WO2004030203A1 - Power generation device - Google Patents

Power generation device Download PDF

Info

Publication number
WO2004030203A1
WO2004030203A1 PCT/JP2003/012426 JP0312426W WO2004030203A1 WO 2004030203 A1 WO2004030203 A1 WO 2004030203A1 JP 0312426 W JP0312426 W JP 0312426W WO 2004030203 A1 WO2004030203 A1 WO 2004030203A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
winding
power supply
power
field
Prior art date
Application number
PCT/JP2003/012426
Other languages
French (fr)
Japanese (ja)
Inventor
Masaji Haneda
Original Assignee
Ntt Data Ex Techno Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Data Ex Techno Corporation filed Critical Ntt Data Ex Techno Corporation
Priority to AU2003266680A priority Critical patent/AU2003266680A1/en
Publication of WO2004030203A1 publication Critical patent/WO2004030203A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/26DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the armature windings
    • H02K23/30DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the armature windings having lap or loop windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/66Structural association with auxiliary electric devices influencing the characteristic of, or controlling, the machine, e.g. with impedances or switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to an AC power generator, and more particularly to a power generator having a small size and capable of obtaining an output of a constant frequency regardless of the magnitude of the rotational driving force.
  • the principle of hydroelectric power and thermal power generation is to transmit the rotational driving force of a water turbine or turbine to an AC generator, generate power based on the rotation of the rotor of the AC generator, and output AC power.
  • the frequency in order to obtain AC power as generator output, the frequency must be constant, the voltage must be adjusted so that it does not exceed the rating, and the current and current according to the power used and the transmission capacity of the transmission line
  • the phase is adjusted, and various kinds of adjustment control are required.
  • various mechanical adjustments such as adjustment control of gas and water flow, that is, adjustment control by a governor, adjustment of the angle of blades of a prime mover, and the like to adjust the rotational force of a turbine and a turbine, which are generator inputs, are performed. Control is needed.
  • Patent Document 1
  • the generator is required to reduce equipment costs, simplify the equipment, and reduce maintenance and inspection by staff.
  • Simplify the power generation system by combining and simplifying as much as possible the devices and facilities that exist, such as detectors, adjustment devices, control devices, and protection devices other than the main unit, such as detectors, adjustment devices, control devices, and protection devices.
  • detectors, adjustment devices, control devices, and protection devices other than the main unit, such as detectors, adjustment devices, control devices, and protection devices.
  • the installation location is strictly selected to obtain a steady input as much as possible, but even if there is a large change in the rotational driving force, the effect of the change is reduced and the There is a demand for a power generator that can generate power output.
  • the present invention has been made in view of the above-described problems, and has a slim power generation device by minimizing equipment and devices such as an adjustment control device or maintenance and inspection work as much as possible, regardless of the magnitude of the rotational driving force as input.
  • equipment and devices such as an adjustment control device or maintenance and inspection work as much as possible, regardless of the magnitude of the rotational driving force as input.
  • the configuration of converters such as inverters, measures to prevent islanding and interconnection protection devices required for conventional system interconnection are minimized, and rotational energy is as effective as possible.
  • the purpose is to obtain a power generator that can be used. Disclosure of the invention
  • a power generator includes a rotor having a rotor winding and a stator having a stator winding, and the stator is rotated by rotation of the rotor.
  • the rotor winding is excited by a DC power supply through contact switching means that is energized at a predetermined cycle.
  • the exciting current is caused to flow in the rotor winding at a predetermined cycle by the contact switching means, so that an electromotive force is induced in the stator winding due to a change in magnetic flux, and power generation is possible.
  • the power generator according to the next invention is characterized in that, in the above invention, the stator winding and the wire are connected to an AC power supply and are AC-excited.
  • the on / off of the contact switching means synchronized with the AC excitation is defined as the excitation cycle of the rotor winding. Interconnection becomes possible.
  • the rotor winding is formed by arranging unit windings in a circumferential direction of a rotor core, and all the unit windings are electrically connected windings. It is characterized by being formed.
  • the rotor winding is formed by simply winding the unit winding around the rotor core and drumming.
  • a phase or multi-phase winding can be formed and an exciting current can be passed.
  • the rotor winding has an electric input / output terminal for each unit winding, and the electric input / output terminal is connected to the contact from the DC power supply. It is characterized in that electricity is supplied via switching means, and rotation is excited at a predetermined period in the circumferential direction of the rotor core on which each unit winding is arranged.
