JPH0732247A - Thermal displacement correction in center work - Google Patents

Thermal displacement correction in center work

Info

Publication number
JPH0732247A
JPH0732247A JP20027493A JP20027493A JPH0732247A JP H0732247 A JPH0732247 A JP H0732247A JP 20027493 A JP20027493 A JP 20027493A JP 20027493 A JP20027493 A JP 20027493A JP H0732247 A JPH0732247 A JP H0732247A
Authority
JP
Japan
Prior art keywords
thermal displacement
tailstock
axis
correction
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20027493A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamawaki
宏 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP20027493A priority Critical patent/JPH0732247A/en
Publication of JPH0732247A publication Critical patent/JPH0732247A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Turning (AREA)

Abstract

PURPOSE:To provide a method to precisely correct a cylindricity failure and a precision failure in the X and Y directions at the time of machining a center work due to thermal displacement on the side of a spindle stock and on the side of a tailstock. CONSTITUTION:A thermal displacement amount in the X direction and a thermal displacement amount in the Z axial direction of standard positions of a cylindrical part 6 of a center 6 on the side of a tailstock separated from a cylindrical part 1a of a spindle stock by a specified distance are respectively measured by tracers 11a, 11b of a sensor 11 installed on a cutting tool post 7, and from difference of the thermal displacement amounts on the spindle stock side and the tailstock side and a distance between the standard positions, a thermal displacement rate for a unit Z axial dimension is found. Thereafter, by adding or subtracting the measured thermal displacement amount on the spindle stock side or the tailstock side to or from a value found by way of multiplying a distance from the standard position of a cutting tool by this thermal displacement rate and finding thermal displacement correction values in the X direction and the Z direction corresponding to a Z axial moving destination of the cutting tool, correction is continuously carried out synchronously with cutting feed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセンタワークの切削加工
時における熱変位による加工精度誤差を補正する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of correcting a machining accuracy error due to thermal displacement during cutting of a center work.

【0002】[0002]

【従来の技術】従来、旋盤において比較的長いワークを
外径切削する場合、先端を心押センタで支持した状態で
切削が行われる。このようなセンタワークは長時間連続
運転を行うと、主として主軸受など回転部の発熱による
主軸台側の熱変位と、油圧心押台の圧油の温度変化やセ
ンタ軸受部の発熱等に心押台側の熱変位により加工寸法
が変化してテーパが生じる。このセンタワーク加工時に
おける熱変位を自動補正する装置に特公昭49−151
1号の先行技術がある。
2. Description of the Related Art Conventionally, when cutting a relatively long work on a lathe with an outer diameter, the cutting is performed with the tip supported by a tailing center. When such a center work is continuously operated for a long time, the thermal displacement of the headstock side due to the heat generation of the rotating part such as the main bearing, the temperature change of the pressure oil of the hydraulic tailstock, the heat generation of the center bearing part, etc. Due to the thermal displacement on the side of the platform, the processing size changes and a taper occurs. As a device for automatically correcting thermal displacement during machining of this center work, Japanese Patent Publication No. Sho 49-151
There is No. 1 prior art.

【0003】このものは図8に示すようにチャックFで
把持され、先端をセンタKで支持されたワークWを連続
加工したとき、主軸Sの中心Oが−ΔX変位してO´に
移ったとき、心押台のセンタKは熱変位がないものとす
ると、ワークの回転中心はΔθだけ傾いてテーパが付く
ことになる。従って切削中刃物のZ軸方向の移動距離L
に応じて−ΔX×{L/(Lo+L1 )}なるX軸方向
の補正を連続的に行うようにしたものである。但し、L
1 =ワーク長,Lo=ワーク端と主軸側熱変位測定位置
との隙間。
As shown in FIG. 8, when this workpiece W is gripped by a chuck F and a work W whose tip is supported by a center K is continuously machined, the center O of the spindle S is displaced by -ΔX and moved to O '. At this time, if the center K of the tailstock has no thermal displacement, the center of rotation of the work is inclined by Δθ and is tapered. Therefore, the moving distance L in the Z-axis direction of the cutting tool during cutting
The correction in the X-axis direction is -ΔX × {L / (Lo + L 1 )} according to the above. However, L
1 = Work length, Lo = Gap between work end and spindle side thermal displacement measurement position.

