JPS61106099A - Generator - Google Patents

Generator

Info

Publication number
JPS61106099A
JPS61106099A JP59225601A JP22560184A JPS61106099A JP S61106099 A JPS61106099 A JP S61106099A JP 59225601 A JP59225601 A JP 59225601A JP 22560184 A JP22560184 A JP 22560184A JP S61106099 A JPS61106099 A JP S61106099A
Authority
JP
Japan
Prior art keywords
machine
power
induction machine
frequency
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59225601A
Other languages
Japanese (ja)
Inventor
Fukuo Shibata
柴田 福夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59225601A priority Critical patent/JPS61106099A/en
Publication of JPS61106099A publication Critical patent/JPS61106099A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To simplify a generator by connecting a frequency converter between the primary circuit and the secondary circuit of an induction machine, and connecting a synchronous machine with the primary or secondary circuit. CONSTITUTION:When a prime mover 6 is driven, and a switch 20 is closed to supply a DC current from a DC power source 21 to the secondary circuit of an induction machine 1, an AC voltage of frequency f3 is output to the primary circuit 7 of the machine 1. Thus, a synchronous machine 9 is operated without load at the rotating speed corresponding to the frequency f3 to apply reactive power, i.e., exciting current to the machine 1. Simultaneously, a frequency converter 4 supplies the power of the frequency f2 to the secondary circuit of the machine 1. Thus, an AC voltage of the frequency of f2+f3 is output from the primary circuit of the machine 1. The switch 20 is opened when becoming the normal state to stop supplying the DC current.

Description

【発明の詳細な説明】 原動機によって巻線形誘導機を駆動し、その誘導機の極
数とその一次巻線に流れる三相交流励磁電流の周波数と
に関係して定まる誘導機の回転磁界の回転方向と同一方
向にその回転磁界よりも早く、その誘導機の二次回転子
を上記原動機によって回転駆動し、その誘導機の二次出
力端子から出た回路に整流器と逆変換装置を接続し、そ
れによって逆変換装置の交流出力端子から得られる交流
を上記誘導機の一次巻線励磁電流として興えられるよう
にした回路を造り、誘導発電装置の自励化を得る方式は
特許第540293号、特許第556553号、特許第
727416号などにより公知である。
[Detailed description of the invention] A wound induction machine is driven by a prime mover, and the rotation of the rotating magnetic field of the induction machine is determined in relation to the number of poles of the induction machine and the frequency of the three-phase AC excitation current flowing through its primary winding. The secondary rotor of the induction machine is driven to rotate by the prime mover in the same direction as the rotating magnetic field, and a rectifier and an inverter are connected to the circuit output from the secondary output terminal of the induction machine, A method of creating a circuit in which the AC obtained from the AC output terminal of the inverter is used as the primary winding excitation current of the induction machine, thereby achieving self-excitation of the induction generator, is disclosed in Japanese Patent No. 540293. This method is known from Japanese Patent No. 556553, Japanese Patent No. 727416, and the like.

このような発明では原動機により駆動される発電機の回
転速度に関係なく負荷へ供給する発電機の出力の周波数
を制御しうる特長を持つ。例えば原動機の回転速度があ
る程度変化しても、負荷に対し一定周波数の電力を供給
しうるとか、又は原動機の回転速度をほぼ一定に保ちな
がらも負荷に対し供給する発電機の出力周波数を或る範
囲内で制御しうるとか云った特長である。
Such an invention has the advantage that the frequency of the output of the generator supplied to the load can be controlled regardless of the rotational speed of the generator driven by the prime mover. For example, it is possible to supply power at a constant frequency to the load even if the rotational speed of the prime mover changes to some extent, or it is possible to maintain the output frequency of the generator supplied to the load while keeping the rotational speed of the prime mover approximately constant. Its advantage is that it can be controlled within a certain range.

