JPS61106716A - Manufacture of bar steel having superior toughness at low temperature - Google Patents

Manufacture of bar steel having superior toughness at low temperature

Info

Publication number
JPS61106716A
JPS61106716A JP22590284A JP22590284A JPS61106716A JP S61106716 A JPS61106716 A JP S61106716A JP 22590284 A JP22590284 A JP 22590284A JP 22590284 A JP22590284 A JP 22590284A JP S61106716 A JPS61106716 A JP S61106716A
Authority
JP
Japan
Prior art keywords
steel
temperature
toughness
less
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22590284A
Other languages
Japanese (ja)
Inventor
Fukukazu Nakazato
中里 福和
Takahiko Adachi
足立 隆彦
Toshiharu Ogata
俊治 緒方
Kazuhiko Nishida
和彦 西田
Susumu Kiyokoba
清木場 進
Yoshihiko Kamata
芳彦 鎌田
Yasuo Otani
大谷 泰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22590284A priority Critical patent/JPS61106716A/en
Publication of JPS61106716A publication Critical patent/JPS61106716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the bar steel which holds superior toughness even at very low temps. lower than -120 deg.C, merely by regulating the rolling process of the steel as well as the chemical composition of the steel, obviating the necessity of the addition of large amounts of expensive alloying elements and of finding a complicated means. CONSTITUTION:The billet consists of, by weight, 0.02-0.1% C, <0.5% Si, 1.1-2.5% Mn, 0.15-0.5% Mo, 0.01-0.1% Nb, 0.01-0.1% Al, and the balance Fe with inevitable impurities, and further contains >=1 kind among 0.05-0.3% Cu, 0.05-1.2% Ni, 0.05-1.2% Cr, 0.01-0.05% Ti, and 0.0005-0.003% B. This billet is heated up to 1,000 deg.C maximum, hot-rolled at <850 deg.C finishing temp. and at >60% cumulative draft at <=880 deg.C, and air-cooled to room temp.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、特に−120℃以下という極低温環境におい
ても高強度と良好な靭性とを発揮する棒鋼の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a steel bar that exhibits high strength and good toughness even in an extremely low temperature environment, particularly at -120°C or lower.

(従来技術) 近年、寒冷地や極地の鉄筋コンクリート構造物、鉄筋コ
ンクリート製の冷凍庫、更にはLNGやLPGを始めと
する液化ガス用タンク等、低温環境において使用される
鉄筋コンクリート用棒鋼の需要が益々増加する1頃向を
見せてきている。
(Prior art) In recent years, the demand for steel bars for reinforced concrete used in low-temperature environments, such as reinforced concrete structures in cold regions and polar regions, reinforced concrete freezers, and tanks for liquefied gases such as LNG and LPG, has been increasing. It has been showing its direction around 1.

従来、このような環境下で使用される低温用鉄筋として
9%Ni鋼や高Mnオーステナイト鋼が開発され4.・
、、17パ4″°゛′″f″6°t L゛f a b 
l1i(it5 ft @ * 、rc @ G # 
itに含むため、極めて限られた用途にしか使用され得
ないものであった。
Conventionally, 9% Ni steel and high Mn austenitic steel have been developed as low-temperature reinforcing bars used in such environments.・
,,17 pa 4″°゛′″f″6°t L゛f a b
l1i(it5 ft @ *, rc @ G #
Since it is included in IT, it could only be used for extremely limited purposes.

一方、−殻構造物等ではJIS G3112に定める鉄
筋(即ち、降伏強度;42〜43 kgf / mA程
度のもので、1100〜1250℃に加熱後、仕上温度
:100’0〜900℃程度の熱間圧延で製造されるも
の)が使用されているが、これらは常温、或いはをれ以
上の温度で使用される場合を想定したものであるため、
上記のような低温、特に−100℃以下の極低温にさら
される場合には靭性面で不安を来すものであった。
On the other hand, for shell structures, etc., reinforcing bars specified in JIS G3112 (i.e., yield strength: about 42 to 43 kgf / mA, heated to 1100 to 1250 °C, finishing temperature: 100' to about 900 °C) (manufactured by inter-rolling) are used, but these are intended to be used at room temperature or at temperatures higher than that.
When exposed to the above-mentioned low temperatures, especially extremely low temperatures of -100° C. or lower, there are concerns about toughness.

そこで、最近になって、上記のような一60℃以下にな
るLPGタンクや、−100℃以下にも達するエチレン
或いはLNGタンク等の極低温にさらされても所定の高
強度と高靭性を発揮する棒鋼の開発が競われるようにな
ってきたが、未だ満足し得る極低温特性を備えた棒鋼は
得られていないのが現状であった。
Therefore, recently, LPG tanks that can reach temperatures below -60℃ as mentioned above, and ethylene or LNG tanks that can reach temperatures as low as -100℃ have been developed to exhibit a certain level of high strength and toughness even when exposed to extremely low temperatures. Although there has been competition to develop steel bars that can withstand high temperatures, the current situation is that no steel bar with satisfactory cryogenic properties has yet been obtained.

