JPS6110702A - Automatic work measuring apparatus - Google Patents

Automatic work measuring apparatus

Info

Publication number
JPS6110702A
JPS6110702A JP13279684A JP13279684A JPS6110702A JP S6110702 A JPS6110702 A JP S6110702A JP 13279684 A JP13279684 A JP 13279684A JP 13279684 A JP13279684 A JP 13279684A JP S6110702 A JPS6110702 A JP S6110702A
Authority
JP
Japan
Prior art keywords
measurement
probe
measured
measuring
machine tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13279684A
Other languages
Japanese (ja)
Inventor
Mamoru Yamazaki
衛 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikegai Corp
Original Assignee
Ikegai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikegai Corp filed Critical Ikegai Corp
Priority to JP13279684A priority Critical patent/JPS6110702A/en
Publication of JPS6110702A publication Critical patent/JPS6110702A/en
Pending legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To make the chance of occurrence of errors, few, in an NC machine tool, by contacting a probe, which is mounted on a main spindle, to a material to be machined on the table of the machine tool after the finish of machining at a medium speed, returning the probe once after the measurement, contacting the probe again at a very slow speed, and performing the measurement. CONSTITUTION:The shape of a work 20 after the finish of cutting is to be measured on a table 2 of an NC machine tool. A cross rail 4 is mounted on a column (not shown), which is freely moved in the direction of the X axis. A saddle 15 is mounted on the rail 4 so that the saddle can be moved freely in the direction of the Y axis. A probe 10 is attached to a main spindle 17 of a ram head 16, which is mounted on the saddle 15 so that the head can be moved freely in the direction of the Z axis. An ON signal when the probe 10 is contacted to the work 20 is transmitted to an NC device 43 through a receiver 40 and a machine control board 41. The error between the signal and a reference value is outputted to an output printer 47. At this time, at first, the probe 10 is contacted to the work 20 at a medium speed, and the coarse measurement is performed. The probe is returned once, and it is contacted again at a very slow speed and the measurement is performed. Thus the error between the present position and the mechanical position of the NC apparatus can be made few.

Description

【発明の詳細な説明】 (イ)技術分野 工作機械テーブル上にて被加工物を取り付は切削完了后
、該被加工物を前記テーブル上より取り除くことなく、
工作機械主軸に測定子を取り付けあらかじめプログラム
された任意の複数個の特定点を順次測定子を接触させる
サイクルを繰り返すことにより被測定物を計測する方法
に関する。
Detailed Description of the Invention (a) Technical field: Mounting a workpiece on a machine tool table without removing the workpiece from the table after cutting is completed.
The present invention relates to a method of measuring a workpiece by attaching a measuring stylus to a machine tool spindle and repeating a cycle of sequentially bringing the measuring stylus into contact with a plurality of pre-programmed specific points.

(ロ)従来技術 被加工物の切削完了后、被加工物(以下被測定物という
)の形状を精密測定するには、被測定物を工作機械テー
ブル上より取り除し、測定台上に移設するため運搬せね
ばならず、取り除し等による測定誤差、計器を使用する
ための読み取り誤差あるいは、測定時間を長く要する等
の欠点を有していた。
(B) Conventional technology After the cutting of the workpiece is completed, in order to precisely measure the shape of the workpiece (hereinafter referred to as the object to be measured), the object to be measured is removed from the machine tool table and transferred to the measurement table. This has drawbacks such as measurement errors due to removal, reading errors due to the use of a meter, and long measurement times.

(ハ)発明の目的 工作機械テーブル上に取付けられ加工な完了した被加工
物の形状を工作機械主軸先端に測定子を装着し、工作機
械のNC装置のメインプログラムで被測定物の測定目標
値P65  P13001X−Y−Z、−D−;を指令
するだけでカムタムマクロを利用することにより、被測
定物のプログラムされた特定点を測定子で各々接触させ
、その接触信号を実測値とし目標値と比較し、その誤差
をプリンタに出力し、このサイクルを繰り返させ、被測
定物の形状誤差を得ることを目的とする。
(c) Purpose of the Invention The shape of a completed workpiece mounted on a machine tool table is measured by attaching a probe to the tip of the machine tool spindle, and using the main program of the NC device of the machine tool to measure the target value of the workpiece. By simply commanding P65 P13001 The purpose is to compare, output the error to a printer, repeat this cycle, and obtain the shape error of the object to be measured.