【0004】[0004]

【発明が解決しようとする課題】従来の技術で述べた特
公昭49−1511号の技術は心押台側の熱変位がない
ものとして補正を行っているが、連続加工に多用される
油圧心押台は圧油の温度変化により心押台側にも熱変位
が発生する。このため補正量が実状と相違してテーパが
残り寸法補正が完全でないという問題を有している。本
発明は従来の技術の有するこのような問題点に鑑みなさ
れたものであり、その目的とするところは心押台側の熱
変位を考慮に入れたセンタワークにおける熱変位補正方
法を提供しようとするものである。
Although the technique of Japanese Patent Publication No. Sho 49-1511 described in the prior art makes a correction on the assumption that there is no thermal displacement on the tailstock side, the hydraulic core is often used for continuous machining. The tailstock also undergoes thermal displacement on the tailstock side due to the temperature change of the pressure oil. Therefore, there is a problem that the correction amount is different from the actual state and the taper remains and the dimensional correction is not perfect. The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a thermal displacement correction method for a center work in which thermal displacement on the tailstock side is taken into consideration. To do.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明のセンタワークにおける熱変位補正方法は、Z
軸方向に所定距離はなれた主軸台側基準位置と心押台側
基準位置のX軸方向及び又はZ軸方向の熱変位量を刃物
台に取付けたセンサによりそれぞれ測定し、主軸台側と
心押台側の前記熱変位量の差と前記所定距離から単位Z
軸寸法当たりの熱変位率を求め、該熱変位率を刃物のZ
軸移動時の前記基準位置からの距離に乗じて求めた値に
主軸台側又は心押台側の前記熱変位量を加算又は減算し
て加工時の前記刃物のZ軸移動先に対応するX方向及び
又はZ方向の熱変位補正値を求め、切削送りに同期して
連続的に補正するものである。
In order to achieve the above object, a method for correcting thermal displacement in a center work according to the present invention is Z
The thermal displacements in the X-axis direction and / or Z-axis direction of the headstock side reference position and the tailstock side reference position, which are separated by a predetermined distance in the axial direction, are measured by sensors mounted on the tool post, respectively, and the headstock side and tailstock side are adjusted. From the difference in the thermal displacement amount on the table side and the predetermined distance, a unit Z
The thermal displacement rate per shaft dimension is calculated, and the thermal displacement rate is calculated as Z
X corresponding to the Z-axis movement destination of the blade during machining by adding or subtracting the thermal displacement amount on the headstock side or tailstock side to a value obtained by multiplying the distance from the reference position during axis movement Direction and / or Z direction thermal displacement correction values are obtained and continuously corrected in synchronization with the cutting feed.

【0006】[0006]

【作用】主軸台側基準位置と心押台側基準位置のX軸方
向及び又はZ軸方向の初期値を測定して記憶し、連続加
工が所定時間行われた後の現在値を測定して、その差で
ある熱変位量を求め、切削加工中の刃物の移動先Z軸位
置に対応するX軸方向及び又はZ軸方向の熱変位補正値
を算出し、指令値加算して熱変位補正を行う。
[Function] The initial values of the headstock side reference position and the tailstock side reference position in the X-axis direction and / or the Z-axis direction are measured and stored, and the current values after continuous machining for a predetermined time are measured. , The thermal displacement amount which is the difference is calculated, the thermal displacement correction value in the X-axis direction and / or the Z-axis direction corresponding to the destination Z-axis position of the cutting tool during cutting is calculated, and the command value is added to correct the thermal displacement correction. I do.

【0007】[0007]