(発明の目的) 本発明者等は、上述のような観点から、今後益々要望が
強くなると見られる、−120℃を下回るような極低温
環境における使用の際でも十分に満足できる高強度及び
高靭性を発揮する棒鋼を、高価な合金元素の多量添加を
行うことなしに実現すべく研究を      1行った
結果、以下far〜(C1に示す如き知見を得るに至っ
たのである。
(Objective of the Invention) From the above-mentioned viewpoint, the present inventors have developed a high-strength and high-strength product that can be used in extremely low-temperature environments below -120°C, for which demand is expected to become stronger in the future. As a result of conducting research to create a steel bar that exhibits toughness without adding large amounts of expensive alloying elements, we came to the following findings as shown in far~(C1).

(al  特にC含有量を0,02〜0.10%(以下
、成分割合を示す%は重量%とする)に調整した低炭素
鋼に特定量のMn、 Mo及びNbを添加含有せしめる
とともに、これCコ低温加熱、低温仕上温度の熱間圧延
を施すと、圧延のままで、 平均粒径:10μm以下、 好ましくはへイナイトの体積百分率:10〜30%のフ
ェライト・ヘイナイト微細混合組織が得られ強度及び低
温靭性の極めて良好な鋼材を実現できること。
(al) In particular, specific amounts of Mn, Mo, and Nb are added to a low carbon steel whose C content is adjusted to 0.02 to 0.10% (hereinafter, % indicating a component ratio is % by weight), and When this is subjected to low-temperature heating and hot rolling at a low finishing temperature, a fine mixed ferrite-heinite structure with an average grain size of 10 μm or less and preferably a volume percentage of heinite of 10 to 30% can be obtained as rolled. It is possible to realize steel materials with extremely good strength and low-temperature toughness.

(bl  更に、このようにして得られた鋼材に特定温
度の焼戻し処理を施すと、降伏強度が改善されて5〜1
0kqf/品程度の強度上昇を見るとともに、低温靭性
が一段と向上すること、 tel  即ち、鋼の化学成分と圧延条件とを厳密に管
理し、更に必要により特定温度での焼戻し処理を組合わ
せると、従来では得られなかったような優れた低温性能
を具備した棒鋼を低コストで製造できること。
(bl Furthermore, when the steel material obtained in this way is subjected to tempering treatment at a specific temperature, the yield strength is improved by 5 to 1
In other words, by strictly controlling the chemical composition and rolling conditions of the steel, and further combining tempering treatment at a specific temperature if necessary, we can see an increase in strength of about 0 kqf/product, and further improve the low-temperature toughness. It is possible to produce steel bars at low cost that have excellent low-temperature performance that was previously unobtainable.

(発明の構成) 本発明は、上記知見に基づいてなされたものであり・ C;0.02〜0.10%、 Si:0.5%以下、 Mn : 1.10〜2.50%、 Mo : 0.15〜0.50%、 Nb : 0.010 〜0.100  %、Al :
 0.010 〜0.100  %、を含有するととも
に、必要により、更にCu : 0.05〜0.30%
、 Ni : 0.05〜1.20%、 Cr : 0.05〜1.20%、 Ti : 0.01〜0.05%、 B i O,0005〜0.0030%のうちの1種以
上をも含み、 残部Fe及び不可避的不純物、 から成る成分組成の鋼片を、最高tooo℃までの温度
に加熱した後、 仕上温度=850℃以下、 880℃以下の温度域 での累積圧下率:60%以上 の熱間圧延を施し、次いで室温まで空冷するか、或いは
必要により更に500〜700℃にて焼戻すことによっ
て、衝撃破面遷移温度が一120℃以下という低温特性
の極めて優れた棒鋼を製造する点に特徴を有するもので
ある。
(Structure of the Invention) The present invention has been made based on the above findings: C: 0.02 to 0.10%, Si: 0.5% or less, Mn: 1.10 to 2.50%, Mo: 0.15-0.50%, Nb: 0.010-0.100%, Al:
Cu: 0.010 to 0.100%, and if necessary, further Cu: 0.05 to 0.30%
, Ni: 0.05-1.20%, Cr: 0.05-1.20%, Ti: 0.01-0.05%, B i O, 0005-0.0030%. After heating a steel billet with a composition consisting of , the balance being Fe and unavoidable impurities to a temperature of up to tooo Celsius, the cumulative rolling reduction rate in the temperature range of finishing temperature = 850℃ or less and 880℃ or less: By hot rolling 60% or more and then air cooling to room temperature, or further tempering at 500 to 700°C if necessary, we can produce a steel bar with extremely excellent low-temperature properties, with an impact fracture transition temperature of 1120°C or less. It is characterized by the fact that it produces

次いで、本発明の棒鋼の製造方法において、鋼の成分組
成割合及び圧延・熱処理条件を上記の如くに数値限定し
た理由を説明する。
Next, in the method for manufacturing a steel bar of the present invention, the reason why the composition ratio of the steel and the rolling/heat treatment conditions are numerically limited as described above will be explained.