(ニ)発明の構成 本発明の構成は、工作機械主軸先端に測定子を装着させ
、該工作機械テーブル上に取り付けられた被測定物を前
記測定子を被測定物に接触させながら測定するもので、
以下その実施例について説明する。
(D) Structure of the Invention The structure of the present invention is such that a measuring point is attached to the tip of the main spindle of a machine tool, and the object to be measured mounted on the machine tool table is measured while the measuring point is brought into contact with the object to be measured. in,
Examples thereof will be described below.

(ホ)実施例の説明 第1図には本方法を実施した工作機械の正面図を示す。(e) Description of examples FIG. 1 shows a front view of a machine tool in which this method was implemented.

ベッド1上にテーブル2が載置されX軸サーボモータ6
により移動自在に取り付けられ、またベッド両側面より
張り出し倒立せられたコラム3を上方にてトップビーム
5にて上部を閉鎖する様連結固定され両コラム中間には
クロスレール4が装架され両コラムに取付けられたスク
リュー12にてコラム上、任意の位置にクロスレール4
を位置決めすることができる。またクロスレール4上に
はY軸サーボモータ7により左右に移動自在にサドル1
5が装着され、サドル15上にはラムヘッド16がZ軸
サーボモータ8により駆動され上下に移動自在に装着さ
れている。なお正面図右側には工具及び測定子等を収納
するための工具マガジン12またクロスレール4の右端
には前記工具および測定子をラムヘッドの主軸17に交
換するための工具交換装置11を装備している。
A table 2 is placed on the bed 1 and an X-axis servo motor 6
The columns 3, which are inverted and protrude from both sides of the bed, are connected and fixed so that the upper part is closed by the top beam 5, and a cross rail 4 is installed between both columns, and both columns are mounted movably. Attach the cross rail 4 to any position on the column using the screw 12 attached to the column.
can be positioned. In addition, a saddle 1 is mounted on the cross rail 4 so that it can be moved left and right by a Y-axis servo motor 7.
A ram head 16 is mounted on the saddle 15 and is driven by a Z-axis servo motor 8 so as to be movable up and down. Furthermore, on the right side of the front view, a tool magazine 12 for storing tools, measuring points, etc. is provided, and at the right end of the cross rail 4, a tool changing device 11 is provided for exchanging the tools and measuring points to the main shaft 17 of the ram head. There is.

第1図はテーブル上にワーク20を載置し、数値制御装
置(図示せざる)の指令により、切削完了したワーク2
0を主軸17に装着された測定子10を装着した状態を
示すものである。システムの構成は第2図に示す。テー
ブル2上に載置され力す工完了したワーク20(以下被
測定物と称する)はラムヘッド16の主軸17先端に測
定子10が工具交換装置11により装置され、測定子1
0は先端にスタイラスが取付けられていて、それが被測
定物20に接触し、変位すると測定子内部の接点が動作
し、その動作信号をNC装置43のスキップ端子に入力
すると、その現在位置データをNC装置のレジスタに記
憶する構造であり、X、Y。
Figure 1 shows a workpiece 20 placed on a table, and a workpiece 20 that has been completely cut by a command from a numerical control device (not shown).
0 shows the state in which the probe 10 attached to the main shaft 17 is attached. The system configuration is shown in Figure 2. The workpiece 20 (hereinafter referred to as the object to be measured) that has been placed on the table 2 and has been subjected to force machining is placed on the tip of the main shaft 17 of the ram head 16 by the tool changer 11, and the gauge head 10 is placed on the tip of the main shaft 17 of the ram head 16.
0 has a stylus attached to its tip, and when it comes into contact with the object to be measured 20 and is displaced, the contacts inside the probe operate, and when the operating signal is input to the skip terminal of the NC device 43, its current position data is displayed. This is a structure in which X, Y are stored in the register of the NC device.

Z軸サーボモータによりプログラム指令により、測定子
10を被測定物20に接触させ、その接触オン信号をレ
シーバ40(図示せざる光信号を使用)より機械制御盤
41をへて、NC装置43に送信され、基準値と実測値
を比較し、その誤差を出力プリンタ47によりデータ4
8をプリントアウトするシステムにより形成せられてい
る。
The contact point 10 is brought into contact with the object to be measured 20 according to a program command by the Z-axis servo motor, and the contact-on signal is transmitted from the receiver 40 (using an optical signal not shown) to the machine control panel 41 and sent to the NC device 43. The reference value and the measured value are compared, and the error is outputted as data 4 by the printer 47.
It is formed by a system that prints out 8.