【実施例】以下実施例について図面にもとづいて説明す
る。図1のNC旋盤において、床上に設置されたベッド
上左側に固着された主軸台1に主軸2が回転可能に軸承
されており、主軸2の先端にチャック3が同心に嵌着さ
れている。ベッド上にはZ軸方向の案内が二組設けられ
ており、一方のZ軸案内上に心押台4が位置移動可能で
載置されている。心押台4には心押軸5が軸方向移動可
能に支持されており、心押軸5は図示しない油圧シリン
ダピストン部材により駆動され、先端にセンタ6が着脱
可能に嵌着されている。更にベッドの他方のZ軸案内上
に移動可能に載置されるサドル9上に刃物台7がX軸移
動可能に載置されており、刃物台7にZ軸方向の旋回中
心軸のまわりで旋回割出し可能にタレット8が設けられ
ている。
Embodiments will be described below with reference to the drawings. In the NC lathe of FIG. 1, a spindle 2 is rotatably supported by a spindle headstock 1 fixed on the left side of a bed installed on the floor, and a chuck 3 is concentrically fitted to the tip of the spindle 2. Two sets of Z-axis direction guides are provided on the bed, and the tailstock 4 is movably placed on one of the Z-axis guides. A tailstock shaft 5 is supported on the tailstock 4 so as to be movable in the axial direction. The tailstock shaft 5 is driven by a hydraulic cylinder piston member (not shown), and a center 6 is detachably fitted to the tip thereof. Further, a tool rest 7 is mounted on the saddle 9 which is movably mounted on the other Z-axis guide of the bed so as to be movable in the X-axis, and the tool rest 7 is mounted on the tool rest 7 around the central axis of rotation in the Z-axis direction. A turret 8 is provided so that it can be swivelly indexed.

【0008】そしてサドル9は図2に示すようにベッド
に固着のZ軸サーボモータ10によりボールねじ12を
介して移動位置決めされ、Z軸サーボモータ10に位置
検出器10aが固着されている。また刃物台17はサド
ル9に固着のX軸サーボモータ13によりボールねじ1
4を介して移動位置決めされ、X軸サーボモータ13に
位置検出器13aが着されている。尚、ベッドのZ軸案
内は心押台4,サドル9共用の一組とすることもでき
る。タレット8には外周等間隔に工具取付けステーショ
ンが設けられており、この工具取付けステーションの一
つに機内計測用センサ11が着脱可能に取付けられてい
る。センサ11は主軸台側測定用接触針11aと心押台
側測定用触針11bを有し、主軸台1に熱変位測定用の
円筒部1aが主軸2と同心に設けられ、センタ6にも熱
変位測定用円筒部6aがセンタ軸心に対して同心に設け
られている。
As shown in FIG. 2, the saddle 9 is moved and positioned by a Z-axis servomotor 10 fixed to the bed via a ball screw 12, and a position detector 10a is fixed to the Z-axis servomotor 10. Further, the tool rest 17 is attached to the saddle 9 by the X-axis servomotor 13 and the ball screw 1
The position detector 13a is attached to the X-axis servomotor 13 by being moved and positioned through the position 4 of FIG. The Z-axis guide of the bed may be a pair of tailstock 4 and saddle 9. Tool mounting stations are provided on the turret 8 at equal intervals on the outer periphery, and an in-machine measuring sensor 11 is removably mounted on one of the tool mounting stations. The sensor 11 has a headstock side measuring contact needle 11a and a tailstock side measuring stylus 11b. The headstock 1 is provided with a cylindrical portion 1a for measuring thermal displacement concentrically with the spindle 2, and also in the center 6. The thermal displacement measuring cylindrical portion 6a is provided concentrically with respect to the center axis.

【0009】NC装置16内には図2のブロック線図部
分に示すように操作盤17よりの手動入力信号を判定す
るマニアル動作制御部18、紙テープ・フロッピーディ
スク・通信等のNCプログラム入力手段19からの自動
入力信号を判定するNCプログラム解釈部20、X軸サ
ーボモータ13及びZ軸サーボモータ10を指令値通り
駆動するための軸移動制御部21が内蔵されており、以
上は従来と殆ど異なるところはない。
In the NC device 16, as shown in the block diagram of FIG. 2, a manual operation control section 18 for judging a manual input signal from the operation panel 17, an NC program input means 19 for paper tape, floppy disk, communication, etc. The NC program interpreting section 20 for judging the automatic input signal from the CPU, the axis movement control section 21 for driving the X-axis servo motor 13 and the Z-axis servo motor 10 according to the command values are built in, and the above is almost different from the conventional one. There is no place.