A、鋼の成分組成 a)C C成分は棒鋼に所定の強度を付与するために含有させる
ものであるが、その含有量が0.02%未満では所望の
強度が得られず、一方0.10%を越えて含有させると
棒鋼組織中にバーライト組織が混入するようになって靭
性の劣化をきたすことから、C含有量を0.02〜0.
10%と定めた。
A. Ingredient composition of steel a) C The C component is included in order to impart a predetermined strength to the steel bar, but if its content is less than 0.02%, the desired strength cannot be obtained; If the C content exceeds 10%, barlite structure will be mixed into the steel bar structure, resulting in deterioration of toughness, so the C content should be set at 0.02 to 0.
It was set at 10%.

b)Si Si成分は鋼の脱酸に有効な元素であり、通常、0゜1
5〜0.35%の添加がなされるものである。しかしな
がら、脱酸を八1で行う場合にはSi添加は必ずしも必
要でなく、しかも0.5%を越えて含有させると熱間加
工性に悪影響がでてくるようになる。このようなことか
ら、Si含有量を0.5%以下と定めた。
b) Si The Si component is an effective element for deoxidizing steel, and is usually 0°1
The amount of addition is 5 to 0.35%. However, when deoxidizing is carried out in step 81, Si addition is not necessarily necessary, and if it is added in excess of 0.5%, hot workability will be adversely affected. For this reason, the Si content was determined to be 0.5% or less.

1、       c)Mn パ(門・成分は、鋼の説硫に必要な元素であり、且つ鋼
の素地に固溶して鋼材強度を向上するとともに、鋼材に
所定の焼入れ性を賦与する作用をも有している。
1. c) Mn is an element necessary for the sulfurization of steel, and also acts as a solid solution in the steel matrix to improve the strength of the steel material, as well as imparting a certain hardenability to the steel material. It also has

そして、本発明の圧延条件下でフェライトとヘイナイト
との微細な混合組織を生ぜしめて鋼に所定の強度と低温
特性を賦与するには、1.10%以上のMn含有量とす
る必要があり、一方2.50%を越えて含有させると偏
析が著しくなって靭性及び溶接性が劣化するようになる
ことから、Mn含有量を1.10〜2.50%と定めた
In order to generate a fine mixed structure of ferrite and haynite under the rolling conditions of the present invention and impart the desired strength and low-temperature properties to the steel, the Mn content must be 1.10% or more. On the other hand, if the Mn content exceeds 2.50%, segregation becomes significant and toughness and weldability deteriorate, so the Mn content was set at 1.10 to 2.50%.

d)M。d)M.

Mo成分は、鋼の靭性を損なうことな(強度を賦与する
のに極めて有効な元素である。また、本発明の方法の場
合には、鋼の焼入れ性を調整して、圧延のままでフェラ
イトとベイナイトの微細混合組織を得るために欠かせな
い元素でもある。そして、MOC含有量0.15%未満
では上記の効果が十分に発揮されず、一方0.50%を
越えて含有させても上記効果が飽和しでしまうことから
、MOC含有量0.15〜0.50%と定めた。
The Mo component is an extremely effective element for imparting strength without impairing the toughness of the steel.In addition, in the case of the method of the present invention, the hardenability of the steel is adjusted to form ferrite in the rolled state. It is also an indispensable element for obtaining a fine mixed structure of bainite and bainite.If the MOC content is less than 0.15%, the above effect will not be fully exhibited, but on the other hand, if the MOC content exceeds 0.50%, Since the above effect would be saturated, the MOC content was set at 0.15 to 0.50%.

e)Nb Nb成分は、本発明をなすにあたって見出されたフェラ
イトとベイナイトの微細混合組織を得るために    
   1′不可欠な元素であり、その含有量が0.01
0%未満では圧延前の鋼片加熱段階(1000℃以下で
の加熱段階)でのオーステナイト粒の粗大化を防止する
ことが困難となって、結局はフェライトとベイナイトの
微細混合組織を安定して得ることができなくなる。一方
、0.100%を越えて含有させてもオーステナイト粒
粗大化抑制効果が飽和してしまい、鋼材のコスト上昇を
招くだけとなることから、Nb含有量を0.010〜0
.100%と定めた。
e) Nb The Nb component is used to obtain the fine mixed structure of ferrite and bainite found in making the present invention.
1' is an essential element whose content is 0.01
If it is less than 0%, it becomes difficult to prevent coarsening of austenite grains during the heating stage of the steel billet before rolling (heating stage at 1000°C or less), and eventually the fine mixed structure of ferrite and bainite is stabilized. you won't be able to get it. On the other hand, if the Nb content exceeds 0.100%, the effect of suppressing austenite grain coarsening will be saturated and this will only lead to an increase in the cost of steel materials.
.. It was set as 100%.