(へ)問題点を解決するための手段 本ワーク自動計測装置は工作機械のNC装置を使用する
もので、主プログラムでG65P8001X−Y−Z−
Dd;を指令するだけでNC装置機能のカスタムマクロ
で基準座標値と測定子が被測定物に接触させ測定する方
法を第3図、および第4図の流れ図により説明をする。
(f) Means to solve the problem This automatic workpiece measuring device uses the NC device of the machine tool, and the main program is G65P8001X-Y-Z-
3 and 4, a method for making a measurement by simply instructing Dd; by using a custom macro of the NC device function to bring the reference coordinate value and measuring tip into contact with the object to be measured will be explained.

加工完了后自動計測スタートにより主軸17に測定子1
゜を取り付け、測定座標系の設定し、測定子10を被測
定物の測定原点aに位置決めをする。その際Ddは測定
時の最終進行方向を指定するもので指定方法は、 方向 指定 方向 指定 方向 指定 +X  D+1.  +Y  D+2 −Z  D−3
−X  D−1−Y  D−2 は上表の通りであるので、±X、十Y、−Zの5方のD
値を判別することにより計測通路を指令しなくても三次
元計測をすることができる。D値判別をし測定点仮り位
置すを計算し、早送りで測定仮り位置すに移動し、測定
サイクルを行う。測定サイクルは第3図のl)−+C−
+ d −+ e−+ fの順で行うが、一般的に測定
子10を被測定物20に接触し、接触信号により計測を
するだけでは計測誤差を含むため次の計測動作をする。
After machining is completed, measurement head 1 is placed on spindle 17 by automatic measurement start.
2, set the measurement coordinate system, and position the probe 10 at the measurement origin a of the object to be measured. At this time, Dd specifies the final traveling direction during measurement, and the specification method is: Direction Specification Direction Specification Direction Specification +X D+1. +Y D+2 -Z D-3
-X D-1-Y D-2 is as shown in the table above, so the five Ds of ±X, 10Y, and -Z
By determining the value, three-dimensional measurement can be performed without commanding the measurement path. The D value is determined, the temporary measurement point position is calculated, the measurement point is moved to the temporary measurement position by fast forwarding, and the measurement cycle is performed. The measurement cycle is l)-+C- in Figure 3.
+ d - + e - + f. However, generally, simply touching the probe 10 to the object to be measured 20 and measuring based on the contact signal will include a measurement error, so the next measurement operation is performed.

第3図a部の詳細を第5図に示すとb点よりスキップ機
能を使用し、送り速度中速で荒測定を開始′し、C点で
測定子10が被測定物20に接触したとき、NC装置ヘ
スキップ信号が発信するが、このときNC装置はその現
在位置を記憶する(が、この値は機械位置とはサーボ系
の溜り量だけずれ、これが計測誤差の一つの大きな要素
となり、このずれの量は送り速度に比例するため一旦測
定子10を被測定物20に接触させてから第5図の如く
戻し微速にして同じ測定点を再度測定するため、NC装
置の現在位置と機械位置の誤差が少(なる。微速にて被
測定物20に接触し測定値を読み込み、計測誤差を補正
し、計測誤差を演算し、データー48をプリントアウト
して、任意点の計測し1サイクルを完了するが、このサ
イクルをメインプログラムで指令された複数の任意点P
、 、 P2・・・・・・・・・、Pnと繰返し測定す
ることにより形状誤差が測定される。
The details of part a in Fig. 3 are shown in Fig. 5. From point b, the skip function is used to start rough measurement at a medium feed speed, and when the probe 10 comes into contact with the object to be measured 20 at point C. , a skip signal is sent to the NC device, but at this time the NC device memorizes its current position (however, this value deviates from the machine position by the amount of stagnation in the servo system, which is one of the major factors in measurement error, and this Since the amount of deviation is proportional to the feed speed, once the measuring stylus 10 is brought into contact with the object to be measured 20, as shown in Fig. 5, the same measuring point is measured again at a slow speed, so the current position of the NC device and the machine position are The error will be small. Contact the object 20 to be measured at very low speed, read the measured value, correct the measurement error, calculate the measurement error, print out the data 48, measure any point, and complete one cycle. Completed, but this cycle can be executed at multiple arbitrary points P specified by the main program.
, , P2 . . . , Pn are repeatedly measured to measure the shape error.

