JPS61107169A - Current detector using optical fiber - Google Patents

Current detector using optical fiber

Info

Publication number
JPS61107169A
JPS61107169A JP59228724A JP22872484A JPS61107169A JP S61107169 A JPS61107169 A JP S61107169A JP 59228724 A JP59228724 A JP 59228724A JP 22872484 A JP22872484 A JP 22872484A JP S61107169 A JPS61107169 A JP S61107169A
Authority
JP
Japan
Prior art keywords
optical fibers
fibers
current
optical fiber
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59228724A
Other languages
Japanese (ja)
Other versions
JPH0641960B2 (en
Inventor
Kimiharu Kanamaru
金丸 公春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP59228724A priority Critical patent/JPH0641960B2/en
Publication of JPS61107169A publication Critical patent/JPS61107169A/en
Publication of JPH0641960B2 publication Critical patent/JPH0641960B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To enable the detection of a current with high accuracy and to simplify a structure, by detecting a current in such a mode that the magnetic field around an electric wire is subjected to perimetric integration. CONSTITUTION:The polarizing axes of two polarization surface preserving optical fibers 4, 4 are arranged so as to be mutually inclined by 45 deg. in the coupling with polarization beam splitters 2, 2 and the beam emitted from a laser beam source 5 is divided into two beam paths by the splitters 2, 2. When the beams passed through the fibers 4 are incident to single mode optical fibers 31, said beams are rotated by an angle phi by the magnetic field generating from an electric wire 11 to enter an 1/2 wavelength plate 8 to generate phase shift of 180 deg. and further propagated through the fibers 31 to be rotated by the angle phi to be incident to light receiving elements 61, 62 through the fibers 4 and the splitters 2. The ratio of the sum and difference of orthogonal components of the optical signals from the elements 61, 62 is calculated by a subtraction amplifying circuit 71, an addition amplifying circuit 72 and a divider 73 and the obtained output is proportional to the current of the electric wire 11.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ファイバを用いた電流検出器の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a current detector using an optical fiber.

[従来の技術] 従来、送電線に流れる電流を検知する検出器は、第5図
に示すように巻線型の変流器(CT)が広く使用されて
きた。これは、碍子12によって保護された一次巻線1
3、鉄心14、二次巻線15、測定端子16、絶縁充填
物17および変流素子10よりなるものである。しかし
、送電電圧が高くなるに従ってこの変流器も大型化し価
額も高額化の一途にあった。
[Prior Art] Conventionally, a wire-wound current transformer (CT), as shown in FIG. 5, has been widely used as a detector for detecting the current flowing in a power transmission line. This consists of a primary winding 1 protected by an insulator 12.
3, an iron core 14, a secondary winding 15, a measurement terminal 16, an insulating filling 17, and a current transforming element 10. However, as power transmission voltages have increased, current transformers have also become larger and more expensive.

近年光ファイバの実用化が急速に進展し、磁気の電気光
学的効果すなわちファラデー効果を利用した第6図に示
したような電流検出器が提案され、実用化されるように
なった。すなわち、電線11に流れる電流によって発生
する磁界Hに近接させてファラデー素子25を設け、検
出器26に接続された光ファイバ21に光を出射導光せ
しめ、偏光子23を介して当該出射光をファラデー素子
25に入光せしめ、ファラデー素子25内で磁界Hによ
って偏光面の回転した光を検光子24を介して光フフイ
バ22に入光せしめ、前記光の回転角を検知することに
より、電流の強度と比例関係にある回転角から電流値を
検出しようとするものである。
In recent years, the practical use of optical fibers has progressed rapidly, and a current detector as shown in FIG. 6, which utilizes the electro-optical effect of magnetism, that is, the Faraday effect, has been proposed and put into practical use. That is, a Faraday element 25 is provided close to the magnetic field H generated by the current flowing through the electric wire 11, and the light is emitted and guided to the optical fiber 21 connected to the detector 26, and the emitted light is transmitted through the polarizer 23. The light enters the Faraday element 25, and the light whose polarization plane has been rotated by the magnetic field H within the Faraday element 25 enters the optical fiber 22 via the analyzer 24. By detecting the rotation angle of the light, the current is This attempts to detect the current value from the rotation angle, which is proportional to the strength.