f)A(2 AlC成分は、鋼の脱酸作用のほかに圧延前の鋼片加熱
段階でのオーステナイト粒の粗大化を防止するという、
前述したNbと同様の効果がある。そして、Al含を量
がo、oto%未満では上記効果が十分に発揮されず、
一方o、too%を越えて含有させると鋼の熱間加工性
が劣化することから、Al含を量を0.010〜0、1
00%と定めた。
f) A(2) In addition to deoxidizing the steel, the AlC component also prevents austenite grains from coarsening during the heating stage of the steel billet before rolling.
It has the same effect as Nb mentioned above. If the Al content is less than o, oto%, the above effects will not be sufficiently exhibited,
On the other hand, if the Al content exceeds o.
It was set as 00%.

g)Cu Cu成分は、鋼の靭性にほとんど悪影響を及ぼすことな
く強度を上昇させる作用を存してい金ので、鋼材強度を
より向上する必要のある場合に含有せしめられるもので
あるが、その含有量が0.05%未満では前記作用に所
望の効果が得られず、他方0.30%を越えて含有させ
ると鋼の熱間加工性を害するようになることから、Cu
含有量を0.05〜0.30%と定めた。
g) Cu The Cu component has the effect of increasing the strength of steel with almost no adverse effect on the toughness of the steel, and is therefore included when it is necessary to further improve the strength of the steel material. If the amount is less than 0.05%, the desired effect cannot be obtained, and if the content exceeds 0.30%, the hot workability of the steel will be impaired.
The content was determined to be 0.05 to 0.30%.

h)Ni Ni成分は、特に鋼の低温靭性改善に有効な元素である
ので、低温靭性の一層の向上を必要とする場合にその効
果が顕著となる0、05%以上添加含有せしめられるも
のであるが、1.20%を越えて含有させると鋼材コス
トが上昇する上に、製造上、白点などの水素性欠陥を発
生する率が増加するようになることから、Ni含有量を
0.05〜1.20%と定めた。
h) Ni The Ni component is an element that is particularly effective in improving the low-temperature toughness of steel, so when further improvement in low-temperature toughness is required, it should be added in an amount of 0.05% or more so that the effect becomes noticeable. However, if the Ni content exceeds 1.20%, the cost of the steel material will increase, and the rate of occurrence of hydrogen defects such as white spots will increase during manufacturing, so the Ni content should be reduced to 0. It was set at 0.05 to 1.20%.

1)Cr Cr成分には鋼の強度を上昇させる作用があるので、よ
り高い強度を必要とする場合に含有せしめられるもので
あるが、その含有量が0.05%未満では前記作用の所
望の効果を得ることができず、一方、1.20%を越え
て含有させると冷間加工性の劣化を招くことから、Cr
含有量を0.05〜1.20%と定めた。
1) Cr Since the Cr component has the effect of increasing the strength of steel, it is included when higher strength is required, but if the content is less than 0.05%, the desired effect is not achieved. On the other hand, if the content exceeds 1.20%, it will cause deterioration of cold workability.
The content was determined to be 0.05 to 1.20%.

j)Ti Ti成分には、NbやAlと同様にオーステナイト結晶
粒を微細化する作用があり、フェライトとベイナイトの
微細混合組織を得るために有効な元素であるので必要に
より含有せしめられるものであるが、その含を量が0.
01%未満では前記作用に所望の効果を得るごとかでき
ず、一方、0.05%を越えて含有させると鋼中に存在
するTi炭窒化物が粗大化するとともに、そのTi炭窒
化物の数も増加するため熱間加工性の劣化を引き起こす
ようになる。したがって、Ti含有量を0.01〜0.
05%と定めた。
j) Ti The Ti component, like Nb and Al, has the effect of refining austenite crystal grains, and is an effective element for obtaining a fine mixed structure of ferrite and bainite, so it is included as necessary. However, its content is 0.
If the content is less than 0.01%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.05%, the Ti carbonitrides present in the steel will become coarser and the number of Ti carbonitrides will also increase. This causes deterioration of hot workability. Therefore, the Ti content is 0.01 to 0.
It was set at 0.5%.

k)B B成分には、j故事添加で鋼の焼入れ性を向上する作用
があるので、鋼材強度の一層の上昇を図る必要かある場
合に添加含有せしめられるものであるが、その含有量が
0.0005%未満では前記作用に所望の効果が得られ
ず、一方、0.0030%を越えて含有させると熱間加
工性の劣化を来すことから、B含有量を0゜0005〜
0.0030%と定めた。
k) B The B component has the effect of improving the hardenability of steel when added, so it is added when it is necessary to further increase the strength of the steel material, but its content is If the B content is less than 0.0005%, the desired effect cannot be obtained; on the other hand, if the B content exceeds 0.0030%, hot workability deteriorates.
It was set at 0.0030%.

B、圧延、熱処理条件 a)圧延in加熱温度 圧延+jij加熱温度が1o00℃を越えると、本発明
方法において規定された化学成分を有する鋼を用いたと
しても加熱時のオーステナイト粒が粗大化してしまい、
圧延のままではフェライトとへイナイトの微細′l□1
       混合組繊を得られなくなってしまう。し
たがって、所望の低温靭性が達成できなくなるので、圧
延油加熱温度は、1000℃を上限とすることが不可欠
である。
B. Rolling and heat treatment conditions a) Rolling in heating temperature Rolling + Jij If the heating temperature exceeds 100°C, the austenite grains during heating will become coarse even if steel having the chemical composition specified in the method of the present invention is used. ,
As rolled, fine ferrite and heinite ′l□1
Mixed fibers cannot be obtained. Therefore, the desired low-temperature toughness cannot be achieved, so it is essential that the upper limit of the rolling oil heating temperature is 1000°C.