かゝる特長を持ちながら、前記公知例においては次のよ
うな欠点がある。すなわち誘導機の極数p[個]と一次
巻線に流れる三相交流励磁電流の周波数f[Hz]に対
応する同期回転速度n[rpm]は120f/pであり
、例えば2極機で周波数60[Hz]に対応させるため
にはその同期回転速度の3600[rpm]よりも早い
速度で回転させなければならない。然るに原動機が風車
や水車のような場合、その回転速度は1000[rpm
]以下の低速の場合が多い。その場合、回転機の極数は
10極或いは12極などと多極になり、構造的に複雑で
高価とならざるを得ない。この欠点をいおぎなうために
、昭和58年特許願第88258号では互いに電磁的に
結合された1次巻線と二次巻線を持つ誘導機の一次巻線
端子から電力を供給されるように電気接続された入力端
子を持つ周波数変換装置の出力端子から上記誘導機の二
次巻線へ電力を供給しうるよう電気接続し、更に上記誘
導機の回転子を原動機により駆動してその誘導機の回転
速度n[rpm]と極数p[個]相乗積npと一次巻線
に発生する電力周波数f1[Hz]との関係がpn<1
20f1となるように、且つ上記周波数変換装置から誘
導機の二次巻線へ電力を供給して、その供給電力周波数
f2がpn=120f3のf3に加えられてf2+f3
=f1となるように周波数変換装置の出力端子から誘導
機の二次巻線への電気接続相順を配列している。
Although having such advantages, the above-mentioned known examples have the following drawbacks. In other words, the synchronous rotational speed n [rpm] corresponding to the number of poles p [number] of the induction machine and the frequency f [Hz] of the three-phase AC excitation current flowing through the primary winding is 120 f/p. For example, in a two-pole machine, the frequency In order to correspond to 60 [Hz], it is necessary to rotate at a speed faster than the synchronous rotation speed of 3600 [rpm]. However, if the prime mover is a windmill or waterwheel, its rotational speed is 1000 [rpm].
] In many cases, the speed is as low as below. In that case, the number of poles of the rotating machine becomes large, such as 10 or 12 poles, making the structure complicated and expensive. In order to overcome this drawback, Patent Application No. 88258 issued in 1988 proposes a system in which power is supplied from the primary winding terminal of an induction machine having a primary winding and a secondary winding that are electromagnetically coupled to each other. An output terminal of a frequency converter having an electrically connected input terminal is electrically connected so as to supply power to the secondary winding of the induction machine, and the rotor of the induction machine is driven by a prime mover to generate the induction machine. The relationship between the rotational speed n [rpm], the number of poles p [numbers] multiplicative product np, and the power frequency f1 [Hz] generated in the primary winding is pn<1
20f1, and by supplying power from the frequency converter to the secondary winding of the induction machine, the supplied power frequency f2 is added to f3 of pn=120f3, resulting in f2+f3.
The electrical connection phase sequence from the output terminal of the frequency converter to the secondary winding of the induction machine is arranged so that = f1.

このような昭和58年特許願第88258号において問
題点が三つあると考えられる。第一は自励式インバータ
を用いてその発電機の出力を負荷に供給しなければなら
ないので、発電機出力波形が正弦波にならない。自励式
インバータとして正弦波的出力を得るのに最も近い場合
はPWM形のインバータであるが、完全な正弦波出力で
はない。又適当な無効電力を供給することが難かしい。
There are considered to be three problems with such Patent Application No. 88258 of 1988. First, since the output of the generator must be supplied to the load using a self-excited inverter, the generator output waveform does not become a sine wave. The closest self-excited inverter to obtaining a sine wave output is a PWM type inverter, but it is not a perfect sine wave output. Furthermore, it is difficult to supply adequate reactive power.

更に自励式インバータの製作と制御そのものに難しさが
ある。
Furthermore, there are difficulties in manufacturing and controlling self-excited inverters themselves.