  • a rotating magnetic field can be formed.
  • the rotor winding has a plurality of unit windings as one set, and each set has an electric input / output terminal.
  • a power terminal is energized from the DC power supply via the contact switching means, and is rotationally excited at a predetermined cycle in a circumferential direction of a rotor core in which each unit winding is arranged.
  • the rotating magnetic field can also be formed by sequentially exciting the plurality of unit windings in the circumferential direction via the electrical input / output terminals.
  • the DC power supply includes both a voltage source and a current source.
  • the current flowing in the rotor winding can be controlled by switching between the voltage source and the current source.
  • the contact switching means has a commutator that rotates integrally with the rotor and a brush that rotates independently by contacting the commutator.
  • a rotating magnetic field having an arbitrary period can be formed in the rotor by performing switching by a unique rotation of the brush, separately from the rotatable commutator.
  • the power generator according to the next invention is characterized in that, in the above invention, the brush is rotated by a synchronous motor.
  • the brush is rotationally driven by the synchronous motor synchronized with the grid. Therefore, power generation synchronized with the grid is possible.
  • FIG. 1 is a simplified configuration diagram of a power generator according to a first embodiment of the present invention
  • FIG. 2 is a diagram for explaining a change in a direction of a current flowing through a rotor winding 4
  • FIG. 3 is a diagram for explaining a change in a magnetic field generated in the field winding due to the rotating magnetic field of the rotor.
  • FIG. 4 is a diagram illustrating the rotational speed of the rotor 6 in the power generator according to the first embodiment.
  • FIG. 5 is a diagram showing the relationship between the temperature and the electromotive force (voltage) generated in the field winding 1.
  • FIG. 5 is a simplified configuration diagram of a power generator according to a second embodiment of the present invention.
  • FIG. 5 is a simplified configuration diagram of a power generator according to a second embodiment of the present invention.
  • FIG. 7A is a diagram showing the relationship between the rotation speed of the rotor 6 and the electromotive force (voltage) generated in the rotor winding 4 in the power generator according to the second embodiment.
  • FIG. 6 (b) shows the relationship between the rotation speed of the rotor 6 and the electromotive force (voltage) generated in the field winding 1 in the power generator according to the second embodiment.
  • FIG. 7 shows the characteristics of the power generator of the second embodiment from the viewpoint of the DC power supply 14 on the graph of the voltage generated in the rotor winding 4 shown in FIG. 6).
  • FIG. 8 is a diagram showing the configuration of the prototype actually manufactured, and FIG. 9 is a more specific example of the connection of the DC power supply 14 and the rotation mechanism of the brush 12.
  • FIG. 8 is a diagram showing the configuration of the prototype actually manufactured
  • FIG. 9 is a more specific example of the connection of the DC power supply 14 and the rotation mechanism of the brush 12.
  • FIG. 10 is a diagram showing an example of the circuit configuration of the DC power supply 14.
  • FIG. 11 is a diagram showing the waveforms of the field voltage V and the field current I when there is no rotational driving force.
  • Fig. 12 shows the waveforms of the field voltage V and the field current I when there is no rotational driving force (DC power supply not connected, synchronous motor not driven).
  • Fig. 13 shows the shapes of the field voltage V and the field current I when there is a rotational driving force (DC power supply connection, synchronous motor drive). It is a diagram. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a simplified configuration diagram of a power generator according to a first embodiment of the present invention.
  • This power generator can function both as a single-operation power generator and as a grid-connected power generator, but this embodiment shows a configuration in the case of functioning as a single-operation power generator.
  • the configuration of the power generation device is slightly modified or shown as a schematic configuration in order to easily explain the configuration.
  • the rotor 6 is inserted into the pole piece 22, but in the figure, the rotor 6 is overlapped with the pole piece 22 in order to clarify the schematic structure of the rotor 6. It is displayed so that it does not become.
  • a field winding (stator winding) 1 is wound on a stator 3 having a stator core 2, and a rotor winding 4 is wound on a rotor core.
  • a rotor 6 having 5 is rotatably arranged using a windmill 7 as a driving motor as a drive source.
  • a commutator 8 having a plurality of commutator pieces 81 connected to the rotor winding 4 is rotatably attached to the rotor 6.
  • the ends of the yoke 21 of the stator core 2 on which the field windings 1 are wound constitute two field poles each having a pole piece 22.
  • the field poles can have not only a two-pole configuration but also a multiple of two.
  • the field winding 1 can be connected to a three-phase AC power supply, but can also be configured to have three poles or a multiple of three as the field poles.
