawing mill - Google Patents

Method for controlling wall thickness of pipe in drawing mill

Info

Publication number
JPS61108414A
JPS61108414A JP59227986A JP22798684A JPS61108414A JP S61108414 A JPS61108414 A JP S61108414A JP 59227986 A JP59227986 A JP 59227986A JP 22798684 A JP22798684 A JP 22798684A JP S61108414 A JPS61108414 A JP S61108414A
Authority
JP
Japan
Prior art keywords
tension
stand
pipe
wall thickness
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59227986A
Other languages
Japanese (ja)
Inventor
Ryoichi Oota
太田 良一
Yutaka Funiyu
船生 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59227986A priority Critical patent/JPS61108414A/en
Publication of JPS61108414A publication Critical patent/JPS61108414A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/78Control of tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B35/00Drives for metal-rolling mills, e.g. hydraulic drives
    • B21B35/02Drives for metal-rolling mills, e.g. hydraulic drives for continuously-operating mills
    • B21B35/025Drives for metal-rolling mills, e.g. hydraulic drives for continuously-operating mills for stretch-reducing of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/14Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills

Abstract

PURPOSE:To improve the accuracy of a wall thickness of pipe, by measuring a tension between adjoining stands as well as computing the deviation between the measured tension and a target one and controlling the number of revolutions of a rolling stand of the pipe end so as to make the deviation to be zero. CONSTITUTION:Each stand of a stretch reducer 7 is driven by a motor 6, and is provided with a tension detecting device 2. The device 2 has shearing type load detectors (load cell) 12, which are incorporated in upper and lower rails 10 and 11 respectively. As the forces acting between a roll stand 13 and the upper and lower rails 10, 11 are respectively transmitted through the detectors 12, the stress acting on the stand 13 in the rolling direction is obtained. An interstand tension is computed based on said stress and each boundary conditions, and the deviation between the computed tension and a target tension is inputted to a computer 4, to control the number of revolutions of a stand of the pipe end. In this way, the accuracy of a wall thickness of pipe is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、継目無鋼管製造ラインの絞り圧延機における
管の肉厚制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the wall thickness of a pipe in a reducing mill of a seamless steel pipe production line.

[従来の技術] 一般に、絞り圧延a(ストレッチレデューサー)で圧延
すると第2図に示すような長手方向の肉厚分布を有する
仕上がり管となる。この仕とがり管における管先後端部
の厚肉部は、絞り圧延機での圧延時に適正な張力を与え
ることができないために生ずるものである。上記問題点
の解決策として従来技術では主に次の2つの方法がある
[Prior Art] Generally, when a tube is rolled using a reduction rolling a (stretch reducer), a finished tube having a wall thickness distribution in the longitudinal direction as shown in FIG. 2 is obtained. The thick wall portion at the tip and rear end of the finished tube is caused by the inability to apply appropriate tension during rolling in the reducing mill. In the prior art, there are mainly two methods to solve the above problems.

すなわち、(1)特公昭411−37340に係るスト
レッチレデューサ−先後端制御、(2)特開昭52−3
7853、特開昭52−83147に係るマンドレルミ
ル圧延機の長手方向肉厚分布に基づくストレッチレデュ
ーサ−張力制御。
Namely, (1) Stretch reducer tip/rear end control according to Japanese Patent Publication No. 411-37340, (2) Japanese Patent Publication No. 52-3
Stretch reducer-tension control based on longitudinal thickness distribution of mandrel mill rolling machine according to No. 7853 and JP-A-52-83147.

[発明が解決しようとする問題点] しかしながら、上記従来技術では以下の問題がある。す
なわち、上記(1)の方法は、管先後端部の回転数制御
址が経験により決められかつ制御がオープンループ0た
め最適張力制御の面からみると極めて精度が悪い、また
、上記(2)の方法は。
[Problems to be Solved by the Invention] However, the above prior art has the following problems. In other words, in the method (1) above, the rotation speed control at the tip and rear end of the tube is determined by experience and the control is in an open loop, so the accuracy is extremely poor from the perspective of optimal tension control. The method is.