このような前出願の発明における欠点を除き、これらの
装置における発動機出力波形を正弦波に近くなるように
し、適当な無効電力を供給しうるようにし、更に簡単な
他励式インバータを用いて、比較的低速度の原動機に対
応しながら■もその極数を比較的少ない数におさえ、誘
導機を用いた発電機の出力周波数を制御しうるようにす
るため、昭和59年特許願第143132号では互いに
電磁結合された一次巻線と二次巻線を持つ誘導機の一次
巻線端子から電力を供給されるように電気接続された入
力端子を持つ周波数変換装置の出力端子から上記誘導機
の二次巻線へ電力を供給しうるように電気接続をし、更
に上記誘導機の回転子を原動機により駆動してその誘導
機の回転速度n[rpm]と極数p[個]の相乗積np
と一次巻線に発生する電力周波数f1[Hz]との関係
がpn<120f1となるように、且つ上記周波数変換
装置から誘導機の二次巻線へ電力を供給して、その供給
電力周波数f2がpn=120f3のf3に加えられて
f2+f1となるようにして、上記誘導機の主回路すな
わち一次又は二次回路に同期機を接続してその同期機の
励磁電流を制御する装置を設けるのである。然し具体的
にこの同期機を無負荷運転するために昭和59年特許願
第143132号では同期機と別個の電動機を設けてい
る。そしてその発電機の速度制御装置をも備えねばなら
ないので複雑な全装置となる。
Eliminating such drawbacks in the inventions of the previous application, the motor output waveform in these devices is made close to a sine wave, appropriate reactive power can be supplied, and a simple separately excited inverter is used. Patent Application No. 143132 filed in 1982 was developed in order to be able to control the output frequency of a generator using an induction machine by keeping the number of poles to a relatively small number while dealing with a relatively low-speed prime mover. Now, the induction machine has a primary winding and a secondary winding that are electromagnetically coupled to each other, and the induction machine is connected to the output terminal of the frequency converter, which has an input terminal that is electrically connected so that power is supplied from the primary winding terminal of the induction machine. Electrical connection is made so that power can be supplied to the secondary winding, and the rotor of the induction machine is driven by a prime mover, so that the multiplicative product of the rotation speed n [rpm] of the induction machine and the number of poles p [pieces] is made. np
Power is supplied from the frequency converter to the secondary winding of the induction machine so that the relationship between the power frequency f1 [Hz] generated in the primary winding is pn<120f1, and the supplied power frequency f2 is is added to f3 of pn=120f3 to become f2+f1, and a synchronous machine is connected to the main circuit, that is, the primary or secondary circuit of the induction machine, and a device is provided to control the excitation current of the synchronous machine. . However, in order to concretely operate this synchronous machine under no load, Patent Application No. 143132 of 1981 provides an electric motor separate from the synchronous machine. A speed control device for the generator must also be provided, resulting in a complex overall device.

本発明は昭和59年特許願第143132号の欠点を除
き、誘導機を用いた発電機の回転駆動原動機の回転速度
を減じ、簡単な他励式インバーターを用いうる配列にお
いて全装置を簡略せしめることを目的とする。
The present invention eliminates the drawbacks of Patent Application No. 143132 of 1982, reduces the rotational speed of the rotary drive prime mover of a generator using an induction machine, and simplifies the entire device in an arrangement that allows the use of a simple separately excited inverter. purpose.

このような目的を達成せしめるため、本発明ではその具
体的な電気接続図の第1図に示すように互いに電磁的に
結合された一次巻線と二次巻線を持つ誘導機1の一次巻
線端子2から電力を供給されるよう電気接続された入力
端子3を持つ周波数変換装置4の出力端子5から上記誘
導機1の二次巻線へ電力を供給しうるよう電気接続をし
、更に上記誘導機1の回転子を原動機6により駆動して
その誘導機1の回転速度n[rpm]と極数p[個]の
相乗積npと一次巻線に発生する電力周波数f1[Hz
]との関係がpn<120f1となるように、且つ上記
周波数変換装置4から誘導機二次巻線へ電力を供給して
、その供給電力周波数f2がpn=120F3のf3に
加えられて、f2+f3=f1となるようにした配列に
おいて、上記誘導機1の主回路すなわち誘導機1の一次
7又は二次回路8に同期機9又は10を接続して、その
同期機9又は10の無負荷損失を上記誘導機1の主回路
7又は8から同期機9の端子11を経て供給する電力で
バランスして同期機9を無負荷運転せしめ、且つ同期機
9又は10から上記誘導機1の主回路7又は8へ無効電
力を供給するように配列するのである。
In order to achieve such an object, the present invention provides a primary winding of an induction machine 1 having a primary winding and a secondary winding that are electromagnetically coupled to each other, as shown in FIG. 1 of the specific electrical connection diagram. an output terminal 5 of a frequency converter 4 having an input terminal 3 electrically connected to be supplied with power from the line terminal 2; When the rotor of the induction machine 1 is driven by the prime mover 6, the rotational speed n [rpm] of the induction machine 1, the multiplicative product np of the number of poles p [number], and the power frequency f1 [Hz] generated in the primary winding.
] so that pn<120f1, and power is supplied from the frequency converter 4 to the induction machine secondary winding, and the supplied power frequency f2 is added to f3 of pn=120F3, resulting in f2+f3. = f1, a synchronous machine 9 or 10 is connected to the main circuit of the induction machine 1, that is, the primary 7 or secondary circuit 8 of the induction machine 1, and the no-load loss of the synchronous machine 9 or 10 is is balanced by the power supplied from the main circuit 7 or 8 of the induction machine 1 through the terminal 11 of the synchronous machine 9 to cause the synchronous machine 9 to operate with no load, and the main circuit of the induction machine 1 from the synchronous machine 9 or 10 is balanced. 7 or 8 to supply reactive power.