[発明が解決しようとする問題点] 上記の光ファイバによる電流検出器は、従来の第5図の
変流器タイプのものより小形化されより経済的であるが
、尚つぎのような問題点がある。
[Problems to be Solved by the Invention] The optical fiber-based current detector described above is smaller and more economical than the conventional current transformer type shown in FIG. 5, but it still has the following problems. There is.

すなわち、第1に他相電流による磁界の影響など外乱の
影響を受けることであり、第2に送電線よりの設置位置
までの距離の精度が直接検出精度に影響を与えることで
あり、第3に7?ラデー素子の前後に偏光子や検光子な
どの余分な光学部品を必要とすることである。
In other words, the first is that it is affected by disturbances such as the influence of magnetic fields due to other phase currents, the second is that the accuracy of the distance from the power transmission line to the installation position directly affects the detection accuracy, and the third is that 7? The problem is that extra optical components such as a polarizer and an analyzer are required before and after the Radday element.

従って、上記のような問題点がなく、従来の巻線型の検
出器と同等の精度を有し、かつ構造が簡単な光学式電流
検出器の出現を望む声が強かった。
Therefore, there has been a strong demand for an optical current detector that does not have the above-mentioned problems, has the same accuracy as the conventional wire-wound detector, and has a simple structure.

[問題点を解決するための手段] 本発明は上記のような実情にかんがみてなされたもので
あり、その要旨とするところは、2本の単一モード光フ
ァイバの終端部に波長板を介しこれら相互を光学的に接
続せしめて往復導光路を形成し、該2本の光ファイバを
電線の外周に巻回設置し、これら光ファイバを光送受信
装置ならびに検出装置に接続してなる光ファイバを用い
た電流検出器にある。
[Means for Solving the Problems] The present invention has been made in view of the above-mentioned circumstances, and its gist is to connect two single-mode optical fibers with a wave plate at their terminal ends. These optical fibers are optically connected to each other to form a reciprocating light guide path, the two optical fibers are wound around the outer circumference of an electric wire, and these optical fibers are connected to an optical transmitting/receiving device and a detection device to form an optical fiber. It is in the current detector used.

[実施例] 以下に本発明の実施例に基いて説明する。[Example] The present invention will be explained below based on examples.

第1図は、本発明に係る検出器を電線11に取付けた状
態を示す説明図である。終端部に172波長板8(本実
施例の場合は1/2波長板を用いているが1/4波長板
を使用することもできる)を介して光学的に接続された
単一モード光ファイバ31.31が電線11に巻き付け
られる。この光ファイバの構造は、例えば第2図にその
断面図を示したような該光ファイバ31.31を保護介
在物32とともにパイプ3内に収納した構造に構成する
。収納するパイプの材質としてはプラスチックや非磁性
金属が適当であるのは本発明の性質から当然である。光
ファイバ31.31の一端には偏波面保存光ファイバ4
.4が接続され、高い絶縁性能を維持するために絶縁性
充填物17の満たされている碍管12を通過せしめ、検
出装置26に接続される。検出装置26において、2は
偏光ビームスプリッタ−15は出射光用のレーザー光源
、61.62は受光素子、71は減算増幅器、72は加
算増幅器、73は割算器である。
FIG. 1 is an explanatory diagram showing a state in which a detector according to the present invention is attached to an electric wire 11. A single mode optical fiber optically connected to the terminal end via a 172 wavelength plate 8 (in this example, a 1/2 wavelength plate is used, but a 1/4 wavelength plate can also be used). 31.31 is wound around the electric wire 11. The structure of this optical fiber is such that, for example, the optical fiber 31, 31 is housed in the pipe 3 together with a protective inclusion 32, as shown in a cross-sectional view in FIG. It is natural from the nature of the present invention that plastics and non-magnetic metals are suitable materials for the pipe to be housed. A polarization maintaining optical fiber 4 is connected to one end of the optical fiber 31.
.. 4 is connected, passes through the insulating tube 12 filled with an insulating filling 17 to maintain high insulation performance, and is connected to the detection device 26. In the detection device 26, 2 is a polarizing beam splitter, 15 is a laser light source for emitted light, 61 and 62 are light receiving elements, 71 is a subtraction amplifier, 72 is a summing amplifier, and 73 is a divider.

