JPS61106434A - Preparation of stress affording parent material for optical fiber - Google Patents

Preparation of stress affording parent material for optical fiber

Info

Publication number
JPS61106434A
JPS61106434A JP22964684A JP22964684A JPS61106434A JP S61106434 A JPS61106434 A JP S61106434A JP 22964684 A JP22964684 A JP 22964684A JP 22964684 A JP22964684 A JP 22964684A JP S61106434 A JPS61106434 A JP S61106434A
Authority
JP
Japan
Prior art keywords
stress
optical fiber
sol
applying
affording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22964684A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP22964684A priority Critical patent/JPS61106434A/en
Publication of JPS61106434A publication Critical patent/JPS61106434A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres

Abstract

PURPOSE:To provide a stress affording parent material for optical fiber having high quality with small numbers of prepd. stage and with high efficiency by using a vessel provided with specified partitions and utilizing sol-gel process. CONSTITUTION:Sol for forming a core part, stress affording part, and a clad part is prepd. respectively by hydrolyzing a metal alkoxide wherein the sol for forming the stress affording part and the clad part are prepd. to have a compsn. giving a same refractive index after calcination. Then, a vessel 3 with sections 2a, 2b, 2c, and 2d separated by partitions 1a, 1b, and 1c is prepd. and the sol for the clad is contained in the section 2a, the sol for the stress affording part is contained in the section 2b and 2c, and the sol for clad part is contained in the section 2d, and each sol is allowed to stand. Immediately before the sol is coagulated by gelling, each partition 1a, 1b, and 1c is removed and the boundary is combined to form one body. Obtd. gel is then dried, melted and vitrified.

Description

【発明の詳細な説明】 「産業上の利用分野」 ″この発明は光ファイバ母材の製造方法に関する亀ので
、よ)詳しくは伝搬波の偏波lif?保存する九めにコ
ア部に応力を付与する応力付与部がクラッド部く形成さ
れている応力付与型光ファイバの母材の製造方法に関す
るものである。
[Detailed Description of the Invention] "Industrial Application Field" ``This invention relates to a method of manufacturing an optical fiber base material, so for more details, please refer to The present invention relates to a method for manufacturing a base material of a stress-applying optical fiber in which a stress-applying portion is formed in a cladding portion.

「従来の技術」 従来、応力付与型光ファイバは、次の2つの方法によシ
製造していた。すなわち、第1のものは、予めクラッド
部が薄いシングルモード光ファイバ母材と、応力付与部
とするロッドと、中間クラッド部とするロッドの3m類
のロッドを気相法等によ)作成し、これら各ロッドを外
周クラッド部とする石英パイプ中に挿入、配置し、これ
を母材とし、この母材を加熱溶融紡糸して応力付与型光
ファイバを得る方法である。第2のものは、クラッド部
が大きいシングルモード光ファイバ母材および応力付与
部とするロッドを気相法によシ作成し、一方のシ、リグ
ルモード光ファイバ母材のクラッド部に応力付与部に対
応する孔を穿設し、ことに上記ロツ“ド?挿入し゛、こ
れ全母材とし、この母材を加熱溶融紡糸して応力付与型
光ファイバを得る方法である。
"Prior Art" Conventionally, stress-applied optical fibers have been manufactured by the following two methods. That is, in the first method, a 3 m long rod consisting of a single mode optical fiber base material with a thin cladding part, a rod serving as a stress applying part, and a rod serving as an intermediate cladding part was prepared in advance by a vapor phase method or the like. In this method, each of these rods is inserted and arranged in a quartz pipe serving as an outer cladding portion, this is used as a base material, and this base material is heated and melt-spun to obtain a stress-applied optical fiber. In the second method, a single-mode optical fiber base material with a large cladding part and a rod serving as a stress-applying part are made by a vapor phase method, and one is made using a stress-applying part in the cladding part of the ripple-mode optical fiber base material. This is a method in which a corresponding hole is bored, the rod is inserted, the whole base material is made into a base material, and this base material is heated and melt-spun to obtain a stress-applied optical fiber.