第1次で周波数変換装置4は順変換装置12とリアクト
ル13及び逆変換装置(インバータ)14の接続から成
る。順変換装置12及び逆変換装置14はそれぞれ制御
素子付き整流器17及び18からなり、その制御素子回
路を制御装置16及び15で制御しうるように配列され
ている。この場合、逆変換装置14は他励式となり、構
造簡単で、その制御装置15によって整流器18の制御
素子を制御して、その進み制御角を制御しうるように配
列される。同期機9は誘導機1の一次回路7に接続され
ているが、誘導機1の二次回路8に同期機10を接続す
るような配列でも良い。今誘導機1の一次回路7に同期
機9が接続されている場合を考える。同期機9はその無
負荷損失分を興えられると、回転し続けるが、その無負
荷損失は第2図に示すように、その回転速度が大きくな
るほど、大きくなる。第2図はある同期機の例を示すが
、横軸にその回転速度をrpmで示し、それに対応して
縦軸にその無負荷損失を示す。無負荷損失はワット[w
]で示され、この例ではB点で1800rpmに対応し
て450W、A点において1500rpmに対応して3
50Wとなる。
The first frequency conversion device 4 is composed of a forward conversion device 12, a reactor 13, and an inverse conversion device (inverter) 14 connected together. The forward conversion device 12 and the inverse conversion device 14 each consist of rectifiers 17 and 18 with control elements, and are arranged so that the control element circuits can be controlled by control devices 16 and 15. In this case, the inverse converter 14 is separately excited, has a simple structure, and is arranged so that its control device 15 can control the control elements of the rectifier 18 to control its lead angle. Although the synchronous machine 9 is connected to the primary circuit 7 of the induction machine 1, an arrangement in which the synchronous machine 10 is connected to the secondary circuit 8 of the induction machine 1 may also be used. Now consider the case where the synchronous machine 9 is connected to the primary circuit 7 of the induction machine 1. The synchronous machine 9 continues to rotate if the no-load loss can be compensated for, but as shown in FIG. 2, the no-load loss increases as the rotation speed increases. FIG. 2 shows an example of a synchronous machine; the horizontal axis shows its rotational speed in rpm, and the vertical axis correspondingly shows its no-load loss. The no-load loss is in watts [w
], and in this example, 450W corresponds to 1800 rpm at point B, and 3W corresponds to 1500 rpm at point A.
It becomes 50W.