以下に本発明の動作について第3および4図を参照し説
明する。2本の偏波面保存光ファイバ4゜4の偏光軸は
偏光ビームスプリッタ−2との結合において互いに45
°傾けて設置される。第3図の円内矢印はその偏波面保
存光ファイバ4の前記偏光軸の設置状況を示すものであ
る。
The operation of the present invention will be explained below with reference to FIGS. 3 and 4. The polarization axes of the two polarization-maintaining optical fibers 4°4 are 45° apart from each other when coupled to the polarizing beam splitter 2.
° Installed at an angle. The arrow in the circle in FIG. 3 indicates the installation situation of the polarization axis of the polarization-maintaining optical fiber 4.

レーザー光[5より出射された光は、偏光ビームスプリ
ッタ−2,2において二つの光路に分けられ、それぞれ
矢印に示すように進行する。第3図では、偏光ビームス
プリッタ−による反射光を実線で現わし透過光を点線で
現わしている。光フアイバ内を通過する間に偏光面がど
の様に回転するかを示したのが第4図である。まず実線
をもって示した反射光より説明する。偏波面保存光ファ
イバ4の偏光軸が前記のように45°傾けられているか
ら、入射時の角度は45°で、第3図の0部分では第4
図の■の45°の角度を有している。
The light emitted from the laser beam [5 is divided into two optical paths by the polarizing beam splitters 2, 2, and each travels as shown by the arrow. In FIG. 3, the light reflected by the polarizing beam splitter is shown by a solid line, and the transmitted light is shown by a dotted line. FIG. 4 shows how the plane of polarization rotates while passing through the optical fiber. First, the reflected light indicated by the solid line will be explained. Since the polarization axis of the polarization-maintaining optical fiber 4 is tilted at 45 degrees as described above, the angle at the time of incidence is 45 degrees, and at the 0 part in FIG.
It has an angle of 45° as shown by ■ in the figure.

光が単一モード光ファイバ31部分■に入ると、光ファ
イバはそれ自身ガラスであるからそれ自身ファラデー効
果を受け、電線より発生している磁界Hによって第4図
■の方向に角度φだけ回転せしめられる。この状態で1
/2波長板8に入り、180°の位相のずれを生じ、こ
こを出たとき(第3図■)には第4図■の方向に回転し
ている。
When light enters the single mode optical fiber 31 section (■), since the optical fiber itself is made of glass, it is subject to the Faraday effect, and is rotated by an angle φ in the direction of (■) in Figure 4 due to the magnetic field H generated by the electric wire. I am forced to do it. In this state 1
/2 wavelength plate 8, a phase shift of 180° occurs, and when it leaves this place (Fig. 3 -), it has rotated in the direction shown in Fig. 4 - (■).

(180°の位相のずれにより■の対称位置となる)こ
こでさらに光フアイバ内を通過し、第3図■まで来る間
に磁界Hによって前記同様φだけ回転が生じ、第4図■
の方向に回転している。このようにして光ファイバの中
を通過してきた光は最後に再び偏光ビームスプリッタ−
2に入り反射をして■の偏光角を有する出射光として出
射し第1図の受光素子61に入射する。
(Due to a phase shift of 180°, it becomes the symmetrical position shown in ■.) After passing through the optical fiber further, the magnetic field H rotates by φ in the same manner as described above, while it reaches the position shown in Fig. 3 (■).
is rotating in the direction of The light that has passed through the optical fiber in this way is finally sent to the polarizing beam splitter again.
2, is reflected, and is emitted as an output light having a polarization angle of 2, and enters the light receiving element 61 shown in FIG.