「発明”゛解決しジとする問題点」 上記光ファイバ母材の製造方法によれば、コア部、クラ
ッド部、応力付与部?別々に形成し、さらにこれらを一
体的忙組み合せるために孔あけ加工を行なわなければな
らないので、工数増を来し、大量、高速生産を行なうこ
とができないという問題がある。ま九、母材においては
、コア部、クラット°部、応力付与部の各部間に隙間か
あ)、その九め加熱溶融し九時に溶融界面に気泡が取)
込まれやすく、その気泡は紡糸時にも残存し、光ファイ
バに不良が発生するという問題がある。
``Invention'' ゛Problems to be Solved'' According to the method for manufacturing the optical fiber base material described above, the core part, the cladding part, the stress-applying part? Since they must be formed separately and then drilled in order to combine them into one, the number of man-hours increases and high-volume, high-speed production is not possible. (9) In the base material, there are gaps between the core part, crat part, and stress-applying part).
There is a problem in that the bubbles are easily trapped, and the bubbles remain even during spinning, resulting in defects in the optical fiber.

この発明は上記事情に鑑みてなされたもので、製造工数
が少なくて済み、大量、高速生産を行なうことができ、
溶融紡糸時に気泡が混入することのない応力付与型光フ
ァイバ母材の製造方法全提供することを目的とするもの
である。
This invention was made in view of the above circumstances, and requires fewer manufacturing steps, allowing mass and high-speed production.
It is an object of the present invention to provide a method for manufacturing a stress-applied optical fiber preform without introducing air bubbles during melt spinning.

「間雫点分解決するための手段」 この発明和係る応力付与型光ファイバ母材の製造方法は
、各々コア部と応力付与部とクラッド部を構成する金属
のアルコキシドを上記各部毎にその構成割合に基づいて
それぞ五水溶液とし、夏れら各溶液を内部が仕切りによ
シコア部と応力付与部とクラッド部とく対応する区画に
分けられた容器の各区画に注入し、各溶液がゲル化する
直前に前記仕切)を取プ去って各部の境界を同化させ、
形成されたゲルを乾燥し、得らnた乾燥ゲル?加熱ガラ
ス化して光ファイバ母材を得るものである。
"Means for Solving the Problems Between Droplets" The method for manufacturing a stress-applying optical fiber preform according to the present invention includes forming metal alkoxides constituting the core portion, stress-applying portion, and cladding portion in each of the above-mentioned portions. Based on the proportions, each solution was made into a five-aqueous solution, and each solution was injected into each compartment of the container, which was divided into corresponding compartments such as a core part, a stress-applying part, and a cladding part. Immediately before converting, remove the partitions) to assimilate the boundaries of each part,
Dry the formed gel and obtain a dry gel? The optical fiber preform is obtained by heating and vitrifying it.

「発明の作用」 上記方法によれば、溶液ケ作成し、容器内に注入した後
は、−頁連続して処理することができるので、工数を削
減し、大量、高速生産を実施でき、また、ゲル化直前に
各部の境界は同化され、その後ゲルとして一体となるの
で、その後の溶融時に気泡が混入し不都合管来すことが
ない。
"Action of the Invention" According to the above method, after the solution is prepared and poured into a container, - pages can be processed continuously, so the number of man-hours can be reduced, and high-volume, high-speed production can be carried out. Immediately before gelation, the boundaries of each part are assimilated, and then the gel is integrated, so that there is no possibility of air bubbles being mixed in during subsequent melting, which will cause problems.

以下、この発明を実権例によ)詳しく説明する。This invention will be explained in detail below using actual examples.