【0010】更にNC装置16内には本発明に関わる実
行データ生成部22,及び熱変位量記憶部23,熱変位
補正展開値記憶部24が組み込まれている。実行データ
生成部22はセンサ11の触針11a,11bが円筒部
1a,6aにそれぞれ当接して信号がONになった時点
のX軸及びZ軸座標値を読み込んで熱変位量を求め、求
めた熱変位量から外径加工時の刃物TのZ軸移動先に対
応する熱変位補正値を求める部分、熱変位量記憶部は測
定した熱変位量を記憶する部分、熱変位補正展開値記憶
部24は刃物TのZ軸移動先に対応する熱変位補正値を
一括記憶しておく部分である。
Further, the NC device 16 incorporates an execution data generating section 22, a thermal displacement amount storage section 23, and a thermal displacement correction development value storage section 24 according to the present invention. The execution data generation unit 22 obtains the thermal displacement amount by reading the X-axis and Z-axis coordinate values at the time when the stylus 11a, 11b of the sensor 11 abuts on the cylindrical portions 1a, 6a and the signal is turned ON. A portion for obtaining a thermal displacement correction value corresponding to the Z-axis movement destination of the tool T during outer diameter machining from the thermal displacement amount, a portion for storing the measured thermal displacement amount, a thermal displacement amount storage portion, and a thermal displacement correction development value storage The section 24 is a section for collectively storing thermal displacement correction values corresponding to the Z-axis movement destination of the blade T.

【0011】続いて本実施例の作用について説明する。
先ずX方向の熱変位算出の基となるX方向熱変位初期値
の設定について図3のフローチャートに従い図6(a)
を参照して説明する。ステップS1において、機体温度
がほぼ一定の状態を確認し、ステップS2において、操
作盤17又はNCプログラム入力手段19より実行デー
タ生成部22に主軸台1側のX方向の初期値設定を指示
して設定状態とし、ステップS3において、手動又は自
動でセンサ11の触針11aにより主軸台円筒部1aの
X方向熱変位測定基準位置を測定する。そしてステップ
S4において、触針11aが円筒部1aに当接して信号
がONになった時点の座標値Xxs1,Zxs1を主軸
台側X方向初期値として熱変位量記憶部23に保存す
る。
Next, the operation of this embodiment will be described.
First, with respect to the setting of the initial value of the X-direction thermal displacement, which is the basis of the calculation of the thermal displacement in the X-direction, according to the flowchart of FIG.
Will be described with reference to. In step S1, it is confirmed that the machine body temperature is almost constant, and in step S2, the operation panel 17 or the NC program input means 19 instructs the execution data generator 22 to set an initial value in the X direction on the headstock 1 side. In the setting state, in step S3, the X-direction thermal displacement measurement reference position of the headstock cylindrical portion 1a is measured manually or automatically by the stylus 11a of the sensor 11. Then, in step S4, the coordinate values Xxs1 and Zxs1 at the time when the stylus 11a comes into contact with the cylindrical portion 1a and the signal is turned on are stored in the thermal displacement amount storage unit 23 as initial values in the X-direction on the headstock side.

【0012】次いでステップS5において、実行データ
生成部22に心押台4側のX軸方向の初期値設定を指示
して設定状態とし、ステップS6において、センサ11
の触針11bによりセンタ6の円筒部6aのX方向熱変
位測定基準位置を測定する。そしてステップS7におい
て、触針11bが円筒部6aに当接して信号がONにな
った時点の座標値Xxc1,Zxc1を心押台側の初期
値として熱変位量記憶部23に保存し、初期値の設定を
終わる。
Next, in step S5, the execution data generating section 22 is instructed to set the initial value in the X-axis direction on the tailstock 4 side to be set, and in step S6, the sensor 11 is set.
The X-direction thermal displacement measurement reference position of the cylindrical portion 6a of the center 6 is measured by the stylus 11b. Then, in step S7, the coordinate values Xxc1 and Zxc1 at the time when the stylus 11b comes into contact with the cylindrical portion 6a and the signal is turned ON are stored in the thermal displacement amount storage unit 23 as initial values on the tailstock side. Finish setting.