一方、加熱温度をより低くしても低温特性には悪影響が
ないが、低くしすぎると鋼片圧延時にロールにかかる負
荷が過大となって生産性を劣化することから、目安とし
ては900〜1000℃の加熱が適当といえる。
On the other hand, even if the heating temperature is lowered, there is no negative effect on the low-temperature properties, but if it is set too low, the load on the rolls during billet rolling becomes excessive and productivity deteriorates. It can be said that heating at ℃ is appropriate.

b)圧延温度および圧下率 鋼に所定の強度と靭性を賦与するためには、熱間圧延、
特に880℃以下の温度域で圧下による変形と再結晶を
繰り返してオーステナイト粒を細かくすることが必要で
ある。
b) Rolling temperature and reduction rate In order to impart the specified strength and toughness to steel, hot rolling,
In particular, it is necessary to repeat deformation by pressure and recrystallization in a temperature range of 880° C. or lower to make the austenite grains finer.

その際に、880℃以下での累積圧下率が60%未満で
は所望の微細化を実現できず、従って、880 ℃以下
の温度域での累積圧下率を60%以上と定めた。
At this time, if the cumulative reduction rate at 880°C or lower is less than 60%, the desired refinement cannot be achieved, so the cumulative reduction rate in the temperature range of 880°C or lower is determined to be 60% or higher.

C)仕上温度 850℃を越える温度で仕上圧延を行うと、所望の微細
組織を実現することができず、目的とする高靭性の鋼材
が得られないことから、仕上温度を850℃以下と定め
た。
C) Finishing temperature If finish rolling is performed at a temperature exceeding 850°C, the desired microstructure cannot be achieved and the desired high toughness steel cannot be obtained, so the finishing temperature is set at 850°C or lower. Ta.

なお、仕上温度が低すぎると、本発明方法において規定
された化学成分を有する鋼ではオーステナイトの未再結
晶域圧延となって、集合組織の発達による機械的性質の
異方性を生ずるようになることから、仕上温度は850
〜750℃程度にすることが望ましい。
Note that if the finishing temperature is too low, steel having the chemical composition specified in the method of the present invention will be rolled in the non-recrystallized region of austenite, resulting in anisotropy in mechanical properties due to the development of texture. Therefore, the finishing temperature is 850
It is desirable to set the temperature to about 750°C.

そして、上述のような熱間圧延条件のもとて本発明対象
成分鋼を圧延すれば、圧延のままでフェライトとへイナ
イトの微細混合組織が得られるのである。
If the component steel subject to the present invention is rolled under the above-mentioned hot rolling conditions, a fine mixed structure of ferrite and heinite can be obtained as it is rolled.

d)焼戻し温度 本発明方法で規定した成分組成を有し、本発明の圧延条
件で製造した棒鋼は、圧延のままでもフェライトとへイ
ナイトの微細な混合組織となるものであるが、更に必要
に応じて、その後500〜700℃の範囲内で焼戻し処
理を行えば、降伏応力がより上昇し、かつ靭性の一層の
向上が実現される。
d) Tempering temperature The steel bar produced under the rolling conditions of the present invention and having the chemical composition specified by the method of the present invention has a fine mixed structure of ferrite and henite even after being rolled. Accordingly, if the tempering treatment is then performed within the range of 500 to 700°C, the yield stress will further increase and the toughness will be further improved.

この場合、焼戻し温度が500 ’C未満であると前記
の91果が十分に発1重できず、一方、焼戻し温度が7
00℃を越えると焼戻し中にフェライトおよびベイナイ
トが再結晶を起して微細組織が崩れ、靭性の劣化を招く
ことになるので、焼戻し温度を500〜700℃と定め
た。
In this case, if the tempering temperature is less than 500'C, the above-mentioned 91 fruits will not be able to fully develop, and on the other hand, if the tempering temperature is less than 700'
If the temperature exceeds 00°C, ferrite and bainite recrystallize during tempering, resulting in collapse of the microstructure and deterioration of toughness. Therefore, the tempering temperature was set at 500 to 700°C.

次いで、本発明を実施例により比較例と対比しながら説
明する。
Next, the present invention will be explained using Examples and in comparison with Comparative Examples.

実瀝上土 まず、1ff18の溶解法により、それぞれ第1表に示
される成分組成の鋼1〜38を/8製した後、各々16
Qmm角の鋼片とし、圧延素材とした。
First, steels 1 to 38 having the compositions shown in Table 1 were made by the 1ff18 melting method, and then 16
A steel piece of Qmm square was made into a rolled material.

