JPS61108407A - Hot rolling method of alpha+beta, beta type titanium alloy - Google Patents

Hot rolling method of alpha+beta, beta type titanium alloy

Info

Publication number
JPS61108407A
JPS61108407A JP22688484A JP22688484A JPS61108407A JP S61108407 A JPS61108407 A JP S61108407A JP 22688484 A JP22688484 A JP 22688484A JP 22688484 A JP22688484 A JP 22688484A JP S61108407 A JPS61108407 A JP S61108407A
Authority
JP
Japan
Prior art keywords
beta
type titanium
titanium alloy
hot
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22688484A
Other languages
Japanese (ja)
Inventor
Chiaki Ouchi
大内 千秋
Hiroyoshi Suenaga
末永 博義
Michio Hanaki
花木 道夫
Hideo Sakuyama
秀夫 作山
Ichiro Sawamura
一郎 澤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Nippon Mining Co Ltd
Priority to JP22688484A priority Critical patent/JPS61108407A/en
Priority to US06/725,454 priority patent/US4581077A/en
Priority to CA000479793A priority patent/CA1257528A/en
Priority to FR8506421A priority patent/FR2565252B1/en
Priority to GB08510702A priority patent/GB2158373B/en
Priority to CA000480302A priority patent/CA1239077A/en
Priority to US06/729,299 priority patent/US4675055A/en
Priority to GB08511022A priority patent/GB2162095B/en
Priority to FR8506739A priority patent/FR2563843B1/en
Publication of JPS61108407A publication Critical patent/JPS61108407A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals

Abstract

PURPOSE:To prevent surface cracking, generating in hot rolling, by heating an alpha+beta, beta type titanium alloy in the atmosphere of a specific partial pressure of oxygen, before rolling it into the prescribed dimensions. CONSTITUTION:A slab of alpha+beta, beta type titanium alloy is heated to a specific temperature in the atmosphere of a <=0.02atm partial pressure of oxygen, by using a vacuum furnace or a furnace of Ar or He, etc. atmosphere. Next, the slab is hot rolled into a hot rolled sheet of prescribed thickness. By this method, as the formations of oxidized scales and oxygen-enriched layer are remarkably restricted, the surface cracking, generating in hot rolling, is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、α十β、β型チタン合金の熱間圧延方法に
関し、表面性状に優れたチタン合金熱間圧延板を提供す
ることを目的とする。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for hot rolling α-10β and β-type titanium alloys, and an object thereof is to provide a titanium alloy hot-rolled plate with excellent surface properties. shall be.

〔従来の技術〕[Conventional technology]

α+β、β型チタン合金の熱間圧延板の製造において、
従来より組織の均一性向上や機械的性質の改善が課題と
されており、厚板圧延や熱間圧延法の検討が種々なさn
ている。そして、α十β、β型チタン合金の熱間圧延板
の組織の均一性向上や機械的性質の改善には低温域にお
い1十分な強圧下を加えることが有効であることが不発
明者らによ〕明らかにされている。
In the production of hot-rolled sheets of α+β and β-type titanium alloys,
Improving the uniformity of the structure and improving mechanical properties have long been issues, and various studies have been conducted on thick plate rolling and hot rolling methods.
ing. The inventors have discovered that applying a sufficiently strong reduction in a low temperature range is effective in improving the uniformity of the structure and improving the mechanical properties of hot-rolled sheets of α-10β and β-type titanium alloys. It has been made clear.

しかし、α+β、β型チタン合金は熱間加工性が悪く、
低温域の強圧下を加えた場合、熱間圧延板に表面割れを
生じる欠点があった。
However, α+β and β-type titanium alloys have poor hot workability;
When strong reduction in low temperature range is applied, there is a drawback that surface cracks occur in hot rolled sheets.

〔発明の概要〕[Summary of the invention]

本発明は上記した従来技術の欠点を改善する友めになさ
れたもので、表面割れを生じない熱間圧延法を提供する
ことを目的とするものである。
The present invention has been made to improve the above-mentioned drawbacks of the prior art, and it is an object of the present invention to provide a hot rolling method that does not cause surface cracks.