マンドレルミル圧延後のオンライン肉厚測定技術が公表
されておらず、現段階では技術的に実現不可能と考えら
れる。たとえマンドレルミルでの肉厚測定技術があって
も従来技術では不十分である。
Online wall thickness measurement technology after mandrel mill rolling has not been published and is considered technically unfeasible at this stage. Even if there is a wall thickness measurement technique using a mandrel mill, the conventional technique is insufficient.

すなわち、ストレー、チレデューサー圧延時には、蓄光
後端部でダイナミックな張力変動が発生し、ストレッチ
レデューサ−の張力変動を制御で吸収できない。
That is, during straight and chill reducer rolling, dynamic tension fluctuations occur at the luminescent rear end, and the tension fluctuations of the stretch reducer cannot be absorbed by control.

本発明は、従来技術の問題点を解決し、極めて精度のよ
いストレッチレデューサ−圧延時の蓄光後端部の肉厚制
御技術を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art and to provide an extremely accurate stretch reducer technique for controlling the thickness of the luminescent rear end during rolling.

E問題点を解決するための手段] 本!明は、複数のロールスタンドからなる絞り圧延機に
おける管の肉厚制御方法において、隣接するスタンド間
の張力を実測し、管長手方向の各部における実測張力と
目標張力との偏差を算出し、上記偏差のある管端部を圧
延するスタンドの回転数を、該偏差が零となるように制
御し、上記偏差のない部分を圧延するスタンドの回転数
を、基準回転数のままで圧延するようにしたものである
Means to solve problem E] Book! In a method for controlling the wall thickness of a pipe in a reducing rolling mill consisting of multiple roll stands, Akira actually measures the tension between adjacent stands, calculates the deviation between the measured tension and the target tension at each part in the longitudinal direction of the pipe, and calculates the above-mentioned The rotation speed of the stand that rolls the end portion of the pipe with the deviation is controlled so that the deviation becomes zero, and the rotation speed of the stand that rolls the portion without the deviation is kept at the standard rotation speed. This is what I did.

[作 用] 本発明によれば、管の先端部および後端部の圧延時、対
応するスタンドの回転数を、対応するスタンド間張力が
目標張力となるように制御することとなり、管長手方向
に均一な肉厚の仕上がり管を得ることが可能となる。
[Function] According to the present invention, when rolling the tip and rear ends of a tube, the rotation speed of the corresponding stand is controlled so that the tension between the corresponding stands becomes the target tension, and the rotation speed of the corresponding stand is controlled so that the tension between the corresponding stands becomes the target tension. This makes it possible to obtain finished pipes with uniform wall thickness.

[実施例] ストレッチレゾユーザーにおいては、”管は内部工具を
用いずに多数のタンデムに配置されたスタンドで外径が
縮小される。この外径縮小の他に一般に肉厚の変化も起
るが、その大きさは圧延管の中に生じる応力の状態によ
り決まる。圧延管の応力状態は長手方向伸びをXLとし
て。
[Example] In Stretch Reso users, the outer diameter of the tube is reduced using a number of stands arranged in tandem without the use of internal tools. In addition to this outer diameter reduction, a change in wall thickness also generally occurs. However, its magnitude is determined by the state of stress generated in the rolled tube.The stress state of the rolled tube is determined by the longitudinal elongation as XL.

(KL=管の長手方向の力、S=管断面積、Rf=圧延
管の変形抵抗)により表わされるが、これは各スタンド
の回転数に段階差を与えることにより変化するものであ
る0回転数の段階差付与により変化する長手方向伸びX
Lが大きくなればなるほど、管の肉厚は薄くなる。所望
の肉厚を有する管を得るためには個々のスタンドにおい
て必要な長手方向伸びが生ずるように、圧延機の回転数
列を設定すればよい、本発明はストレッチレデューサ−
で管を圧延する場合に公知の方法による場合に比べて肉
厚の厚い先後端部の長さを本質的に減少する制御方法を
提案するものである。
(KL = force in the longitudinal direction of the pipe, S = pipe cross-sectional area, Rf = deformation resistance of the rolled pipe), which changes by giving a step difference to the rotation speed of each stand. Longitudinal elongation
The larger L becomes, the thinner the tube becomes. In order to obtain a tube with a desired wall thickness, the rotational speed sequence of the rolling mill may be set so that the necessary longitudinal elongation occurs in each stand.The present invention is a stretch reducer.
The purpose of the present invention is to propose a control method that essentially reduces the length of the thick-walled leading and trailing ends when rolling a tube in comparison with known methods.