次に、この鋼片を950℃に加熱し、880℃以下での
累積圧下率が90%で、仕上温度が800 ℃の熱間圧
延を施して、直径が25+amの丸棒とした。
Next, this steel piece was heated to 950°C and hot rolled at a cumulative reduction rate of 90% below 880°C and a finishing temperature of 800°C to form a round bar with a diameter of 25+ am.

そして、仕上圧延後、該丸棒材を常温まで放冷した。After finish rolling, the round bar material was allowed to cool to room temperature.

このようにして得られた圧延のままの各丸棒について、
ミクロ組織観察、引張試験、および衝撃試験を行った。
For each as-rolled round bar obtained in this way,
Microstructural observations, tensile tests, and impact tests were conducted.

なお、ミクロ組織観察においては、圧延のまま材のフェ
ライト、ベイナイトおよびパーライトを判別するととも
に、その粒径をも測定した。
In addition, in microstructural observation, ferrite, bainite, and pearlite in the as-rolled material were determined, and the grain size was also measured.

引張り試験では、平行部;直径14111111のJI
S 4号試験片を圧延材から削り出し、0.5パーライ
ト全伸びに対する降伏強さ、引張強さ、伸び(標点距離
:50+nmで計算)および絞りを測定した。
In the tensile test, the parallel part; JI with a diameter of 14111111
A No. S 4 test piece was cut out from the rolled material, and the yield strength, tensile strength, elongation (calculated using gauge length: 50+nm) and reduction of area with respect to 0.5 pearlite total elongation were measured.

衝撃試験は、JIS 4号(2mmVノツチ)シャルピ
ー試験片を用いて実施し、−120℃における吸収エネ
ルギー〔シE−、□。〕と衝撃破面遷移温度(脆性−延
性破面遷移温度)〔νTrs )で低温靭性を評価した
The impact test was conducted using a JIS No. 4 (2mm V notch) Charpy test piece, and the absorbed energy at -120°C [SiE-, □. ] and the impact fracture transition temperature (brittle-ductile fracture transition temperature) [νTrs).

得られた結果を第2表に示した。The results obtained are shown in Table 2.

第2表に示される結果からも明らかなように本発明方法
の条件を満たす成分組成(鋼1〜27)を有し、本発明
方法の条件を満足する手段にて製造された棒鋼は、いず
れも粒径が10μm以下の微細な〔フェライト+へイナ
イト〕の混合組織を呈し、降伏強さが40 kgf/ 
mA以上で、且つvE−IL。が30 kgf−mに近
い値を示しており、強度と靭性が極めて優れていること
がわかる。また、vTrsも、いずれも−120℃より
低く、−120℃の温度でも脆性破壊を生しないことが
明らかである。
As is clear from the results shown in Table 2, the steel bars that have the chemical composition (Steels 1 to 27) that satisfy the conditions of the method of the present invention and that are manufactured by the method that satisfies the conditions of the method of the present invention are It exhibits a fine mixed structure of [ferrite + heinite] with a grain size of 10 μm or less, and a yield strength of 40 kgf/
mA or more and vE-IL. shows a value close to 30 kgf-m, indicating that the strength and toughness are extremely excellent. Further, vTrs is also lower than -120°C in all cases, and it is clear that brittle fracture does not occur even at a temperature of -120°C.

これに対して、本発明方法における圧延条件を満たして
いても、成分組成が本発明の条件を満足しない棒鋼(鋼
28〜38を適用したもの)は、吐−jユ。の値)・、
、1      が低く・“Trsも一120゛より高
温側にな−て0゛て・−120℃において脆性破壊を生
じて靭性不良であることが分かり、また、降伏強さにつ
いても40 kgf/昌未満のものがあり、強度的にも
不安定であることが明らかである。
On the other hand, even if the rolling conditions in the method of the present invention are met, the steel bars whose composition does not satisfy the conditions of the present invention (to which steels 28 to 38 are applied) are discharged. The value of the)·,
, 1 is low・Trs is also on the high temperature side from -120℃ to 0℃・It is found that brittle fracture occurs at −120℃ and the toughness is poor, and the yield strength is also 40 kgf/change. It is clear that the strength is unstable.

爽應皿I 第1表に示した鋼1の160mm角鋼片を用いて、圧延
条件を種々変化させて直径: 25mmの丸棒を製造し
た。
Refreshing Plate I Using 160 mm square steel pieces of Steel 1 shown in Table 1, round bars with a diameter of 25 mm were manufactured under various rolling conditions.

仕上圧延後は、該丸棒材を常温まで放冷した。After finish rolling, the round bar material was allowed to cool to room temperature.

得られた丸棒について、実施例1と同じ要領でミクロ組
織、強度および靭性の調査を行い、その結果を第3表に
示す。
The microstructure, strength and toughness of the obtained round bars were investigated in the same manner as in Example 1, and the results are shown in Table 3.

第3表に示される結果からも、本発明方法で規定した成
分組成の鋼を使用しても、圧延条件が本発明方法の範囲
から外れた手段では、強度または靭性、あるいはそのい
ずれもが劣化し、降伏強さが40.0kgf /min
を越えた値、vTrsが一120℃よりも低い温度とい
う目標値を満たさないことが明らかである。
The results shown in Table 3 also show that even if steel with the composition specified by the method of the present invention is used, strength and/or toughness will deteriorate if the rolling conditions are outside the range of the method of the present invention. The yield strength is 40.0 kgf/min.
It is clear that vTrs does not meet the target value of a temperature lower than 1120°C.