不発明者らは、α+β、β型チタン合金の熱間加工性を
調査した結果、これら材料自身の熱間加工性(内質的な
加工性)は十分に良好であり、例えば真空加熱を行った
際の熱間加工性には何ら問題のないこと、また熱間圧延
時の表面割f′Lハチタン合金スラブの圧延加熱時にお
ける表面の酸化に起因すること、更にチタン合金スラブ
の圧延加熱時の雰囲気を制御することにより、この表面
割九が制御されることを見い出した。
As a result of investigating the hot workability of α+β and β-type titanium alloys, the inventors found that the hot workability (intrinsic workability) of these materials themselves was sufficiently good, and it was found that the hot workability (intrinsic workability) of these materials themselves was sufficiently good. There is no problem with hot workability when hot rolling, and the surface crack f′L during hot rolling is caused by surface oxidation during rolling heating of the titanium alloy slab. It was discovered that this surface ratio can be controlled by controlling the atmosphere.

即ち、厚板圧延及び熱間圧延の際のα+β。That is, α+β during thick plate rolling and hot rolling.

β型チタン合金スラブの加熱には、通常バッチ炉或は連
続炉が用いられており、その加熱雰囲気はスラブ加熱時
の水素吸収を防止するため酸化雰囲気となっている。そ
のためスラブの表面には酸化スケール及び酸素富化層が
形成さ1、熱間圧延時の表面割れ感受性が増大すること
となる。
A batch furnace or a continuous furnace is usually used to heat β-type titanium alloy slabs, and the heating atmosphere is an oxidizing atmosphere to prevent hydrogen absorption during slab heating. As a result, oxide scale and an oxygen-enriched layer are formed on the surface of the slab, which increases the susceptibility to surface cracking during hot rolling.

不発明はこのよりな知見に基づくもので、圧延加熱にお
ける加熱雰囲気を制御することにより、スラブ表面の酸
化スケール及び酸素富化層の形成を抑制し、もって熱間
圧延時の表面割れを防止したものである。
The invention was based on this knowledge, and by controlling the heating atmosphere during rolling heating, the formation of oxide scale and oxygen-enriched layer on the slab surface was suppressed, thereby preventing surface cracking during hot rolling. It is something.

本発明において、圧延加熱の加熱雰囲気を酸素分圧0.
02Atm以下に制限する。これを超える酸素分圧の雰
囲気においては、スラブ表面の酸化スケール等の発生を
抑制できず、熱間圧延において表面割れを軽減できない
ためである。
In the present invention, the heating atmosphere for rolling heating is set to an oxygen partial pressure of 0.
Limited to 0.02 Atm or less. This is because in an atmosphere with an oxygen partial pressure exceeding this, it is not possible to suppress the generation of oxide scale on the slab surface, and it is not possible to reduce surface cracking during hot rolling.

この際の加熱温度及び加熱時間は、α+β。The heating temperature and heating time at this time are α+β.

β型チタン合金の種類、圧延設備の能力及びスラブ厚等
により適宜選択すれば良く、何ら限定はないが、上記し
良ように低温域で強圧下を加えることにより優れた機械
的性質を得ることができる。
It may be selected appropriately depending on the type of β-type titanium alloy, the capacity of the rolling equipment, the thickness of the slab, etc., and there is no limitation, but excellent mechanical properties can be obtained by applying strong reduction in a low temperature range as described above. I can do it.

また、加熱炉としては酸素分圧の制御が可能なものを用
いるものとし、例えば真空炉あるいt!Ar、Heの雰
囲気炉で行う。
In addition, a heating furnace that can control the oxygen partial pressure is used, such as a vacuum furnace or a t! It is carried out in an Ar or He atmosphere furnace.

上記し九条件で所定の温Kまで加熱後、熱間圧延を施せ
ば、表面割几のない熱蝙板を得ることができる。
If hot rolling is performed after heating to a predetermined temperature K under the nine conditions described above, a hot-rolled plate without surface cracks can be obtained.

このチタン合金スラタの圧動条件もα+β。The pressure conditions for this titanium alloy slater are also α+β.