【0013】次にこの初期値設定後にセンタワークWの
切削加工を所定時間連続的に行った時点におけるX方向
熱変位現在値の設定について図4のフローチャートに従
い説明する。ステップS8において、実行データ生成部
22に主軸台側のX軸方向の現在値設定を指示して設定
状態とし、ステップS9において、主軸台1円筒部1a
のX方向熱変位測定基準位置を測定する。そしてステッ
プS10において、触針11aが円筒部1aに当接して
信号がONになった時点の座標値Xxs2,Zxs2を
主軸台側X方向熱変位現在値として熱変位量記憶部23
に保存する。
Next, the setting of the current value of the X-direction thermal displacement at the time when the cutting of the center work W is continuously performed for a predetermined time after the setting of the initial value will be described with reference to the flowchart of FIG. In step S8, the execution data generation unit 22 is instructed to set the present value in the X-axis direction on the headstock side to be in the setting state, and in step S9, the headstock 1 cylindrical portion 1a.
The X-direction thermal displacement measurement reference position of is measured. Then, in step S10, the thermal displacement amount storage unit 23 sets the coordinate values Xxs2, Zxs2 at the time when the stylus 11a comes into contact with the cylindrical portion 1a and the signal is turned on, as the present thermal displacement value in the X-direction on the headstock side.
Save to.

【0014】次いでステップS11において、実行デー
タ生成部22に心押台側のX軸方向の現在値設定を指示
して設定状態とし、ステップS12において、センサ1
1の触針11bにてセンタ6の円筒部6aのX方向熱変
位測定基準位置を測定する。そしてステップS13にお
いて、触針11bが円筒部6aに当接して信号がONに
なった時点の座標値Xxc2,Zxc2を熱変位量記憶
部23に保存し、現在値の設定を終わる。
Next, in step S11, the execution data generating section 22 is instructed to set the current value in the X-axis direction on the tailstock side to be set, and in step S12, the sensor 1 is set.
The X-direction thermal displacement measurement reference position of the cylindrical portion 6a of the center 6 is measured with the first stylus 11b. Then, in step S13, the coordinate values Xxc2 and Zxc2 at the time when the stylus 11b comes into contact with the cylindrical portion 6a and the signal is turned on are stored in the thermal displacement amount storage unit 23, and the setting of the current value is completed.

【0015】次にX方向の熱変位補正について図5のフ
ローチャートに従い図6(b)を参照して説明する。ス
テップS14において、操作盤17又はNCプログラム
入力手段19より実行データ生成部22にX方向熱変位
補正を指示して補正状態とすると、熱変位量記憶部23
より主軸側及び心押台側のそれぞれの初期値と現在値が
呼び出され、ステップS15において、X方向熱変位補
正が必要かを確認して、YESの場合ステップS16に
おいて、実行データ生成部22で刃物TのZ軸移動指令
から次の移動先座標(Z)に対するX方向熱変位補正値
dxを次の数1により連続的に求める。
Next, correction of thermal displacement in the X direction will be described with reference to the flowchart of FIG. 5 and with reference to FIG. In step S14, when the operation data generation unit 22 is instructed to correct the X-direction thermal displacement from the operation panel 17 or the NC program input unit 19 to enter the correction state, the thermal displacement storage unit 23.
The initial value and the current value on the spindle side and tailstock side are called, and in step S15, it is confirmed whether or not the X-direction thermal displacement correction is necessary. If YES, in step S16, the execution data generation unit 22 From the Z-axis movement command of the blade T, the X-direction thermal displacement correction value dx for the next movement destination coordinate (Z) is continuously calculated by the following formula 1.

【0016】[0016]

【数1】 但しdxc=Xxc2−Xxc1。dxs=Xxs2−
Xxs1。 次いでステップS17において、求めたdxを移動先X
軸指令値に加算して軸移動制御を行ってX方向の熱変位
補正をする。
[Equation 1] However, dxc = Xxc2-Xxc1. dxs = Xxs2-
XXs1. Next, in step S17, the obtained dx is set as the destination X.
The thermal displacement in the X direction is corrected by adding the axial command value and controlling the axial movement.