  • the shape of the stator core 2 in FIG. 1 is not an actual shape, but is shown as forming the end of the yoke 21 of the stator core 2 for convenience of explanation.
  • the pole piece (field pole) 22 has a shape adapted to the rotor 6, and the yoke 21 has a simplified diagram as a structure in which the pole pieces 22 are connected and the field winding 1 is wound. I have.
  • the rotor 6 is composed of a plurality of type winding coils each having a coil side 41 inserted into a slot formed linearly in the axial direction and arranged equally in the circumferential direction of the outer periphery thereof. have.
  • the winding ends (electrical input / output terminals) of each type coil are individually connected to the rectifier pieces 81, respectively.
  • the structures of the stator 3 and the rotor 6 are so-called AC commutator machines.
  • the brush 12 is synchronously rotated in the circumferential direction of the rectifier 8 by the drive of the synchronous motor 9 while being in contact with the commutator 8.
  • the commutator 8 is synchronously rotated in the circumferential direction (hereinafter, simply referred to as the circumferential direction) while maintaining the desired contact resistance value between 1 and 1.
  • the synchronous rotation state of the brushes 12 is always maintained regardless of whether the rotor 6 and the commutator 8 are stopped due to no rotational driving force from the windmill or are being rotated by the rotational driving force.
  • slip rings 10 and 11 attached to a rotating shaft 17 of the synchronous motor 9 are used to connect a DC power supply 14 placed in an installed state to a brush 12 which is a rotating part.
  • a DC power supply 14 placed in an installed state to a brush 12 which is a rotating part.
  • FIG. 2 is a diagram for explaining the change in the direction of the current flowing through the rotor winding 4.
  • the rotor winding 4 composed of 12 unit windings (type winding coil) and the rotor winding 4
  • the figure shows a state in which an AC commutator machine having a commutator 8 to which is connected is flatly developed.
  • the structure of the rotor winding provided in the general AC commutator machine is basically the same as the structure of the rotor winding 4 provided in the power generator of the present invention, The above-described change in the current direction will be described by taking the AC commutator machine as an example.
  • FIG. 1 the structure of the rotor winding provided in the general AC commutator machine
  • the brush 12 contacts the commutator piece 81 of the commutator 8 to form a closed circuit between the DC power supply 14 and the rotor winding 4.
  • the current from the DC power supply 14 is divided into two directions, right and left, in the rotor winding 4 from the two positions on the left to the two positions on the right in the figure.
  • the brush 1 2 contacts the next brush movement position by the rotation of the brush 1 2, for example, the position of the commutator piece 8 1
  • the position of the brush on the left side is shifted from the position of the left side to the position of the right side.
  • the flow in the rotor winding 4 is divided into two directions, right and left.
  • FIG. 3 is a diagram for explaining a change in a magnetic field generated in a field winding by a rotating magnetic field of a rotor.
  • the current flowing through the rotor winding 4 generates a rotating magnetic field in the rotor 6 as shown in FIG.
  • This rotating magnetic field causes a change in the magnetic field in the pole pieces 22, causing an induced electromotive force in the field winding 1.
  • the change in the intensity of the magnetic field generated in the field winding 1 is indicated by the size of the characters N and S in the figure.
  • This change in the magnetic field is caused by a change in the amount of magnetic flux linked to the field winding.
  • the pole piece on the left side of the figure has an S pole of the opposite polarity to the N pole of the rotating magnetic field
  • the pole piece on the right side of the figure has an N pole of the opposite polarity to the S pole of the rotating magnetic field.
  • the pole piece on the left side of the figure has an N pole opposite in polarity to the S pole of the rotating magnetic field
  • the pole piece on the right side in the same figure has a polarity opposite to the N pole of the rotating magnetic field.
  • An S pole occurs.
  • the strength of the magnetic field generated in the field winding by the rotation of the rotating magnetic field changes as shown in (1) to (5).
  • the electromotive force generated in the field winding is proportional to the change in the amount of magnetic flux, that is, the change in the magnetic field. Therefore, as shown in the figure, it becomes maximum in the state of (3), and (1) and (5) In the state of, it is almost 0.
  • the wind turbine 7 has been stopped and the rotor 6 has been treated as physically non-rotating without any special notice. Therefore, Next, the case where the rotor 6 is physically rotated by the rotation of the windmill 7 will be described.