本発明の方法を第3図によって説明する。この第3図に
おいて、1は圧延管、2は張力検出装置、3は張力演算
器、4は制御用計算機、5はモータ制御装置、6はモー
タ、7はストレッチレデューサ−である6図中ではスト
レッチレデューサ−のうち8個のスタンドおよび張力検
出装置2が示されている。ストレッチレデューサ−圧延
時の各スタンド間張力を本出願人が提案している後述す
る方法(特願昭59−02711911 )により測定
し、制御用計算機4に入力する。第4図は本発明の制御
量の場合のスタンド間張力の測定例であり、管中央部に
比べて、蓄光後端部で明らかな張力過不足が生じている
。ここでスタンド間張力は(1)式内に示すKLに相畠
する。また、長手方向伸びXLの制御量をΔXL、肉厚
制御量をΔtとすれば下記(2)式が成立する。
The method of the present invention will be explained with reference to FIG. In this figure, 1 is a rolled pipe, 2 is a tension detector, 3 is a tension calculator, 4 is a control computer, 5 is a motor controller, 6 is a motor, and 7 is a stretch reducer. Eight of the stretch reducer stands and tension detection device 2 are shown. The tension between the stretch reducer and each stand during rolling is measured by the method proposed by the present applicant and will be described later (Japanese Patent Application No. 59-02711911), and input into the control computer 4. FIG. 4 shows an example of measuring the tension between the stands in the case of the control amount according to the present invention, and there is a clear excess or deficiency in tension at the luminous rear end compared to the center of the tube. Here, the inter-stand tension is compatible with KL shown in equation (1). Further, if the control amount of the longitudinal elongation XL is ΔXL, and the wall thickness control amount is Δt, the following formula (2) holds true.

Δt = f+ (4X L)        −(2
)次に目標肉厚゛を得るための目標張力と実測張力の偏
差をΔKLとすると、 ΔX L = f2(ΔK L )         
 −(3)上記(2) (3)式より下記(4)式が導
かれる。
Δt = f+ (4X L) −(2
) Next, if the deviation between the target tension and the measured tension to obtain the target wall thickness is ΔKL, then ΔX L = f2 (ΔK L )
-(3) The following equation (4) is derived from the above equations (2) and (3).

八t−f、(fz(ΔK L) ) = f3(ΔKI
、)・・・(4)すなわち、上記(4)式によれば、実
測張力の目標値からの偏差ΔKLを検知することにより
、管長手方向の実績肉厚の目標値からの偏差ΔLが求ま
る。
8t-f, (fz(ΔK L)) = f3(ΔKI
, )...(4) That is, according to the above equation (4), by detecting the deviation ΔKL of the actual measured tension from the target value, the deviation ΔL of the actual wall thickness in the longitudinal direction of the pipe from the target value can be found. .

次にストレッチレデューサ−においては、各スタンドの
ロール周速度、配分を基準に対して相対的に上流スタン
ドはど遅くあるいは、下流スタンドはど速くすればする
ほど出側肉厚は減少する。
Next, in the stretch reducer, the wall thickness on the exit side decreases as the upstream stand becomes slower or the downstream stand becomes faster relative to the roll circumferential speed and distribution of each stand.

圧延管の肉厚が基準(?であるとき、各スタンドのロー
ル周速度の勾配βと仕上がり管の目標値からの偏差Δt
′との間には下記(5)式に示す、定量的関係が成立す
る。
When the wall thickness of the rolled pipe is the standard (?), the gradient β of the roll circumferential speed of each stand and the deviation Δt from the target value of the finished pipe
' A quantitative relationship as shown in equation (5) below holds true.

β=蝉(Δt ′)        ・・・(5)また
圧延管にΔLなる目標値からの偏差がある場合には、そ
の部分を下記(8)式に示すβ′なるロール周速度勾配
で圧延すれば目標肉厚を得ることが可能となる6以上に
よれば、第1図に示すように、実測張力に対応してスト
レッチレデューサ−の各スタンドのロール周速度勾配が
定まる。
β=Cicada (Δt') ... (5) If there is a deviation from the target value of ΔL in the rolled tube, that part should be rolled at the roll circumferential speed gradient of β' shown in equation (8) below. 6 or above, which makes it possible to obtain the target wall thickness, the roll circumferential velocity gradient of each stand of the stretch reducer is determined in accordance with the measured tension, as shown in FIG.