次に計測誤差は前述したサーボ系の溜りパルス量の外に
、スキップ信号のバラつキ、シーケンスの遅れ、測定子
20の不感帯などに影響されるためこれの計測誤差を補
正するため、工作機械テーブル上に、形状寸法(x、y
、z)の既に測定されているモデルを載置し、前述した
プログラムおよび測定方法により測定し、プリントアウ
トされたデータ48が、すなわち補正値となるので、こ
のデータをx、y、zめ補正値としてNC装置のY軸、
Y軸、Z軸のレジスターに記憶させ、第4図流れ図の測
定座標読込みZM后計測誤差補正Zm+εとして記憶さ
れた現在位置の数値より減算し、計測精度を向上してい
る。
Next, in addition to the amount of accumulated pulses in the servo system mentioned above, measurement errors are affected by variations in the skip signal, delay in the sequence, dead zone of the probe 20, etc., so in order to correct these measurement errors, the machine tool On the table, shape dimensions (x, y
, z), which has already been measured, is measured using the program and measurement method described above, and the printed data 48 becomes the correction value, so this data is corrected by x, y, and z. Y axis of NC device as value,
It is stored in the Y-axis and Z-axis registers, and after reading the measurement coordinates ZM in the flowchart of FIG. 4, it is subtracted from the value of the current position stored as the measurement error correction Zm+ε, thereby improving measurement accuracy.

、(ト)発明の効果 本方法を使用することにより、従来被測定物を工作機械
テーブル上より取除し測定器により測定をしなければな
らなかったが、工作機械のNC装置を利用することによ
り、工作機械テーブル上で機械加工完了層、測定子を主
軸に装着するだけで、NC装置のプログラム指令で被切
削物を加工すると同じ座標系で計測プログラムを指令し
、かつ主プログラムで被測定物の基準座標値を指令する
たけで計測が実施できプリントアウトされるので熟練を
必要とせず、プリントアウトされた計測誤差によりプロ
グラムミス、工具の摩耗状況もチェックも簡単に出来る
ようになった。
(g) Effects of the invention By using this method, the object to be measured conventionally had to be removed from the machine tool table and measured with a measuring instrument, but it is now possible to use the NC device of the machine tool. By simply attaching the machining completed layer to the main spindle on the machine tool table, when the workpiece is machined using the program commands of the NC device, the measurement program is commanded in the same coordinate system, and the measurement target is measured using the main program. Measurement can be carried out simply by commanding the reference coordinate values of the object, and the printout does not require any skill, and the printout of measurement errors makes it easy to check program errors and tool wear conditions.

またD値判別をプログラムに指定することにより計測通
路を指令しなくても測定時の測定方向を指定出来て三次
元計測が出来、また測定子のスタイラスを被測定物に中
速、微速と接触させることによりサーボ系の溜り量のば
らつきの減少およびずれ量も少くでき、計測精度の向上
が達成できた。
In addition, by specifying D value discrimination in the program, it is possible to specify the measurement direction during measurement without commanding the measurement path, allowing three-dimensional measurement, and the stylus of the measuring point contacts the object to be measured at medium and slow speeds. By doing so, it was possible to reduce the variation in the amount of stagnation in the servo system and the amount of deviation, thereby achieving an improvement in measurement accuracy.

【図面の簡単な説明】 第1図は実施例としての工作機械の正面図、第2図はワ
ーク自動計測装置のシステム構成図を示す。第3図は測
定子による測定動作を示すもので、第5図はその測定サ
イクルの詳細を示したものである。第4図は自動計測の
流れ図を示す。 にベッド、2:テーブル、6:X軸サーボモータ、7:
X軸サーボモータ、8:Z軸サーボモータ、9:主軸モ
ータ、11:工具交換装置、16:主軸ヘッド、12:
工具貯蔵マガジン、15:サドル、17:主軸、40ニ
レシーバー、41:機械制御盤、43:NC装置、47
:出力プリンタ、48:データ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view of a machine tool according to an embodiment, and FIG. 2 is a system configuration diagram of an automatic workpiece measuring device. FIG. 3 shows the measurement operation by the probe, and FIG. 5 shows the details of the measurement cycle. FIG. 4 shows a flowchart of automatic measurement. bed, 2: table, 6: X-axis servo motor, 7:
X-axis servo motor, 8: Z-axis servo motor, 9: Spindle motor, 11: Tool changer, 16: Spindle head, 12:
Tool storage magazine, 15: Saddle, 17: Spindle, 40 receiver, 41: Machine control panel, 43: NC device, 47
:Output printer, 48:Data

Claims (1)