β合金の種類及び材質特性、圧延設備の能力等によシ自
由に選定でき規定はされないρs1上述したように低温
域で強圧下することによシ優れた機械的性質を得ること
ができるから、目的に応じて適宜条件を選定する。
It can be freely selected depending on the type and material properties of the β alloy, the capacity of the rolling equipment, etc. and is not specified.ρs1 As mentioned above, excellent mechanical properties can be obtained by strong rolling at low temperatures. Select conditions as appropriate depending on the purpose.

〔実施例〕〔Example〕

次に実施例を示す〇 第1表に示すように、代表的α+β型チタン合金である
Ti−64At−4%V合金と、代表的β型チタン合金
である’ri−13%V−114Cr−3%A1合金を
用いて不発明法を実施した@圧延素材のスラブ厚は14
.0−であル、スラブは直径550mの鋳塊をβ域で鍛
造することにより製造した。熱間圧延においては、上記
スラブをそれぞft950°O(Ti−696At−4
%V合金)、980°0(Ti−13%V−11%cr
−:lAA合金〕に加熱後、熱間圧延を行い、32fi
厚さの圧延板に仕上げた。1バスの圧下率は約10係で
あり、圧延仕上温度に650°0〜900“0に変化さ
せた。圧延板の表面性状に表面積100crR″におけ
る深さ0.5m以上の表面割れの長さを目視によシ計測
することによシ評価した。第2表に加熱条件と表面性状
との関係を示す。真空炉あるいはAr 、 He  の
雰囲気炉を用い、酸素分圧が0.02Atm以下の雰囲
気でスラブを加熱することによフ、α+β、β型チタン
合金熱間圧延板の表面性状が大幅に改善されることがわ
かる〇 〔発明の効果〕 以上説明し友ように本発明法によれば、表面割nのない
優れたα+β、β型チタン合金の熱間圧延板を得ること
ができる。
Examples are shown below. As shown in Table 1, Ti-64At-4%V alloy, which is a typical α+β type titanium alloy, and 'ri-13%V-114Cr-, which is a typical β-type titanium alloy. The slab thickness of the rolled material using the uninvented method using 3% A1 alloy is 14
.. The slab was manufactured by forging an ingot with a diameter of 550 m in the β range. In hot rolling, each of the above slabs was rolled at ft950°O (Ti-696At-4
%V alloy), 980°0 (Ti-13%V-11%cr
-: lAA alloy], hot rolled to 32fi
Finished in a thick rolled plate. The rolling reduction rate for one bath was approximately 10 times, and the finishing temperature was varied from 650°0 to 900°0.The surface texture of the rolled plate included the length of surface cracks with a depth of 0.5 m or more in a surface area of 100 crR. The evaluation was made by visually measuring. Table 2 shows the relationship between heating conditions and surface texture. By heating the slab in an atmosphere with an oxygen partial pressure of 0.02 Atm or less using a vacuum furnace or an Ar or He atmosphere furnace, the surface properties of α+β and β type titanium alloy hot-rolled sheets can be significantly improved. [Effects of the Invention] As explained above, according to the method of the present invention, it is possible to obtain an excellent hot-rolled sheet of α+β, β-type titanium alloy with no surface crack n.

なお、本発明法に熱間圧延板の製造において見い出され
たか、素材としてブルーム又はビレットを用い熱間加工
プロセスとして熱間鍛造により丸棒等を製造しても本発
明の熱間圧延方法を順守する限り、表面性状の優れた製
品を製造することが可能である〇 特許出願人  日本鋼管株式会社 同     日不鉱業株式会社
It should be noted that the method of the present invention was discovered in the production of hot rolled plates, or even if a round bar or the like is produced by hot forging as a hot working process using bloom or billet as the material, the hot rolling method of the present invention is complied with. 〇Patent applicant Nippon Kokan Co., Ltd. Nippon Kokan Co., Ltd. Nippon Mining Co., Ltd.