つぎに、点線で示した透過光の挙動について説明する。Next, the behavior of the transmitted light indicated by the dotted line will be explained.

偏光ビームスプリッタ−2の透過光の偏光面は反射光の
偏光面と90°の位相差を有しているから、偏波面保存
光ファイバの偏光軸と一致して、入射時の偏光方向は第
4図■の方向である。
Since the polarization plane of the transmitted light of the polarizing beam splitter 2 has a phase difference of 90° with the polarization plane of the reflected light, it coincides with the polarization axis of the polarization-maintaining optical fiber, and the polarization direction at the time of incidence is The direction is shown in Figure 4 ■.

この状態で光フアイバ内を通過する間に磁界Hによる回
転を受け、同じφだけ回転して第3図■の位置では第4
図■の方向に回転している。ここで1/2波長板を通過
して18o°位相差を生じ、前記■に軸対称の方向であ
る第4図■の方向となり。ざらに光フアイバ内を通過す
る間に一φの回転をして、第3図■の位置では第4図■
の方向となる。この状態で偏光ビームスプリッタ−2を
透過した光■は前記反射光の出射光■の偏光角に対して
45°の方向である第4図Oの方向の偏光角を有する光
として出射し、第1図の受光素子62に入射する。 以
上のようにして2本の偏波面保存光ファイバ4.4を通
過して戻ってきた双方向の光は、前記のように各々直交
する成分として受光素子61.62に入射して電気信号
に変換され、各々の直交成分の和と差の比を減算増幅回
路71および加算増幅回路72ならびに割算器73によ
って求める。このようにして得られた出力は電線11の
電流に比例するから、これによってその電流を検出する
ことができる。
While passing through the optical fiber in this state, it is rotated by the magnetic field H, rotates by the same φ, and reaches the position shown in Figure 3 (■).
It is rotating in the direction shown in figure ■. Here, the light passes through the 1/2 wavelength plate, producing a phase difference of 18 degrees, and becomes the direction shown in FIG. While roughly passing through the optical fiber, it rotates by one φ, and at the position shown in Figure 3 ■, it becomes as shown in Figure 4 ■
The direction will be In this state, the light (2) transmitted through the polarizing beam splitter 2 is emitted as light having a polarization angle in the direction shown in FIG. The light enters the light receiving element 62 shown in FIG. The bidirectional light that has passed through the two polarization-maintaining optical fibers 4.4 and returned as described above enters the light receiving element 61.62 as orthogonal components, and is converted into an electrical signal. The sum and difference ratio of each orthogonal component is determined by a subtraction amplifier circuit 71, an addition amplifier circuit 72, and a divider 73. Since the output thus obtained is proportional to the current in the wire 11, the current can be detected using this.

なお、本発明の構成においてとくに大事なのは、中間に
設けられている波長板であり、この波長板がない場合に
は、往復光路でファラデー効果が逆方向に作用し偏光面
の回転が相互に打ち消し合う結果となり、検出ができな
くなるのである。
What is particularly important in the configuration of the present invention is the wavelength plate provided in the middle; if this wavelength plate is not present, the Faraday effect will act in opposite directions in the round-trip optical path, and the rotations of the planes of polarization will cancel each other out. As a result, detection becomes impossible.