【0017】次にZ方向の熱変位補正の作用について説
明する。このZ方向熱変位補正は前述のX方向の熱変位
補正の場合とほぼ同様であり、説明の重複を避け、異な
るところを中心に簡単な説明とする。図7(a)に示す
ように触針11aにより主軸台1側の円筒部端面1bの
Z方向熱変位測定基準位置の初期値Xzs1,Zzs1
と、所定時間稼働後の現在値Xzs2,Zzs2とをそ
れぞれ測定して記憶し、触針11bにより心押台4側の
センタ6の円筒部端面6bのZ軸熱変位測定基準位置の
初期値Xzc1,Zzc1と、所定時間稼働後の現在値
Xzc2,Zzc2をそれぞれ測定して記憶する。そし
て刃物TのZ軸移動指令から次の移動先座標(Z)に対
するZ方向熱変位補正値dzを次の数2により連続的に
求める。
Next, the operation of correcting the thermal displacement in the Z direction will be described. This Z-direction thermal displacement correction is almost the same as the above-mentioned X-direction thermal displacement correction, and therefore, a brief description will be made focusing on different points while avoiding duplication of description. As shown in FIG. 7A, the initial values Xzs1 and Zzzs1 of the Z-direction thermal displacement measurement reference position of the end face 1b of the cylindrical portion on the headstock 1 side by the stylus 11a.
And the current values Xzs2 and Zzzs2 after being operated for a predetermined time are measured and stored, and an initial value Xzc1 of the Z-axis thermal displacement measurement reference position of the end face 6b of the cylindrical portion 6b of the center 6 on the tailstock 4 side is measured by the stylus 11b. , Zzc1 and current values Xzc2 and Zzc2 after a predetermined time of operation are measured and stored. Then, the Z-direction thermal displacement correction value dz for the next movement destination coordinate (Z) is continuously calculated from the Z-axis movement command of the blade T by the following equation 2.

【0018】[0018]

【数2】 但しdxc=Zzc2−Zzc1。Dzs=Zzs2−
Zzs1。 こうして求めたdzを移動先Z軸指令値に加算して軸制
御を行いZ方向の熱変位補正をする。このX方向熱変位
補正とZ方向熱変位補正とを同時に行うことにより、主
軸台1,心押台4の熱変位は勿論ボールねじ12,1
4、刃物台7,サドル9,ベッド等の熱変位を含んだ高
精度な熱変位補正が可能となる。
[Equation 2] However, dxc = Zzz2-Zzz1. Dzs = Zzzs2-
Zzzs1. The dz thus obtained is added to the destination Z-axis command value to perform axis control to correct the thermal displacement in the Z direction. By simultaneously performing the X-direction thermal displacement correction and the Z-direction thermal displacement correction, not only the thermal displacement of the headstock 1 and the tailstock 4 but also the ball screws 12, 1
4. It is possible to perform highly accurate thermal displacement correction including thermal displacement of the tool rest 7, the saddle 9, the bed and the like.

【0019】またdx,dzの計算を刃物TのZ移動中
(切削中)に行うのではなく、実行データ生成部22が
現在値を更新するたびにZ軸全長にわたって所定ピッチ
毎に一括計算し、熱変位補正展開値記憶部24にこれを
記憶しておき、刃物Tの移動先座標値に対応した熱変位
補正値を順次読みだし、より高速に熱変位補正を行うよ
うにすることもできる。
Further, the calculation of dx and dz is not performed during the Z movement (during cutting) of the cutting tool T, but every time the execution data generating unit 22 updates the current value, it is collectively calculated at a predetermined pitch over the entire length of the Z axis. It is also possible to store this in the thermal displacement correction development value storage unit 24, sequentially read the thermal displacement correction values corresponding to the coordinate values of the moving destination of the blade T, and perform the thermal displacement correction at a higher speed. .

【0020】またX方向変位補正とZ方向熱変位補正を
同時に行うものと限定されるものではなく、比較的短い
センタワークや、Z軸方向の寸法精度が比較的ラフな場
合にはX方向熱変位補正のみとすることも可能であり、
X軸方向の寸法精度が比較的ラフで、Z軸方向の寸法精
度が厳しいセンタワークの場合にはZ方向熱変位補正の
みとすることも可能である。
Further, the X-direction displacement correction and the Z-direction thermal displacement correction are not limited to being performed at the same time, and when the center work is relatively short or the dimensional accuracy in the Z-axis direction is relatively rough, the X-direction thermal correction is performed. It is possible to use only displacement correction,
In the case of a center work in which the dimensional accuracy in the X-axis direction is relatively rough and the dimensional accuracy in the Z-axis direction is severe, it is possible to perform only the Z-direction thermal displacement correction.