  • the change in the rotating magnetic field is caused by rotating the brush 12 as described above. That is, as shown in FIG. 3, the change in the rotating magnetic field is such that a half-period rotating magnetic field is formed between (1) to (5), and this period is caused by the electromotive force induced in the field winding 1. Is the same as the period. That is, the period of the rotating magnetic field is the same as the rotation period of the brushes 12 and does not depend on the rotation speed of the rotor 6. From this, in FIG. 1, the frequency of the AC output output from the field winding 1 can be controlled by the synchronous motor 9 without depending on the rotation speed of the rotor 6. For example, when the synchronous motor 9 rotates in synchronization with the frequency of the commercial power supply, an AC output having the same frequency as the commercial power supply can be obtained.
  • the magnitude of the electromotive force generated in the field winding 1 will be considered.
  • the fact that the magnitude of the electromotive force generated in the field winding 1 is proportional to the amount of change in the magnetic flux linking the field winding 1 is as described above. That is, the magnitude of the electromotive force generated in the field winding 1 is proportional to the amount of magnetic flux interlinking the field winding 1 per unit time.
  • the number of unit windings of the rotor winding 4 that crosses the field winding 1 increases. This means that the amount of magnetic flux passing through the field winding 1 per unit time increases, so that when the rotation speed of the rotor 6 increases, the electromotive force generated in the field winding 1 increases.
  • Figure 4 shows this relationship.
  • FIG. 4 is a diagram showing the relationship between the rotation speed of the rotor 6 and the electromotive force (voltage) generated in the field winding 1 in the power generator according to the first embodiment.
  • the two curves shown in the figure show the electromotive force generated by the different actions, one is the electromotive force (T) due to the transformer coupling action, and the other is the electromotive force (R) due to rotation.
  • T the electromotive force
  • R electromotive force
  • the brush 12 rotates at the synchronous speed
  • the DC current flowing from the DC power supply 14 changes in the rotor winding 4 due to the movement of the brush 12.
  • the switching of the DC current generates a synchronous rotating magnetic field in the rotor 6, and the rotating magnetic field generates induced electromotive force in the field winding 1 in synchronization with the switching of the DC current.
  • the electromotive force generated in the field winding 1 is generated based on the magnetic coupling between the field winding 1 and the rotor winding 4, and the magnitude of the electromotive force generated at this time is + Since this depends on the winding ratio of the two, this electromotive force is called the electromotive force due to the transformer coupling action.
  • the electromotive force caused by only the rotation of the rotor 6 decreases with the rotation of the rotor 6.
  • the rotor 6 has a winding that is DC-excited due to the switching operation accompanying the rotation of the brushes 12 and The electromotive force generated by the rotation of the excited winding gradually increases. Note that this electromotive force is referred to as “electromotive force due to rotation” ′ to distinguish it from the above “electromotive force due to transformer coupling action”.
  • the rotor 6 When the rotation of the rotor 6 is rotated at a speed exceeding the synchronous speed due to the high speed rotation of the windmill 7 (referred to as exceeding the synchronous speed), the rotor 6 is synchronously rotated and the electromagnet of the rotor winding 4 is synchronously rotated. Also rotates at a higher speed. In other words, the rotating magnetic field caused by the current flowing through the field winding 1 and the rotor winding 4 lags behind the rotation of the rotor 6. Will rotate. Therefore, the rotor 6 itself is physically rotating even at the moment when the brush 12 that causes the change in the magnetic flux of the field winding 1 and the rotation of the rotating magnetic field does not rotate.
  • the electromotive force generated by the rotation of the field winding 1 due to the synchronous rotation of the electromagnet of the rotor winding 4 is based on the magnetic flux change caused by the rotation of the rotor 6 that exceeds the synchronous speed.
  • the generated electromotive force is applied to the field winding 1.
  • the voltage generated in the field winding 1 due to the trans-coupling action is generated again when the rotation of the rotor 6 exceeds the synchronous speed, whereby the current of the rotor winding 4 is switched. This voltage increases in phase with the rotation speed of the rotor 6 in the same phase as when the speed is less than the synchronous speed (see FIG. 4).
  • the power generator includes the rotor having the rotor winding and the stator having the stator winding, and the rotor winding has a predetermined period. Since the excitation is performed by the DC power supply through the energized contact switching means, an AC output proportional to the rotation speed of the rotor can be obtained.
  • FIG. 5 is a simplified configuration diagram of a power generator according to a second embodiment of the present invention.
  • This embodiment shows a configuration in the case of functioning as a power generation device of system cooperation.