一方同期電動機の一相の入力をP1[W]とするとP1
=VIcos■           (1)たゞし、
Vは同期電動機の供給電圧であり、Iは電流、■はVと
Iとの間の位相角、cosは■は力率である。同期電動
機の一相の出力P2[W]は一相の銅損をraI2とす
ると P2=VIcos■−raI2      (2)  
=(Vcos■−raI)I      (3)たゞし
raは同期電動機電気子回路の一相の抵抗分である。(
2)又は(3)式から考えられることは、第1図の順変
間装置12の整流器17の制御素子を制御装置16によ
り制御して周波数変換装置4の出力回路すなわち誘導機
1の二次回路8つまり誘導機1の主回路の一つの電圧を
制御して、無負荷運転の同期機9に供給する電圧を制御
し、同期機9に興える電力P1つまり無負荷運転する同
期機9の損失分とバランスする同期機出力P2を制御し
うることになる。誘導機1の二次回路8の電圧を制御す
ることは誘導機1の一次回路7の電圧が制御されること
にもなり、このようにして同期機9に供給する電圧を制
御して、第2図に示される損失とバランスさせた電力供
給により、回転速度を制御しうることになる。同期機が
10で示されるように誘導機1の二次回路8に接続され
る場合も同様に考えられる。第1図では周波数検出装置
19(誘導機1の一次回路7又は同期機9の回転速度を
検出する。)で誘導機1の一次回路7の周波数又は電圧
或いは同期機9の回転速度を検出し、その周波数が検出
されて、設定周波数値と比較して高低であれば、その高
低によって制御装置16に作用せしめて、それにより順
変換装置12の整流器17の制御素子への作用でその制
御角を制御し、周波数変換装置4の出力回路である誘導
機1の主回路電圧を制御して、一次回路7の周波数を一
定化せしめるのである。
On the other hand, if the input of one phase of the synchronous motor is P1 [W], then P1
=VIcos■ (1) Tazushi,
V is the supply voltage of the synchronous motor, I is the current, ■ is the phase angle between V and I, and cos is the power factor. The output P2 [W] of one phase of the synchronous motor is P2 = VIcos - raI2 (2) where the copper loss of one phase is raI2
=(Vcos - raI)I (3) ra is the resistance of one phase of the synchronous motor armature circuit. (
What can be considered from equations 2) and (3) is that the control element of the rectifier 17 of the forward converter 12 shown in FIG. The circuit 8, that is, the voltage of one of the main circuits of the induction machine 1, is controlled to control the voltage supplied to the synchronous machine 9 in no-load operation, and the electric power P1 generated in the synchronous machine 9, that is, the voltage of the synchronous machine 9 in no-load operation, is controlled. This means that the synchronous machine output P2 can be controlled to balance the loss. Controlling the voltage of the secondary circuit 8 of the induction machine 1 also means controlling the voltage of the primary circuit 7 of the induction machine 1. In this way, controlling the voltage supplied to the synchronous machine 9, The rotational speed can be controlled by power supply balanced with the losses shown in Figure 2. A case in which a synchronous machine is connected to the secondary circuit 8 of the induction machine 1 as shown at 10 is also considered similarly. In FIG. 1, the frequency or voltage of the primary circuit 7 of the induction machine 1 or the rotation speed of the synchronous machine 9 is detected by a frequency detection device 19 (which detects the rotation speed of the primary circuit 7 of the induction machine 1 or the rotation speed of the synchronous machine 9). , the frequency is detected and if it is high or low compared to the set frequency value, it acts on the control device 16 depending on the height, thereby controlling the control angle by acting on the control element of the rectifier 17 of the forward converter 12. The main circuit voltage of the induction machine 1, which is the output circuit of the frequency converter 4, is controlled to make the frequency of the primary circuit 7 constant.

今始動時を考える。原動機6を駆動させ、誘導機1を回
転させる。開閉器20を閉じて直流電源21より誘導機
1へ直流を供給すると、誘導機1の一次回路7にf3な
る周波数の交流電圧が供給され、同期機9に交流電力が
供給され、同期機9は周波数f3[Hz]に対応した回
転速度で無負荷運転する。それによって同期機9は無効
電力すなわち励磁電流を誘導機1に興えることになる。
Think about when you start now. The prime mover 6 is driven to rotate the induction machine 1. When the switch 20 is closed and DC is supplied from the DC power supply 21 to the induction machine 1, an AC voltage with a frequency of f3 is supplied to the primary circuit 7 of the induction machine 1, AC power is supplied to the synchronous machine 9, and the synchronous machine 9 is operated without load at a rotational speed corresponding to frequency f3 [Hz]. As a result, the synchronous machine 9 generates reactive power, that is, excitation current, to the induction machine 1.

同時に誘導機1の二次回路に対しては誘導機1の一次回
路から周波数変換装置4を通してf2なる周波数の電力
を供給し、一次回路にはf2+f3=f1になる周波数
の交流電圧が供給されるようになる。周期機10が誘導
機1の二次回路に接続される場合も同様になる。このよ
うにして定常状態になれば、開閉器20を開き、直流電
源21の供給を停止するのである。
At the same time, power at a frequency of f2 is supplied from the primary circuit of the induction machine 1 to the secondary circuit of the induction machine 1 through the frequency converter 4, and AC voltage at a frequency of f2 + f3 = f1 is supplied to the primary circuit. It becomes like this. The same applies when the periodic machine 10 is connected to the secondary circuit of the induction machine 1. When the steady state is reached in this way, the switch 20 is opened and the supply of the DC power source 21 is stopped.