β ′=f4(Δt)        ・・・(8)な
お、第1図の目標張力は1例である。
β'=f4(Δt) (8) Note that the target tension shown in FIG. 1 is just one example.

ここで、ストレッチレデューサ−各スタンドの圧延材噛
込み尻抜はタイミングは張力測定信号から正確に算出で
き、各スタンドのロール周速度はそれぞれ圧延材が噛込
んだ時から、経時変化モデルに従って材料尻抜けまでの
量変化させればよ、     <、、=t′″05“c
*hd4f@5[1iaKy“11なる。第5図におい
て、例えばストレッチレデューサ−の第1スタンドのロ
ール周速度のiJlはβ′のように経時変化させればよ
い、他のスタンドについても同様に、圧延材の噛込みか
ら尻抜けまでの間で、ロール周速度を第5図に示すロー
ル周速度パターンにより設定すればよい。
Here, the stretch reducer - the timing of the rolling material biting and bottom removal of each stand can be calculated accurately from the tension measurement signal, and the roll circumferential speed of each stand is determined from the time when the rolled material is biting, and the material bottom is removed according to a time-varying model. Just change the amount until it comes off, <,,=t'''05"c
*hd4f@5[1iaKy"11. In Fig. 5, for example, the roll circumferential speed iJl of the first stand of the stretch reducer can be changed over time like β'. Similarly, for the other stands, The roll circumferential speed may be set according to the roll circumferential speed pattern shown in FIG. 5 between the biting of the rolled material and the end of the roll.

制御用計算機4は、張力の長手方向分布から、前記(4
)式および(6)式に従ってロール周速度パターンを算
出し、ストレッチレデューサ−7で圧延時にモーター制
御装置5を介して上記算出済のロール周速度制御パター
ンに従って、各スタンドのモータ6を駆動制御する。
The control computer 4 calculates the above (4) from the longitudinal distribution of tension.
) and formula (6), and during rolling with the stretch reducer 7, the motor 6 of each stand is driven and controlled via the motor control device 5 according to the roll circumferential speed control pattern calculated above. .

以下、ストレッチレデューサ−圧延時の各スタンド間張
力T (i)を測定する張力検出装置I2について詳細
に説明する。
The tension detection device I2 that measures the tension T (i) between each stand during stretch reducer rolling will be described in detail below.

すなわち1本発明の実施においては、前記特−顧昭59
−27999号に示されるように、第6図(A)、CB
)に示すように、ミルスタンドの上部レール10および
下部レール11内に、せん新型の荷重検出器(ロードセ
ル)12を組込み、ロールスタンド13と上部レールl
O1下部レール11との間に作用する力がf4ff!検
出器12を経るようにし、これにより、当該ロールスタ
ンド13に作用する圧延方向応力を測定可能としている
。ロールスタンド13の下部の詳細設置図を第7図に示
す、すなわち、ロールスタンド13に作用する応力Pに
よる下部レール11からの反力Pを、荷重検出器12に
よりスラスト力として検出する0図でP(+)は前方応
力、P (−)は後方応力を示す、第6図(A)、CB
)は、各ロールスタンド13に4個の荷重検出器12を
設置した例を示しているが、このよ′うに4個の荷重検
出器12を用いることにより、圧延時に上下、左右の偏
荷重がロールスタンド13に作用する状態下にあっても
、高精度で圧延方向応力を検出することが可能となる。
That is, in carrying out the present invention, the above-mentioned special consultant
As shown in No.-27999, Figure 6 (A), CB
), a load sensor (load cell) 12 of a rolling type is installed in the upper rail 10 and lower rail 11 of the mill stand, and the roll stand 13 and upper rail l
The force acting between O1 and the lower rail 11 is f4ff! It passes through a detector 12, thereby making it possible to measure the stress in the rolling direction acting on the roll stand 13. A detailed installation diagram of the lower part of the roll stand 13 is shown in FIG. P(+) indicates forward stress, P(-) indicates backward stress, Fig. 6(A), CB
) shows an example in which four load detectors 12 are installed on each roll stand 13. By using four load detectors 12 in this way, vertical and horizontal unbalanced loads can be prevented during rolling. Even under conditions that act on the roll stand 13, it is possible to detect stress in the rolling direction with high accuracy.