] 漠町直汁l 第1表に示した鋼l、12および24の160mm角鋼
片を用いて、 両片加熱温度:950℃ 880℃以下での累積圧下率:90%仕上温度二800
℃ の条件で熱間圧延し、直径:251の丸棒を製造後、第
4表に示されるように480〜720℃に1時間保持後
大気放冷するという焼戻し処理を施した。
] Bokumachi Naoshiru 1 Using 160 mm square steel pieces of steel 1, 12 and 24 shown in Table 1, heating temperature for both pieces: 950°C Cumulative reduction rate below 880°C: 90% Finishing temperature 2800
After producing a round bar with a diameter of 251° C. by hot rolling at 30° C., it was tempered as shown in Table 4 by holding the bar at 480 to 720° C. for 1 hour and then allowing it to cool in the atmosphere.

IMられた丸棒について、実施例1と同じ要領でミクロ
組織、強度および靭性を調べ、その結果を第4表に併せ
て示した。
The microstructure, strength and toughness of the IM round bars were examined in the same manner as in Example 1, and the results are also shown in Table 4.

第4表に示される結果からは次のことがわかる。The following can be seen from the results shown in Table 4.

即ち、焼戻し温度が480℃では、圧延のまま材と比べ
て降伏強さもvTrsも殆ど変化せず、焼戻しの効果が
認められない。
That is, when the tempering temperature is 480° C., the yield strength and vTrs hardly change compared to the as-rolled material, and the effect of tempering is not recognized.

しかし、500〜700℃の焼戻し温度域では、降伏強
さの増加が著しく、同時にvTrsも大幅な低下を示)
・11)、、j        (”て0゛る・9まり
・本発明の用件を満たす処理によって、丸棒の強度およ
び靭性のいずれもが著しく向上することが明らかである
However, in the tempering temperature range of 500 to 700°C, the yield strength increases significantly, and at the same time vTrs also shows a significant decrease)
・11),,j ("T0゛ru・9maru・It is clear that both the strength and toughness of the round bar are significantly improved by the treatment that satisfies the requirements of the present invention.

ところが、700℃を越える焼戻しを行うと、ミクロ組
織が粗大化して強度低下が引き起されるとともに、靭性
も劣化してしまうことも明白である。
However, it is clear that when tempering is performed at a temperature exceeding 700° C., the microstructure becomes coarse and the strength decreases, and the toughness also deteriorates.

(総括的な効果) 上述のように、本発明によれば、高価な合金元素を多量
に添加したり、格別に繁雑な手段を講するころなく、鋼
の化学成分や圧延方法をm製するのみで、−120℃を
下回るような極低温環境においても十分に満足できる高
強度および高靭性を有する棒鋼がコスト安く製造できる
など、産業上有用な効果がもたらされるのである。
(Overall Effects) As described above, according to the present invention, the chemical composition and rolling method of steel can be changed without adding large amounts of expensive alloying elements or taking particularly complicated measures. This brings about industrially useful effects, such as the ability to produce steel bars with high strength and toughness that are sufficiently satisfactory even in cryogenic environments below -120°C at low cost.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.02〜0.10%、 Si:0.5%以下、 Mn:1.10〜2.50%、 Mo:0.15〜0.50%、 Nb:0.010〜0.100%、 Al:0.010〜0.100% を含有するとともに、必要により、更に Cu:0.05〜0.30%、 Ni:0.05〜1.20%、 Cr;0.05〜1.20%、 Ti:0.01〜0.05%、 B:0.0005〜0.0030% のうちの1種以上をも含み、 残部Fe及び不可避的不純物、 から成る成分組成の鋼片を、最高1000℃までの温度
に加熱した後、 仕上温度:850℃以下、 880℃以下の温度域 での累積圧下率:60%以上 の熱間圧延を施し、次いで室温まで空冷することを特徴
とする、低温靭性の優れた棒鋼の製造方法。
(1) In weight%, C: 0.02 to 0.10%, Si: 0.5% or less, Mn: 1.10 to 2.50%, Mo: 0.15 to 0.50%, Nb: 0.010 to 0.100%, Al: 0.010 to 0.100%, and if necessary, further Cu: 0.05 to 0.30%, Ni: 0.05 to 1.20%, Also contains one or more of Cr: 0.05-1.20%, Ti: 0.01-0.05%, B: 0.0005-0.0030%, the balance being Fe and unavoidable impurities. After heating a steel slab with a composition of A method for manufacturing a steel bar with excellent low-temperature toughness, which is characterized by air cooling until the temperature reaches 100 degrees.
(2)重量%で、 C:0.02〜0.10%、 Si:0.5%以下、 Mn:1.10〜2.50%、 Mo:0.15〜0.50%、 Nb:0.010〜0.100%、 Al:0.010〜0.100% を含有するとともに、必要により、更に、 Cu:0.05〜0.30%、 Ni:0.05〜1.20%、 Cr:0.05〜1.20%、 Ti:0.01〜0.05%、 B:0.0005〜0.0030% のうちの1種以上をも含み、 残部Fe及び不可避的不純物、 から成る成分組成の鋼片を、最高1000℃までの温度
に加熱した後、 仕上温度:850℃以下、 880℃以下の温度域 での累積圧下率:60%以上 の熱間圧延を施し、次いで室温まで空冷してから、更に
500〜700℃にて焼戻すことを特徴とする、低温靭
性の優れた棒鋼の製造方法。
(2) In weight%, C: 0.02 to 0.10%, Si: 0.5% or less, Mn: 1.10 to 2.50%, Mo: 0.15 to 0.50%, Nb: 0.010 to 0.100%, Al: 0.010 to 0.100%, and if necessary, further Cu: 0.05 to 0.30%, Ni: 0.05 to 1.20% , Cr: 0.05 to 1.20%, Ti: 0.01 to 0.05%, and B: 0.0005 to 0.0030%, the balance being Fe and unavoidable impurities, After heating a steel billet with a composition consisting of: up to a maximum temperature of 1000°C, it is hot rolled at a finishing temperature of 850°C or less and a cumulative reduction rate of 60% or more in a temperature range of 880°C or less, and then A method for producing a steel bar with excellent low-temperature toughness, which comprises air cooling to room temperature and then further tempering at 500 to 700°C.
JP22590284A 1984-10-29 1984-10-29 Manufacture of bar steel having superior toughness at low temperature Pending JPS61106716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22590284A JPS61106716A (en) 1984-10-29 1984-10-29 Manufacture of bar steel having superior toughness at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22590284A JPS61106716A (en) 1984-10-29 1984-10-29 Manufacture of bar steel having superior toughness at low temperature