【0021】[0021]

【発明の効果】本発明は上述のとおり構成されているの
で、次に記載する効果を奏する。主軸台側及び又は心押
台側のX軸方向及び又はZ軸方向の熱変位量を刃物台に
取付けたセンサにより測定して、加工時における刃物の
移動先Z軸位置に対応する熱変位補正量を求めて熱変位
補正を行うようにしたので、主軸台,心押台は勿論ボー
ルねじ等他の熱変位も一括補正することができ、テーパ
補正のみでなくX方向及びZ軸方向の熱変位による寸法
誤差を正確に補正することが可能となる。
Since the present invention is configured as described above, it has the following effects. The amount of thermal displacement in the X-axis direction and / or Z-axis direction on the headstock side and / or tailstock side is measured by a sensor attached to the tool rest, and the thermal displacement correction corresponding to the Z-axis position of the destination of the tool during machining is measured. Since the thermal displacement is corrected by calculating the amount, it is possible to collectively correct not only the headstock, tailstock but also other thermal displacements such as a ball screw, and not only the taper correction but also the heat in the X and Z directions. It is possible to accurately correct the dimensional error due to the displacement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例のNC旋盤の構成図である。FIG. 1 is a configuration diagram of an NC lathe according to an embodiment.

【図2】センタワークにおける熱変位補正装置の構成図
である。
FIG. 2 is a configuration diagram of a thermal displacement correction device in a center work.

【図3】X方向熱変位初期値設定動作のフローチャート
図である。
FIG. 3 is a flowchart of an X-direction thermal displacement initial value setting operation.

【図4】X方向熱変位現在値設定動作のフローチャート
図である。
FIG. 4 is a flowchart of an X-direction thermal displacement current value setting operation.

【図5】X方向熱変位補正動作のフローチャート図であ
る。
FIG. 5 is a flowchart of an X-direction thermal displacement correction operation.

【図6】(a)はX方向熱変位測定動作の説明図、
(b)はZ軸座標値とX方向熱変位補正値の関係を示す
グラフ図である。
FIG. 6A is an explanatory view of an X-direction thermal displacement measuring operation,
(B) is a graph showing the relationship between the Z-axis coordinate value and the X-direction thermal displacement correction value.

【図7】(a)はZ軸熱変位測定動作の説明図、(b)
はZ軸座標値とZ方向熱変位補正値の関係を示すグラフ
図である。
FIG. 7A is an explanatory diagram of a Z-axis thermal displacement measurement operation, and FIG.
FIG. 6 is a graph showing the relationship between Z-axis coordinate values and Z-direction thermal displacement correction values.

【図8】従来の技術のセンタワークにおける熱変位補正
方法の説明図である。
FIG. 8 is an explanatory diagram of a conventional method for correcting thermal displacement in center work.

【符号の説明】[Explanation of symbols]

1 主軸台 2 主軸 3 チャック 4 心押台 6 センタ 7 刃物台 8 タレット 10 Z軸サー
ボモータ 10a,13a 検出器 11 センサ 11a,11b 触針 13 X軸サー
ボモータ 22 実行データ生成部 23 熱変位量
記憶部 26 熱変位補正展開記憶部
1 spindle head 2 spindle 3 chuck 4 tailstock 6 center 7 turret 8 turret 10 Z-axis servomotors 10a, 13a detector 11 sensor 11a, 11b stylus 13 X-axis servomotor 22 execution data generator 23 thermal displacement storage Part 26 thermal displacement correction expansion storage part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Z軸方向に所定距離はなれた主軸台側基
準位置と心押台側基準位置のX軸方向及び又はZ軸方向
の熱変位量を刃物台に取付けたセンサによりそれぞれ測
定し、主軸台側と心押台側の前記熱変位量の差と前記所
定距離から単位Z軸寸法当たりの熱変位率を求め、該熱
変位率を刃物のZ軸移動時の前記基準位置からの距離に
乗じて求めた値に主軸台側又は心押台側の前記熱変位量
を加算又は減算して加工時の前記刃物のZ軸移動先に対
応するX方向及び又はZ方向の熱変位補正値を求め、切
削送りに同期して連続的に補正することを特徴とするセ
ンタワークにおける熱変位補正方法。
1. A thermal displacement amount in the X-axis direction and / or Z-axis direction between a headstock side reference position and a tailstock side reference position separated by a predetermined distance in the Z axis direction is measured by a sensor attached to a tool post, respectively. The thermal displacement rate per unit Z-axis dimension is calculated from the difference in the thermal displacement amounts on the headstock side and tailstock side and the predetermined distance, and the thermal displacement rate is the distance from the reference position when the blade is moved on the Z-axis. X-direction and / or Z-direction thermal displacement correction value corresponding to the Z-axis movement destination of the cutting tool during machining by adding or subtracting the thermal displacement amount on the headstock side or tailstock side to the value obtained by multiplying And a thermal displacement correction method for a center work, which is characterized by continuously calculating in synchronism with cutting feed.
JP20027493A 1993-07-19 1993-07-19 Thermal displacement correction in center work Pending JPH0732247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20027493A JPH0732247A (en) 1993-07-19 1993-07-19 Thermal displacement correction in center work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20027493A JPH0732247A (en) 1993-07-19 1993-07-19 Thermal displacement correction in center work