Claims (1)

【特許請求の範囲】 α+β、β型チタン合金素材を酸素分圧 が0.02atm以下の雰囲気において加熱後、所定の
寸法に圧延することを特徴とするα +β、β型チタン合金の熱間圧延方法。
[Claims] Hot rolling of α + β, β type titanium alloy, characterized in that the α + β, β type titanium alloy material is heated in an atmosphere with an oxygen partial pressure of 0.02 atm or less, and then rolled to a predetermined size. Method.
JP22688484A 1984-04-27 1984-10-30 Hot rolling method of alpha+beta, beta type titanium alloy Pending JPS61108407A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP22688484A JPS61108407A (en) 1984-10-30 1984-10-30 Hot rolling method of alpha+beta, beta type titanium alloy
US06/725,454 US4581077A (en) 1984-04-27 1985-04-22 Method of manufacturing rolled titanium alloy sheets
CA000479793A CA1257528A (en) 1984-04-27 1985-04-23 Method of manufacturing rolled titanium alloy sheets
FR8506421A FR2565252B1 (en) 1984-04-27 1985-04-26 PROCESS FOR MANUFACTURING LAMINATED TITANIUM ALLOY SHEETS
GB08510702A GB2158373B (en) 1984-04-27 1985-04-26 Method of manufacturing rolled titanium alloy sheets
CA000480302A CA1239077A (en) 1984-05-04 1985-04-29 Method of producing ti alloy plates
US06/729,299 US4675055A (en) 1984-05-04 1985-05-01 Method of producing Ti alloy plates
GB08511022A GB2162095B (en) 1984-05-04 1985-05-01 A method of producing ti alloy plates
FR8506739A FR2563843B1 (en) 1984-05-04 1985-05-03 METHOD FOR MANUFACTURING TITANIUM ALLOY PLATES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22688484A JPS61108407A (en) 1984-10-30 1984-10-30 Hot rolling method of alpha+beta, beta type titanium alloy

Publications (1)

Publication Number Publication Date
JPS61108407A true JPS61108407A (en) 1986-05-27

Family

ID=16852088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22688484A Pending JPS61108407A (en) 1984-04-27 1984-10-30 Hot rolling method of alpha+beta, beta type titanium alloy

Country Status (1)

Country Link
JP (1) JPS61108407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289304A (en) * 1986-06-06 1987-12-16 Dowa Mining Co Ltd Hot working method for zr-containing copper alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567355A (en) * 1979-06-29 1981-01-26 Shin Kobe Electric Mach Co Ltd Manufacture of electrode plate for lead-acid battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567355A (en) * 1979-06-29 1981-01-26 Shin Kobe Electric Mach Co Ltd Manufacture of electrode plate for lead-acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289304A (en) * 1986-06-06 1987-12-16 Dowa Mining Co Ltd Hot working method for zr-containing copper alloy

Similar Documents

Publication Publication Date Title
US2340461A (en) Process of producing stainless steel sheet or strip stock
US2768915A (en) Ferritic alloys and methods of making and fabricating same
JPS62156226A (en) Production of grain oriented electrical steel sheet having uniform glass film and excellent magnetic characteristic
US2859143A (en) Ferritic aluminum-iron base alloys and method of producing same
GB1266928A (en)
JPS61108407A (en) Hot rolling method of alpha+beta, beta type titanium alloy
US2651099A (en) Method of rolling titanium sheets
JPH0215283B2 (en)
US3655459A (en) METHOD FOR PRODUCING MINIMUM-RIDGING TYPE 430 Mo STAINLESS STEEL SHEET AND STRIP
US2153906A (en) Method of heat treating chromiumcontaining corrosion and/or heat resisting steels
JPS6376706A (en) Production of thin sheet made of alpha+beta type alloy titanium
JPS5837383B2 (en) Continuous annealing method for titanium and titanium alloy strips
JPH0539523A (en) Manufacture of thick steel plate excellent in surface property
JPS6119688B2 (en)
US2145234A (en) Process of making surface alloyed
JPS634914B2 (en)
KR100562659B1 (en) Manufacturing process of magnetism reduced austenitic stainless plate
JPH0254745A (en) Manufacture of pure titanium plate for working
JPS5989723A (en) Manufacture of steel sheet for working by continuous casting and direct hot rolling
JPH0336214A (en) Method for continuously annealing non-oriented electrical steel sheet
RU2017837C1 (en) Process for manufacture of transformer steel
JP3124045B2 (en) Method for producing hot-rolled steel strip of austenitic stainless steel containing B
JPS5856740B2 (en) Silver alloy for glazing
JPS6326177B2 (en)
JPS61193720A (en) Hot extrusion method of titan product having good surface and high impact value