「実施例」 金属アルコキシドは、51COC2H5)4、G8r 
Q02H514、At(QC3H,)3、Zr (OC
3H7) 4などであり、これらを加水分解して溶液を
作成する。この際、水の外に少量のHC/、 、、 N
H4OH1CH30Hなどを加水分解の触媒として加え
ることもある。これら溶液をコア部、クラッド部、応力
付与部の作成にそれぞれ適切な混合比の各部用の溶液を
調整する。一般にコア部は石英ガラスKQe ?ドープ
した組成、応力付与部は石英ガラスKB+At+B+P
+Zrを混合して屈折1?クラッド部と一致させた組成
とする。これら各溶液を室温にて放置する。ついで、第
1図に示すように1仕切りl’q  IJ  1cKよ
ってコア部、応力付与部、クラッド部分形成する各区画
2a。
"Example" Metal alkoxide is 51COC2H5)4, G8r
Q02H514, At(QC3H,)3, Zr (OC
3H7) 4, etc., and these are hydrolyzed to create a solution. At this time, in addition to water, a small amount of HC/, ,, N
H4OH1CH30H etc. may be added as a hydrolysis catalyst. These solutions are used to prepare solutions for each part at appropriate mixing ratios for creating the core part, cladding part, and stress applying part. Generally, the core is made of quartz glass KQe? Doped composition, stress applying part is quartz glass KB+At+B+P
Refraction 1 by mixing +Zr? The composition should match that of the cladding part. Each of these solutions is left at room temperature. Next, as shown in FIG. 1, each section 2a is formed into a core section, a stress applying section, and a cladding section by one partition l'q IJ 1cK.

2b、2c、2dK分けた容器3?用意し、上記各溶液
を対応する各区画2am2b、2cszaK注入する。
2b, 2c, 2dK separated container 3? Prepare and inject each of the above solutions into the corresponding sections 2am2b and 2cszaK.

その後、各溶液が寒天状のゲルとなシ、固化する直前に
各仕切り1 a e 1 b * 1 cを取〕はずし
、各区画の境界を同化させ、寒天状のゲルを一体く形成
する。このゲルを乾燥し、ついで得られた乾燥ゲルを溶
融ガラス化して応力付与型光ファイバ用の母材とする。
Then, just before each solution solidifies into an agar-like gel, each partition 1 a e 1 b * 1 c is removed, the boundaries of each compartment are assimilated, and an agar-like gel is integrally formed. This gel is dried, and the dried gel obtained is then melted and vitrified to form a base material for a stress-applied optical fiber.

なか、上記実権例においては、ゲル成形甲の容器として
、第1図に示すように中心部のコア部の両側に円柱状の
応力付与部を形成し得るようKした区画の容器を甲いた
が、例えば、第2図(a) 、 (b)K示すように1
応力付与部用仕切J)4aを任意の形状としたシ、必要
に応じてコア部用仕切り4hを2つ設けたルした形状な
ど所望とする形状の光ファイバに適した容器を用いるこ
とができる。
In the above-mentioned example, the container with the gel-molded shell is a container with K-sections so that cylindrical stress-applying parts can be formed on both sides of the central core part, as shown in Fig. 1. , for example, 1 as shown in Figures 2(a) and (b)K.
It is possible to use a container suitable for an optical fiber of a desired shape, such as a shape in which the stress-applying part partition J) 4a has an arbitrary shape, or a round shape in which two core part partitions 4h are provided as necessary. .

「発明の効果」 以上説明したように1 この発明によれば、コア部、ク
ラッド部、応力付与部?形成する金属アルコキシド溶液
を作成し、容器内の各区画に注入した後は、−頁連続し
て処理することができるので、工数全削減し、大量、高
速生産を実施でき、また、ゲル化前に各部の境界は同化
され、その後ゲルとして一体となるので、その後行なわ
れる溶融時に気泡が混入し不都合を来すことがない。
"Effects of the Invention" As explained above, 1. According to the present invention, the core part, the clad part, the stress applying part? After the metal alkoxide solution to be formed is created and injected into each compartment in the container, it can be processed continuously, reducing the total number of man-hours and enabling high-volume, high-speed production. Since the boundaries of each part are assimilated and then integrated as a gel, air bubbles will not be mixed in during subsequent melting, which will cause no inconvenience.

最後に1 この発明の効果を定量的に確認するために行
なった実験例を示す。
Finally, 1. Experimental examples conducted to quantitatively confirm the effects of this invention will be shown.