Publications (1)

Publication Number Publication Date
JPH0732247A true JPH0732247A (en) 1995-02-03

Family

ID=16421603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20027493A Pending JPH0732247A (en) 1993-07-19 1993-07-19 Thermal displacement correction in center work

Country Status (1)

Country Link
JP (1) JPH0732247A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078333A (en) * 2007-09-27 2009-04-16 Nachi Fujikoshi Corp Surface broaching machine and surface broaching method
JP2010029973A (en) * 2008-07-28 2010-02-12 Jtekt Corp Grinding machine and grinding method
KR100970557B1 (en) * 2003-12-29 2010-07-16 두산인프라코어 주식회사 The Main Axis Heat Displacement Correction Unit of CND and Method Thereof
JP2016132087A (en) * 2015-01-22 2016-07-25 中村留精密工業株式会社 Thermal displacement corrector for two-spindle counter lathe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970557B1 (en) * 2003-12-29 2010-07-16 두산인프라코어 주식회사 The Main Axis Heat Displacement Correction Unit of CND and Method Thereof
JP2009078333A (en) * 2007-09-27 2009-04-16 Nachi Fujikoshi Corp Surface broaching machine and surface broaching method
JP2010029973A (en) * 2008-07-28 2010-02-12 Jtekt Corp Grinding machine and grinding method
JP2016132087A (en) * 2015-01-22 2016-07-25 中村留精密工業株式会社 Thermal displacement corrector for two-spindle counter lathe

Similar Documents

Publication Publication Date Title
US7530878B2 (en) Grinding machine with a concentricity correction system
US4195250A (en) Automatic measuring and tool position compensating system for a numerically controlled machine tool
JP4684428B2 (en) Tool presetter
JPH0525626B2 (en)
JPWO2002032620A1 (en) Measuring method and apparatus, and machine tool and work processing method having the apparatus
JP2000198047A (en) Machine tool
US4584795A (en) Numerical control grinding machine for grinding a taper portion of a workpiece
JP2001030141A (en) Thin pipe machining method and its device
JPH0732247A (en) Thermal displacement correction in center work
US11376667B2 (en) Machining tool and workpiece measurement method
JPH04240050A (en) On-machine measuring instrument
JPH05318287A (en) Super-precision working machine
JP3459847B2 (en) Method and apparatus for resetting tool correction amount by tool presetter
JP3162936B2 (en) Edge position correction device for rotary tools
JP2001269843A (en) Measuring method for center position of rotating tool
JPH05337787A (en) Boring diameter correcting device of machine tool
JPH0895625A (en) Backlash measurement/correction device for machining of spherical or circular arc surface
JPH10309653A (en) Method for detecting displacement of cutting edge position, machine tool provided with cutting edge position displacement detecting function, and tool holder for machine tool
JPH06246589A (en) Noncircular workpiece error correcting method by in-machine measurement
JPH0523952A (en) Machining accuracy maintaining method by means of relative position reference
JPS6334049A (en) Method of compensating elongation of boring spindle of numerically controlled (nc) type horizontal boring machine
JP2782302B2 (en) Non-circular workpiece measurement method
JPS624438Y2 (en)
JPH08351B2 (en) Blade position measurement method
JPS6149069B2 (en)