このようにして定常状態になった場合、同期機9又は1
0はその励磁電流を調整して誘導機1の一次回路7又は
二次回路8へ励磁電力或いは無効電力を供給して、この
発電系統の無効分を供給するが、一方その同期機9又は
10へは順変換装置12の制御によって印加電圧を制御
し、その電圧に応じた電力を誘導機1から加え、無負荷
運転することになる。
When the steady state is reached in this way, synchronous machine 9 or 1
0 adjusts its excitation current and supplies excitation power or reactive power to the primary circuit 7 or secondary circuit 8 of the induction machine 1 to supply the reactive part of this power generation system, but on the other hand, the synchronous machine 9 or 10 The applied voltage is controlled by the forward converter 12, and electric power corresponding to the voltage is applied from the induction machine 1 to perform no-load operation.

以上述べた本発明の装置の作用効果の特長をまとめると
、次のようになる。
The features of the operation and effect of the device of the present invention described above can be summarized as follows.

(1)発電機を駆動する原動機の回転速度に関係なく、
設定周波数の電力を出しうるような装置を原動機回転速
度の比較的低い領域のものを使い簡単に実施しうる。特
に簡単に発電機出力波形を正弦波に近 からしめることが出来る。
(1) Regardless of the rotational speed of the prime mover that drives the generator,
A device that can output power at a set frequency can be easily implemented using a device with a relatively low motor rotational speed. In particular, it is possible to easily make the generator output waveform close to a sine wave.

(2)そのような装置において系統に適当な無効電力を
簡単に供給しうる。特にそれにより逆変換装置を簡単で
動作確実な他励式とし、且つそのような無効電力供給の
同期機の駆動回転制御を同期機自身に加える交流電圧を
制御して実施しうるため、装置全体を簡単且つ動作確実
な物となしうる。
(2) Appropriate reactive power can be easily supplied to the grid in such a device. In particular, this allows the inverter to be made into a separately excited type that is simple and reliable in operation, and the drive rotation of such a reactive power-supplied synchronous machine can be controlled by controlling the AC voltage applied to the synchronous machine itself. It can be made simple and reliable in operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の具体的な電気接続図例。第2図は本発
明の接続中に用いられる同期機の特性図例を示す。また
図面の中、主要部分をあらわす符号の説明は次の通りで
ある。 1:誘導機、2:誘導機の一次巻線端子、3:周波数変
換装置4の入力端子、4:周波数変換装置、 5:周波
数変換装置4の出力端子、6:原動機、7:誘導機1の
一次回路、8:誘導機1の二次回路、9,10:同期機
、11:同期機の端子、12:順変換装置、13:リア
クトル、14:逆変換装置、15:制御装置、16:制
御装置、17:制御素子付き整流器、18:制御素子付
き整流器、19:周波数検出装置、20:開閉器、21
:直流電源。
FIG. 1 is an example of a specific electrical connection diagram of the present invention. FIG. 2 shows an example of a characteristic diagram of a synchronous machine used during the connection of the present invention. Further, in the drawings, explanations of the symbols representing main parts are as follows. 1: induction machine, 2: primary winding terminal of induction machine, 3: input terminal of frequency converter 4, 4: frequency converter, 5: output terminal of frequency converter 4, 6: prime mover, 7: induction machine 1 Primary circuit, 8: Secondary circuit of induction machine 1, 9, 10: Synchronous machine, 11: Terminal of synchronous machine, 12: Forward conversion device, 13: Reactor, 14: Inverse conversion device, 15: Control device, 16 : Control device, 17: Rectifier with control element, 18: Rectifier with control element, 19: Frequency detection device, 20: Switch, 21
:DC power supply.