「実験例」 st (QC2H,)4とGo (QC2H514とを
モル比で98:2に混合し、これをその全体量の10倍
量の水と1倍量のエチルアルコールで加水分解してコア
部形成用の溶液を調製した。ついで、′同様に応力付与
細形成用としてSi(QC2H5)4:At(QCHI
  : B  rOcH3)3  を88:8:4で含
む溶液を調製し、クラッド部形成用としてSi (QC
2)I5) 、のみの溶液を調整した。これに対し、第
1図だ示す構造の容器VCおいて、内径125iua高
さ350間の石英製で、コア部仕切シの内径が8 y、
各応力付与部の仕切シの内径が2ozmで、コア部と各
サイドピット部の中心間距離が各々25NJILK設定
したものを用意した。この容器の各区画に上記各対応す
る溶液を注入した。これを40時間放置し、ついで、各
仕切りを取)去った。
"Experimental example" st (QC2H,)4 and Go (QC2H514) are mixed in a molar ratio of 98:2, and this is hydrolyzed with 10 times the total amount of water and 1 times the amount of ethyl alcohol to form a core. A solution for forming a thin section was prepared.Similarly, a solution of Si(QC2H5)4:At(QCHI
: A solution containing B rOcH3)3 in a ratio of 88:8:4 was prepared, and Si (QC
2) A solution of only I5) was prepared. On the other hand, in a container VC having the structure shown in Fig. 1, it is made of quartz with an inner diameter of 125 iua and a height of 350 mm, and the inner diameter of the core partition is 8 y.
The inner diameter of the partition of each stress applying part was 2 ozm, and the distance between the centers of the core part and each side pit part was set to 25 NJILK. Each compartment of this container was injected with each of the corresponding solutions described above. This was left for 40 hours, then each partition was removed.

この状態でさらに放置したところ、完全に固形ゲルとな
勺、各部の境界は充分く同化していた。この固形ゲルを
80℃で30時間加熱したところ多孔質ガラスC乾燥ゲ
ル)となった。この乾燥ゲルをさらIC300“υで加
熱後、He−、C10雰囲気中、900℃で加熱、脱水
した。つづいて、これ?1600℃に加熱したところ、
15UIφ×280111Lのロッド(応力付与型光フ
ァイバ母材)ができた。この母材を溶融、紡糸してファ
イバ化し、特性を測定したところ、損失は1.3μmで
4dB/に鵬、消光比は100鶏で45 dBであった
When it was left in this state for a while, it completely turned into a solid gel, and the boundaries of each part were well assimilated. When this solid gel was heated at 80° C. for 30 hours, it became a porous glass C dry gel). This dried gel was further heated at IC300"υ, and then heated at 900°C in a He-, C10 atmosphere to dehydrate it. Subsequently, this was heated to 1600°C.
A rod (stress-applied optical fiber base material) of 15UIφ×280111L was completed. This base material was melted and spun to form a fiber, and its properties were measured. The loss was 4 dB at 1.3 μm, and the extinction ratio was 45 dB at 100 mm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実権するのに好適な容器の一例?示
す斜視図、fJ/c2図(a) 、 (1:+)はそれ
ぞれ同容器の他の例?示す平面図である。 1a、lb、1c、4a、4b・旧・・仕切り、2a2
bs2c、2d・・・・・・区画、3・・・用容器。
Is Figure 1 an example of a container suitable for carrying out this invention? Are the perspective views shown, fJ/c2 diagram (a), and (1:+) other examples of the same container? FIG. 1a, lb, 1c, 4a, 4b, old...partition, 2a2
bs2c, 2d... compartment, container for 3....