すなわち、第iスタンドの各荷重検出器12の測定値を
P (il)、 P (i2)、P (i3)  P 
(目)とすれば、第iスタンドに作用する圧延方向応力
P(i)は、下記(7)式によって算出される。
That is, the measured values of each load detector 12 of the i-th stand are P (il), P (i2), P (i3) P
(th), the rolling direction stress P(i) acting on the i-th stand is calculated by the following equation (7).

P (i) = P (it)+ P’(i2)+ P
 (i3)+ P (i4)・・・(7)以上により、
第iスタンドの圧延方向応力P(i)を測定t’T f
屯となるが、次に、スタンド1111張力の算定方法に
ついて第8図によって説明する。この第8図において、
P (i)は第1スタンドの圧延方向応力(検出器測定
(1) 、 T f (i)は第iスタンドの前方張力
、T b (i)は第iスタンドの後方張力である。第
8図の(A)は材料が第1スタンドのみに噛込んでいる
場合であり、材料に作用する張力は零である。すなわち
、第8図の(A)は材料の先端゛が第1スタンドと第2
スタンドの間にある状態であり、その境界条件はTf(
1)=Tb(1)=0である。また、第8図のCB)は
材料の先端が第2スタンドと第3スタンドの間にある状
態であり、その境界条件はTf(2)=Tb(+)=0
.Tb(2)=Tf(1)である、また、第8図の(C
)は材料の先端が第3スタンドと第4スタンドの間にあ
る状態であり、その境界条件はTf(3) = T b
(1) = 01Tb(2)=Tf(1)Tb(3) 
= T f (2)である、以下同様に材料の先端が第
iスタンドと第i+1スタンドの間にある状態下で、下
記(8)弐〜(10)式に示す境界条件と(11)式の
つり合い式が設立する。
P (i) = P (it) + P'(i2) + P
(i3)+P (i4)...(7) From the above,
Measure the rolling direction stress P(i) of the i-th stand t'T f
Next, a method for calculating the tension of the stand 1111 will be explained with reference to FIG. In this Figure 8,
P (i) is the stress in the rolling direction of the first stand (detector measurement (1), T f (i) is the front tension of the i-th stand, T b (i) is the rear tension of the i-th stand. (A) in the figure shows a case where the material is caught only in the first stand, and the tension acting on the material is zero.In other words, in (A) of Fig. 8, the tip of the material is in the first stand. Second
It is a state between the stands, and its boundary condition is Tf(
1)=Tb(1)=0. CB) in Figure 8 is a state where the tip of the material is between the second stand and the third stand, and the boundary condition is Tf (2) = Tb (+) = 0
.. Tb(2)=Tf(1), and (C
) is the state where the tip of the material is between the third and fourth stands, and the boundary condition is Tf (3) = T b
(1) = 01Tb(2)=Tf(1)Tb(3)
= T f (2), similarly below, under the condition that the tip of the material is between the i-th stand and the i+1-th stand, the boundary conditions shown in the following equations (8) 2 to (10) and equation (11) are satisfied. A balanced formula is established.

Tb(+)=0         ・・・(8)Tf(
i)=O・・・(8) T b (i) = T f (i−1)     ・
・・(10)P (i) = T f (i)−T b
 (i)   ・・・(+1)ただし、P(i)は圧延
進行方向前方応力を正値、後方応力を負値とする。(8
)弐〜(10)式の境界条件および圧延方向応力P(1
)より、第iスタンドと第i + 1スタンドのスタン
ド間張力T (i)をT(i) = T f (i)と
して算出可能である。
Tb(+)=0...(8)Tf(
i)=O...(8) T b (i) = T f (i-1) ・
...(10) P (i) = T f (i) - T b
(i) ... (+1) However, P(i) assumes that the forward stress in the rolling direction is a positive value and the backward stress is a negative value. (8
)2~(10) boundary conditions and rolling direction stress P(1
), the inter-stand tension T (i) between the i-th stand and the i + 1-th stand can be calculated as T (i) = T f (i).