Claims (1)

【特許請求の範囲】[Claims] 互いに電磁的に結合された一次巻線と二次巻線を持つ誘
導機の一次巻線端子から電力を供給されるよう電気接続
された入力端子を持つ周波数変換装置の出力端子から上
記誘導機の二次巻線へ電力を供給しうるよう電機接続を
し、更に上記誘導機の回転子を原動機により駆動してそ
の誘導機の回転速度n[rpm]と極数p[個]の相乗
積npと一次巻線に発生する電力周波数f_1[Hz]
との関係がpn<120f_1となるように、且つ上記
周波数変換装置から誘導機二次巻線へ電力を供給して、
その供給電力周波数f_2がpn=120f_3のf_
3に加えられて、f_2+f_3=f_1となるように
した配列において、上記誘導機の主回路すなわち誘導機
一次又は二次回路に同期機を接続して、その同期機、の
無負荷損失を上記誘導機の主回路から同期機の端子を経
て供給する電力でバランスして同期機を無負荷運転せし
め、且つ同期機から上記誘導機の主回路へ無効電力を供
給するように配列した発電装置
from the output terminal of a frequency converter having an input terminal electrically connected to receive power from the primary winding terminal of the induction machine having a primary winding and a secondary winding that are electromagnetically coupled to each other. An electrical connection is made so that power can be supplied to the secondary winding, and the rotor of the induction machine is driven by a prime mover, so that the multiplicative product np of the induction machine's rotational speed n [rpm] and the number of poles p [pieces] and the power frequency f_1 [Hz] generated in the primary winding
Supplying power from the frequency converter to the induction machine secondary winding so that the relationship between pn<120f_1,
f_ whose supply power frequency f_2 is pn=120f_3
In addition to 3, in an arrangement such that f_2 + f_3 = f_1, a synchronous machine is connected to the main circuit of the induction machine, that is, the primary or secondary circuit of the induction machine, and the no-load loss of the synchronous machine is calculated as the above induction A power generating device arranged so as to balance the power supplied from the main circuit of the machine through the terminals of the synchronous machine to cause the synchronous machine to operate without load, and to supply reactive power from the synchronous machine to the main circuit of the induction machine.
JP59225601A 1984-10-26 1984-10-26 Generator Pending JPS61106099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59225601A JPS61106099A (en) 1984-10-26 1984-10-26 Generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59225601A JPS61106099A (en) 1984-10-26 1984-10-26 Generator

Publications (1)

Publication Number Publication Date
JPS61106099A true JPS61106099A (en) 1986-05-24

Family

ID=16831880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59225601A Pending JPS61106099A (en) 1984-10-26 1984-10-26 Generator

Country Status (1)

Country Link
JP (1) JPS61106099A (en)

Similar Documents

Publication Publication Date Title
US6631080B2 (en) Systems and methods for boosting DC link voltage in turbine generators
JP3840416B2 (en) Turbine generator
JPH03502398A (en) Variable speed constant frequency starter with selectable input power limit
CN108847796B (en) Reluctance type starting control method and system for three-stage brushless synchronous motor
Kato et al. Small-scale hydropower
Nonaka et al. A new variable-speed AC generator system using a brushless self-excited-type synchronous machine
US4723202A (en) Converter-fed AC machine without damper winding
JPH10313598A (en) Pumped storage power generation facility
JPS61106099A (en) Generator
Koczara et al. Smart and decoupled power electronic generation system
JP2524575B2 (en) Braking device for variable speed generator motor in variable speed pumped storage generator
WO2004030203A1 (en) Power generation device
JPS6122799A (en) Controller for induction machine
JPH0564554B2 (en)
JP2004048988A (en) Switched reluctance machine
JP2856898B2 (en) Operation control method of pumped storage power generation system
CN108448973A (en) Brushless double feed independent power generating device and system
JPS61117000A (en) Power generation set
Bhattacherjee et al. Brushless and Magnetless Synchronous Generator for Standalone DC Load with Vienna Rectifier
Rajagopalan et al. Contribution to the development of wind energy systems using static power electronic converters
Chakraborty et al. Performance of a Doubly Excited Cylindrical Rotor Brushless Synchronous Generator
RU2071608C1 (en) Gear to test collectorless a c electric machines
JPH05168297A (en) Operating method for variable speed pumped storage hydroelectric power plant facility
Nonaka et al. A new variable-speed ac generator system using brushless self-excited type synchronous machine
JPH02164230A (en) Dc power transmission system