Claims (1)

【特許請求の範囲】 所望とする光ファイバ中の偏波面を保存するためにコア
部に応力を付与する応力付与部をクラッド部に形成する
ようにして光ファイバ母材を作成する応力付与型光ファ
イバ母材の製造方法において、 各々前記コア部と応力付与部とクラッド部を構成する金
属のアルコキシドを前記各部毎にその構成割合に基づい
てそれぞれ水溶液とし、これら各金属アルコキシド溶液
を、内部が仕切りによりコア部と応力付与部とクラッド
部とに対応する区画に分けられた容器の各区画に注入し
、各溶液がゲル化する直前に前記仕切りを取り去つて各
部の境界を同化させ、形成されたゲルを乾燥し、得られ
た乾燥ゲルを加熱ガラス化して応力付与部を有する光フ
ァイバ母材を得ることを特徴とする応力付与型光ファイ
バ母材の製造方法。
[Scope of Claims] A stress-applying optical fiber that creates an optical fiber preform by forming a stress-applying part in the cladding part that applies stress to the core part in order to preserve the desired plane of polarization in the optical fiber. In the method for manufacturing a fiber base material, metal alkoxides constituting the core portion, stress applying portion, and cladding portion are each made into an aqueous solution based on the composition ratio for each portion, and each of these metal alkoxide solutions is partitioned internally. The solution is injected into each compartment of a container divided into compartments corresponding to the core part, stress applying part, and cladding part, and immediately before each solution gels, the partitions are removed to assimilate the boundaries of each part, and the solution is formed. 1. A method for producing a stress-applying optical fiber preform, comprising: drying the gel, and heating and vitrifying the obtained dried gel to obtain an optical fiber preform having a stress-applying portion.
JP22964684A 1984-10-31 1984-10-31 Preparation of stress affording parent material for optical fiber Pending JPS61106434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22964684A JPS61106434A (en) 1984-10-31 1984-10-31 Preparation of stress affording parent material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22964684A JPS61106434A (en) 1984-10-31 1984-10-31 Preparation of stress affording parent material for optical fiber

Publications (1)

Publication Number Publication Date
JPS61106434A true JPS61106434A (en) 1986-05-24

Family

ID=16895456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22964684A Pending JPS61106434A (en) 1984-10-31 1984-10-31 Preparation of stress affording parent material for optical fiber

Country Status (1)

Country Link
JP (1) JPS61106434A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652184A1 (en) * 1993-11-08 1995-05-10 Alcatel Cable Interface Process of making a preform for multi-ferrules of silica glass and preform so obtained

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652184A1 (en) * 1993-11-08 1995-05-10 Alcatel Cable Interface Process of making a preform for multi-ferrules of silica glass and preform so obtained
FR2712278A1 (en) * 1993-11-08 1995-05-19 Alcatel Cable Interface Process for producing a blank for a multiférule made of silica glass, and blank thus obtained.

Similar Documents

Publication Publication Date Title
CA1139102A (en) Method of producing mother rods for optical fibers
US5182236A (en) Gradient index glasses and sol-gel method for their preparation
KR870002463A (en) Low loss fiber optical coupler and method of manufacturing the same
US4797376A (en) Sol-gel method for making gradient-index glass
US4902650A (en) Gradient-index glass
JPS61106434A (en) Preparation of stress affording parent material for optical fiber
JP2739683B2 (en) Fabrication method of fluoride glass single mode optical fiber
JPH0971431A (en) Production of silica glass-based multicore optical fiber
GB2033372A (en) A Method of Producing an Optical Waveguide
JPS59152235A (en) Preparation of optical fiber
JP2512294B2 (en) Optical fiber and manufacturing method thereof
JPH11199260A (en) Production of preform of constant polarization optical fiber
JPH01203236A (en) Production of fiber laser
JPS6128612B2 (en)
JPS62100447A (en) Production of optical fiber base material
JPS6346011B2 (en)
JPS5849632A (en) Manufacturing of optical fiber capable of conserving plane of polarization
JPS6335430A (en) Production of preform for optical fiber
JPS63144137A (en) Production of optical fiber preform
JPS62265140A (en) Production of cylindrical optical fiber base material
JPS6172639A (en) Manufacture of glass for optical fiber clad
JPS6296338A (en) Production of optical fiber preform
JPS59141437A (en) Manufacture of optical fiber preform
JPS62275036A (en) Production of base material for optical fiber
JPS61275140A (en) Production of glass material for optical fiber