以下、本発明の具体的実施結果について説明する。全2
4スタンドからなるストレッチレデューサ−の前半10
スタンドを蓄光後端部の通過に伴ない本発明の制御を行
なった0本制御により80.0−■φX 5.50鵬鳳
tの寸法の母管を42.7膳腸φX5.00腸腸tの製
品に圧延した。(ここにφは外径、tは肉厚を示す、)
その際蓄光後端のクロップの肉厚の推移を第9図に示す
、第9図において白丸印は本発明の制御を行なった場合
、黒丸印は従来の方法によった場合の肉厚の推移である
。クロップ切断量は表1の通りであった。
Hereinafter, specific implementation results of the present invention will be explained. Total 2
First half of the stretch reducer consisting of 4 stands 10
As the stand passes through the phosphorescent rear end, the main tube with dimensions of 80.0-■φ It was rolled into a product of t. (Here, φ indicates the outer diameter and t indicates the wall thickness.)
At that time, the transition in the thickness of the crop at the rear end of the luminous area is shown in Figure 9. In Figure 9, the white circles indicate the change in thickness when the control of the present invention is performed, and the black circles indicate the transition in thickness when using the conventional method. It is. The amount of cropping was as shown in Table 1.

表  1 [発明の効果] 以上のように、本発明は、複数のロールスタンドからな
る絞り圧延機における管の肉厚制御方法において、隣接
するスタンド間の張力を実測し。
Table 1 [Effects of the Invention] As described above, the present invention provides a method for controlling the wall thickness of a tube in a reducing rolling mill consisting of a plurality of roll stands, in which the tension between adjacent stands is actually measured.

管長手方向の各部における実測張力と目標張力との偏差
を算出し、上記偏差のある管端部を圧延するスタンドの
回転数を、該偏差が零となるように制御し、上記偏差の
ない部分を圧延するスタンドの回転数を、基準回転数の
ままで圧延するようにしたものである。したがって1本
発明によれば蓄光後端部のクロップ長を実質的に減少す
ることが可能となる。更に本発明によれば常に適正な張
力に自動制御可能であり、クロップ長のバラツキも減少
することが可能となる。
The deviation between the measured tension and the target tension at each part in the longitudinal direction of the pipe is calculated, and the rotation speed of the stand that rolls the end of the pipe with the deviation is controlled so that the deviation becomes zero, and the part without the deviation is The rotational speed of the stand used for rolling the material remains at the standard rotational speed. Therefore, according to the present invention, it is possible to substantially reduce the crop length of the luminescent rear end portion. Furthermore, according to the present invention, it is possible to automatically control the tension to always maintain an appropriate tension, and it is also possible to reduce variations in crop length.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の制御概念を示す線図、第2図はストレ
ッチレデューサ−仕上がり管の肉厚分布を示す線図、第
3図は本発明の制御装置の一例を示す制御系統図、第4
図はスタンド間張力の測定結果を示す線図、第5図は各
スタンドのロール周速度制御パターンを示す線図、第6
図(A)は荷重検出器の設置状態を示す正面図、・第6
図(B)は第6図(A)のB−B線に沿う側断面図、第
7図は第6図(A)の荷重検出器を一部破断して示す正
面図、第8図は圧延方向応力とスタンード間張力の関係
を示す模式図、第9図は本発明による蓄光後端部の肉厚
状態を示す線図である。 l・・・圧延管、2・・・張力検出装置、3・・・張力
演算器、4・・・制御用計算機、5・・・モータ制′a
装置。 6・・・モータ。 代理人 弁理士 塩 川 修 治 s3図
Fig. 1 is a diagram showing the control concept of the present invention, Fig. 2 is a diagram showing the wall thickness distribution of a stretch reducer-finished pipe, and Fig. 3 is a control system diagram showing an example of the control device of the present invention. 4
The figure is a diagram showing the measurement results of tension between stands, Figure 5 is a diagram showing the roll peripheral speed control pattern of each stand, and Figure 6 is a diagram showing the measurement results of tension between stands.
Figure (A) is a front view showing the installation state of the load detector.
Figure (B) is a side sectional view taken along line B-B in Figure 6 (A), Figure 7 is a partially cutaway front view of the load detector in Figure 6 (A), and Figure 8 is FIG. 9 is a schematic diagram showing the relationship between the stress in the rolling direction and the tension between the stands, and FIG. 9 is a diagram showing the thickness state of the luminescent rear end portion according to the present invention. l...Rolled pipe, 2...Tension detection device, 3...Tension calculator, 4...Control computer, 5...Motor control'a
Device. 6...Motor. Agent Patent Attorney Osamu Shiokawa s3 diagram