本発明の上記実施例においては、単一モード光ファイバ
と検出装置との間に偏波面保存光ファイバ4を存在せし
めているが、これは単一モード光ファイバに入射する光
の偏光面を一定にせしめるためであって、単一モード光
ファイバに入射する光の偏光軸を一定方向にして入射せ
しめる手段が別途開発されれば、この偏波面保存光ファ
イバは省略できるものである。さらに、保護バイブ3に
ついても、光ファイバの保護被覆自体が強固なものであ
れば、同様に省略可能なものである。
In the above embodiment of the present invention, a polarization-maintaining optical fiber 4 is provided between the single-mode optical fiber and the detection device, which keeps the polarization plane of light incident on the single-mode optical fiber constant. If a means for making the polarization axis of light incident on a single mode optical fiber in a fixed direction is developed separately, the polarization maintaining optical fiber can be omitted. Furthermore, the protective vibrator 3 can also be omitted if the protective coating of the optical fiber itself is strong.

[発明の効果] 以上の通り、本発明に係る電流検出器によれば、電線の
周囲の磁界を周回積分する形で電流を検出しているから
、他相や他の回線の電流による磁界の影響等の外乱を受
けにくく、測定部に偏光子や検光子などの余分な光学素
子を設置する必要がなく、きわめて小型の電流検出器と
して実現できる上、このように構造が簡単でありながら
高い精度の電流検出ができるものであって、検出用の光
ファイバが電線に巻き付けられていることで、難着雪や
低風音効果をも発揮するなど、その産業上に及ぼす意義
は高く評価さるべきものがある。
[Effects of the Invention] As described above, according to the current detector of the present invention, since the current is detected by integrating the magnetic field around the electric wire, the magnetic field due to the current of other phases or other lines is detected. It is less susceptible to disturbances such as influences, there is no need to install extra optical elements such as polarizers and analyzers in the measurement section, and it can be realized as an extremely compact current detector. It is capable of accurate current detection, and the optical fiber for detection is wrapped around the electric wire, making it difficult for snow to accumulate and reducing wind noise, making it highly valued for its industrial significance. There is something to be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電線電流検出器を取付けた状態を
示す説明図、第2図は本発明に使用される光ファイバの
構造の実施例を示す断面図、第3図および4図は本発明
に係る検出器の動作を示す説明図、第5図は従来の巻線
型のlR電流検出器例を示す説明図、第6図は従来の光
ファイバを用いた電流検出器の例を示す説明図である。 2;偏光ビームスプリッタ−3:パイプ4;偏波面保存
光ファイバ 5:レーザー光源8:1/2波長板 11
:[線 26;検出器@ 31;単一モード光)/イバ61.6
2:受光素子
FIG. 1 is an explanatory diagram showing the state in which the wire current detector according to the present invention is installed, FIG. 2 is a sectional view showing an example of the structure of the optical fiber used in the present invention, and FIGS. 3 and 4 are An explanatory diagram showing the operation of the detector according to the present invention, FIG. 5 is an explanatory diagram showing an example of a conventional wire-wound type IR current detector, and FIG. 6 is an explanatory diagram showing an example of a conventional current detector using an optical fiber. It is an explanatory diagram. 2; Polarizing beam splitter 3: Pipe 4; Polarization maintaining optical fiber 5: Laser light source 8: 1/2 wavelength plate 11
: [Line 26; Detector @ 31; Single mode light)/Iba 61.6
2: Light receiving element

Claims (1)