Publications (1)

Publication Number Publication Date
JPS61106716A true JPS61106716A (en) 1986-05-24

Family

ID=16836672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22590284A Pending JPS61106716A (en) 1984-10-29 1984-10-29 Manufacture of bar steel having superior toughness at low temperature

Country Status (1)

Country Link
JP (1) JPS61106716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100351417C (en) * 2004-04-08 2007-11-28 宝钢集团上海梅山有限公司 Hot-rolling and low-carbon bainite composite phase material and preparation thereof
CN113416828A (en) * 2021-06-24 2021-09-21 大冶特殊钢有限公司 Preparation method of 16-27MnCrS5 round steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100351417C (en) * 2004-04-08 2007-11-28 宝钢集团上海梅山有限公司 Hot-rolling and low-carbon bainite composite phase material and preparation thereof
CN113416828A (en) * 2021-06-24 2021-09-21 大冶特殊钢有限公司 Preparation method of 16-27MnCrS5 round steel

Similar Documents

Publication Publication Date Title
US9394579B2 (en) High-strength steel material having outstanding ultra-low-temperature toughness and a production method therefor
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
KR100340507B1 (en) Method for manufacturing high strength and high formability hot-rolled transformation induced plasticity steel containing copper
JP6492862B2 (en) Low temperature thick steel plate and method for producing the same
KR101917454B1 (en) Steel plate having excellent high-strength and high-toughness and method for manufacturing same
JPH07188834A (en) High strength steel sheet having high ductility and its production
EP3395988B1 (en) High-strength structural steel sheet excellent in hot resistance and manufacturing method thereof
JP2019151920A (en) HIGH Mn STEEL AND MANUFACTURING METHOD THEREFOR
KR101301617B1 (en) Material having high strength and toughness and method for forming tower flange using the same
JP3218442B2 (en) Manufacturing method of mechanical structural steel with excellent delayed fracture resistance
JP3077567B2 (en) Method of manufacturing steel for low-temperature rebar
JPS61106716A (en) Manufacture of bar steel having superior toughness at low temperature
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JP3077568B2 (en) Method of manufacturing steel for low-temperature rebar
WO2019168172A1 (en) HIGH Mn STEEL AND METHOD FOR PRODUCING SAME
EP4265795A1 (en) Ultrathick steel plate having excellent low-temperature impact toughness and method for manufacturing same
JPS61157629A (en) Manufacture of steel bar having superior toughness at low temperature
JPS61124524A (en) Manufacture of bar steel for steel reinforced concrete
KR102487758B1 (en) Steel plate having excellent low temperature impact toughness and method for manufacturing the same
KR102200225B1 (en) Steel Plate For Pressure Vessel With Excellent Lateral Expansion And Manufacturing Method Thereof
KR102493978B1 (en) Thin, high strength steel material for api having resistance to deformation and method of manufacturing the same
KR101125986B1 (en) Steel and method for manufacturing steel plate having low yield ratio, high strength and excellent toughness and steel plate made of the same
JPS60103119A (en) Production of steel bar having excellent low temperature toughness
JP3359349B2 (en) Structural steel with excellent brittle fracture resistance
JPH0688129A (en) Production of high strength steel pipe as welded low in residual stress