Claims (2)

【特許請求の範囲】[Claims] (1)複数のロールスタンドからなる絞り圧延機におけ
る管の肉厚制御方法において、隣接するスタンド間の張
力を実測し、管長手方向の各部における実測張力と目標
張力との偏差を算出し、上記偏差のある管端部を圧延す
るスタンドの回転数を、該偏差が零となるように制御し
、上記偏差のない部分を圧延するスタンドの回転数を、
基準回転数のままで圧延することを特徴とする絞り圧延
機における管の肉厚制御方法。
(1) In a method for controlling the wall thickness of a pipe in a reducing rolling mill consisting of a plurality of roll stands, the tension between adjacent stands is actually measured, the deviation between the measured tension and the target tension at each part in the longitudinal direction of the pipe is calculated, and the The rotation speed of the stand that rolls the tube end portion with the deviation is controlled so that the deviation becomes zero, and the rotation speed of the stand that rolls the portion without the deviation is controlled,
A method for controlling the wall thickness of a pipe in a reducing rolling mill, which is characterized by rolling at a standard rotation speed.
(2)上記各スタンドに対する管端部の噛込みおよび尻
抜けタイミングを、張力測定信号によって定める特許請
求の範囲第1項に記載の絞り圧延機における管の肉厚制
御方法。
(2) A method for controlling the wall thickness of a tube in a reducing rolling mill according to claim 1, wherein the timing of biting and tailing of the tube end with respect to each of the stands is determined by a tension measurement signal.
JP59227986A 1984-10-31 1984-10-31 Method for controlling wall thickness of pipe in drawing mill Pending JPS61108414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59227986A JPS61108414A (en) 1984-10-31 1984-10-31 Method for controlling wall thickness of pipe in drawing mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59227986A JPS61108414A (en) 1984-10-31 1984-10-31 Method for controlling wall thickness of pipe in drawing mill

Publications (1)

Publication Number Publication Date
JPS61108414A true JPS61108414A (en) 1986-05-27

Family

ID=16869368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59227986A Pending JPS61108414A (en) 1984-10-31 1984-10-31 Method for controlling wall thickness of pipe in drawing mill

Country Status (1)

Country Link
JP (1) JPS61108414A (en)

Similar Documents

Publication Publication Date Title
JPS641210B2 (en)
JP3743609B2 (en) Seamless pipe rolling apparatus and rolling control method
JPS61108414A (en) Method for controlling wall thickness of pipe in drawing mill
JPS58196111A (en) Method for elongating and rolling steel pipe
JP4013659B2 (en) Thickness control method for tube mill
JP3545541B2 (en) Meandering control method in plate rolling
JPH0153127B2 (en)
JPH0312962B2 (en)
CN113732074B (en) Online soft measurement method for width of rolling piece at outlet of each rack for oval-round bar grooved rolling
JP2000288616A (en) Manufacture of seamless steel tube
JP2698884B2 (en) Pipe thickness control method with stretch reducer
JPH0471608B2 (en)
KR20040110479A (en) Forward-rate compensation method of rolling mill
JPS59104208A (en) Method for rolling seamless steel pipe by mandrel mill
JPH0221324B2 (en)
JPS59104207A (en) Method for controlling elongation length of steel pipe in mandrel mill
JPS6238711A (en) Rolling control device
JPH0929316A (en) Setup method in hot finish rolling
JPS63230214A (en) Pipe rolling control method
JP3125668B2 (en) Thickness control method in continuous rolling mill
JPS61126913A (en) Rolling method of pipe by mandrel mill
JPH04313416A (en) Automatic wall thickness control method for butt welded steel tube
JPS6123506A (en) Prevention of bending in rolling mill for seamless steel pipe
JPH0452010A (en) Manufacture of seamless steel tube
JPS62107809A (en) Rolling controller