【特許請求の範囲】 1、NC工作機械において、該機テーブル上に載置され
た被加工物を加工完了后主軸に測定子を装着し、NC装
置の機能を利用し、被加工物の加工完了后の形状(以下
被測定物という)を測定する方法に関し測定子を被測定
物に接触させるとき被測定物に測定子を中速で接触させ
測定し、一旦戻し、再度微速で同一測定点を接触させ測
定することを特徴とする測定方法。 2、特許請求の範囲1、の記載の方法にてプログラムに
測定方向の判別方向を指令することにより計測通路が指
定されることを特徴とする測定方法。 3、特許請求の範囲1、にてあらかじめ確定された基準
値を有するモデルを前記工作機械テーブル上に載置し、
前記測定方法により測定子でモデルを各軸毎に測定し、
基準値と計測値の差分を各軸の補正値としてNC装置の
レジスターに記憶させ被測定物の測定の補正に使用する
ことを特徴とする測定方法。
[Claims] 1. In an NC machine tool, after completing machining of a workpiece placed on the machine table, a probe is attached to the spindle, and the function of the NC device is used to machine the workpiece. Regarding the method of measuring the shape after completion (hereinafter referred to as the object to be measured), when bringing the measuring point into contact with the object to be measured, the measuring point is brought into contact with the object to be measured at medium speed, then returned once, and then returned to the same measuring point again at slow speed. A measuring method characterized by contacting and measuring. 2. A measurement method characterized in that a measurement path is specified by instructing a program to determine a measurement direction using the method according to claim 1. 3. Place the model having the reference value determined in advance in claim 1 on the machine tool table;
Measure the model for each axis with a measuring stylus using the measurement method described above,
A measuring method characterized in that the difference between a reference value and a measured value is stored in a register of an NC device as a correction value for each axis, and is used for correcting the measurement of an object to be measured.
JP13279684A 1984-06-26 1984-06-26 Automatic work measuring apparatus Pending JPS6110702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13279684A JPS6110702A (en) 1984-06-26 1984-06-26 Automatic work measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13279684A JPS6110702A (en) 1984-06-26 1984-06-26 Automatic work measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6110702A true JPS6110702A (en) 1986-01-18

Family

ID=15089760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13279684A Pending JPS6110702A (en) 1984-06-26 1984-06-26 Automatic work measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6110702A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442728A (en) * 1988-05-12 1995-08-15 Healthtech Services Corp. Interactive patient assistance device for storing and dispensing a testing device
US5617323A (en) * 1995-10-31 1997-04-01 Stansberry; Warren W. Key identifier method and apparatus
JP2006239846A (en) * 2005-03-07 2006-09-14 Jtekt Corp Nc machining device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442728A (en) * 1988-05-12 1995-08-15 Healthtech Services Corp. Interactive patient assistance device for storing and dispensing a testing device
US5868135A (en) * 1988-05-12 1999-02-09 Healthtech Service Corporation Interactive patient assistance device for storing and dispensing a testing device
US5617323A (en) * 1995-10-31 1997-04-01 Stansberry; Warren W. Key identifier method and apparatus
JP2006239846A (en) * 2005-03-07 2006-09-14 Jtekt Corp Nc machining device

Similar Documents

Publication Publication Date Title
TWI630964B (en) Automatic setting device and automatic setting method of tool offset value of machine tool
US4392195A (en) Method of and apparatus for controlledly moving a movable element
US4033206A (en) Numerically controlled machine tool
US3623216A (en) Automatic tool position compensating system for a numerically controlled machine tool
JPH0238342B2 (en)
JPS6161746A (en) Method of searching contact of tool and device for preciselypositioning surface of cutting tool
US4881021A (en) Numerical control equipment
JPS6110702A (en) Automatic work measuring apparatus
JP3283278B2 (en) Automatic lathe
JPH08141883A (en) Method for correcting thermal displacement of machine tool
JPH06138921A (en) Measuring method and automatic correction method for linear interpolation feeding accuracy of numerically controlled machine tool
JPH081405A (en) Device and method for detecting lost motion
JPH0635092B2 (en) Numerical control device with tool file
TWI796094B (en) Thermal displacement measurement system and method applied to machine tools
JPH0575544B2 (en)
JPS6157150B2 (en)
JPS624438Y2 (en)
JPH0569276A (en) Thermal displacement correcting method for lathe
JP4298979B2 (en) Automatic lathe and centering position correction method of cutting tool in automatic lathe
JP2001259970A (en) Machine tool with built-in tool presetter
JPH0732247A (en) Thermal displacement correction in center work
JPH0592349A (en) Numerically controlled device
JP2000190168A (en) Nc machining method and its device
JPH0325301B2 (en)
JPS60146652A (en) Tool length measuring method