【特許請求の範囲】 1、2本の単一モード光ファイバの終端部に波長板を介
しこれら相互を光学的に接続せしめて往復導光路を形成
し、該2本の光ファイバを電線の外周に巻回設置し、こ
れら光ファイバを光送受信装置ならびに検出装置に接続
してなる光ファイバを用いた電流検出器 2、2本の単一モード光ファイバの片端と送受信検出装
置との間に偏波面保存光ファイバを接続してなる特許請
求の範囲第1項記載の電流検出装置3、2本の単一モー
ド光ファイバをプラスチック管あるいは非磁性金属管内
に収納してなる特許請求の範囲第1または2項記載の電
流検出器 4、2個の偏光ビームスプリッタを光ファイバの端部に
設置し、単一光源の光を2分割して2本の光ファイバに
入光せしめ、各々の光ファイバの戻り光を分離検出する
双方向光路に構成してなる特許請求の範囲第1ないし3
項のいずれかに記載の電流検出器
[Claims] One or two single mode optical fibers are optically connected to each other via a wavelength plate at the terminal ends thereof to form a reciprocating light guide path, and the two optical fibers are connected to the outer periphery of the electric wire. A current detector 2 using an optical fiber is formed by winding the optical fibers around the fibers and connecting these optical fibers to an optical transmitting/receiving device and a detecting device. Current detection device 3 according to claim 1, which is formed by connecting wavefront preserving optical fibers; Claim 1, which is formed by housing two single mode optical fibers in a plastic tube or a non-magnetic metal tube. Alternatively, the current detector 4 described in Section 2, two polarizing beam splitters are installed at the ends of the optical fibers, and the light from a single light source is split into two and input into two optical fibers. Claims 1 to 3 constitute a bidirectional optical path for separating and detecting the return light of the
Current detector according to any of paragraphs
JP59228724A 1984-10-30 1984-10-30 Current detector using optical fiber Expired - Lifetime JPH0641960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59228724A JPH0641960B2 (en) 1984-10-30 1984-10-30 Current detector using optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59228724A JPH0641960B2 (en) 1984-10-30 1984-10-30 Current detector using optical fiber

Publications (2)

Publication Number Publication Date
JPS61107169A true JPS61107169A (en) 1986-05-26
JPH0641960B2 JPH0641960B2 (en) 1994-06-01

Family

ID=16880818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59228724A Expired - Lifetime JPH0641960B2 (en) 1984-10-30 1984-10-30 Current detector using optical fiber

Country Status (1)

Country Link
JP (1) JPH0641960B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990973A (en) * 1972-12-11 1974-08-30
JPS5655864A (en) * 1979-07-24 1981-05-16 Thomson Csf Interference current measuring apparatus including optical fiber
JPS57190483U (en) * 1981-05-28 1982-12-02

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990973A (en) * 1972-12-11 1974-08-30
JPS5655864A (en) * 1979-07-24 1981-05-16 Thomson Csf Interference current measuring apparatus including optical fiber
JPS57190483U (en) * 1981-05-28 1982-12-02

Also Published As

Publication number Publication date
JPH0641960B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
US6281672B1 (en) Optical current transformer
US7492977B2 (en) All-fiber current sensor
EP1302774B1 (en) Sagnac interferometer current sensor
CN101226210A (en) Reflection type polarization irrespective miniaturization photo-electricity mutual-inductor
JPH0475470B2 (en)
JP2759381B2 (en) Depolarized fiber optic rotation sensor with low Faraday effect drift
US5677622A (en) Current sensor using a Sagnac interferometer and spun, single mode birefringent optical fiber to detect current via the Faraday effect
JPH02173518A (en) Optical fiber rotational angular velocity sensor
JPS61107169A (en) Current detector using optical fiber
JPH11352158A (en) Optical fiber measuring instrument
JP3308897B2 (en) Current measuring method and photocurrent sensor
JP3271117B2 (en) Current sensor
JP2000111586A (en) Current-measuring device
JPH0322595B2 (en)
CN110988435B (en) Optical path system for improving signal-to-noise ratio of optical fiber current sensor
JP2001526770A (en) Electro-optic voltage sensor
JPH01292263A (en) Optical fiber current measuring apparatus
JP2001153896A (en) Optical fiber type current transformer
JP3347449B2 (en) Optical current measuring device
JP2005300422A (en) Photocurrent detecting apparatus
JPH05142265A (en) Device for measuring current
JPH07333569A (en) Optical current transformer
JPH06242149A (en) Optical current sensor
JPH05142266A (en) Device for measuring current
JPH0269674A (en) Optical current transformer