  • the power generator shown in Fig. 1 is configured so that the field winding 1 of the power generator shown in Fig. 1 is connected to the commercial power source, and the power output of the power generator is output to the commercial power source (system) side so that the power system can be linked. are doing.
  • the other configuration is the same as or equivalent to the configuration of the first embodiment shown in FIG. 1, and these components are denoted by the same reference numerals.
  • FIG. 6 (a) is a diagram showing the relationship between the rotation speed of the rotor 6 and the electromotive force (voltage) generated in the rotor winding 4 in the power generator according to the second embodiment.
  • FIG. 6 (b) is a diagram showing the relationship between the rotation speed of the rotor 6 and the electromotive force (voltage) generated in the field winding 1 in the power generator according to the second embodiment.
  • the AC electromotive force is applied to the rotor winding 4 due to the change of the magnetic flux by the field current of the field winding 1.
  • the terminal voltage of the DC power supply 14 is applied between the two commutator pieces selected by the rotation of the brush 12.
  • the induced electromotive force due to the field magnetic flux and the voltage applied by the DC power supply 14 are applied to the rotor winding 4 in opposite directions.
  • the phenomenon of application in the opposite direction is a case where the speed is lower than the synchronous speed, which will be described later.
  • the terminal voltage of the DC power supply 14 is determined by the induced electromotive force voltage determined by the turns ratio between the field winding 1 and the rotor winding 4. It needs to be set high.
  • the rotor 6 Starting from a predetermined voltage determined by the winding ratio of the field winding 1 and the rotor winding 4 and decreasing linearly as in the first embodiment, the rotor 6 The rotation becomes 0 at the synchronous speed and rises again beyond the synchronous speed (see Fig. 6 (b)).
  • the rotor 6 rotates at the synchronous speed over the entire region where the rotor 6 exceeds the synchronous speed from the point P1. It is possible to obtain a power generation output of a synchronous frequency synchronized with the cycle. As shown in Figs. 6 (a) and 6-2, in the region where the rotational speed of the rotor 6 is less than the synchronous speed from P1, the behavior as a synchronous generator is exhibited, and the rotor 6 adjusts the synchronous speed. In the region where it rotates beyond, it will behave as an induction generator. .
  • the operation in the region other than the above-mentioned region is as follows. That is, in this region, as shown in FIG. 6 (a), a voltage (E 1) applied to the rotor winding 4 by the DC power supply 14 is generated in the rotor winding 4 by the field winding 1. It becomes lower than the electromotive force (E 2), and current flows into the DC power supply 14 side. Therefore, in this region, it behaves as an induction motor. At this time, it is possible to assist the rotation start of the blade near the cut-in wind speed (see Fig. 6 (b)).
  • FIG. 7 is an explanatory diagram showing the characteristics of the power generator according to the second embodiment from the viewpoint of the DC power supply 14 on the graph of the voltage generated in the rotor winding 4 shown in FIG. 6 (a). It is.
  • the characteristics of this power generation device will be described with reference to FIG. As shown in the figure, three regions based on the rotation speed of the rotor 6, namely,
  • this region is a region exhibiting the behavior as an induction motor, and is also a region in which the rotation start of the blade of the windmill 7 can be supported.
  • This region is a region where the DC power supply 14 can generate power.
  • the rotor winding 4 is excited based on the difference voltage ⁇ VI between the DC power supply voltage (E 1) and the voltage (E 2) generated in the rotor winding 4, so that The generated voltage will increase as the speed increases.
  • the rotor winding 4 is excited based on the difference voltage ⁇ 3 between the DC power supply voltage (E 1) and the voltage (E 2) generated in the rotor winding 4, It can be understood that a larger power generation voltage is output.
  • V 2 indicates the difference voltage when the DC power supply voltage is set to 0 V, and indicates that power can be generated without the DC power supply voltage.
  • FIG. 8 is a diagram showing the configuration of an actually manufactured prototype.
  • the same parts as those shown in FIG. 5 are denoted by the same reference numerals.
  • a transformer 19 for reducing the voltage of the commercial AC power supply 18 is provided, and a field circuit is formed by the field winding 1 of the generator using the output of the transformer 19 as an AC power supply.
  • the connection of the commercial AC power supply 18 is omitted in FIG. 8, but is also a power supply for synchronously rotating the brush 12 via the synchronous motor 9.
  • the rotor 6 is configured to be able to rotate, for example, manually via the speed increaser 23.
  • a DC power supply 14 is connected to the commutator 8 and the brush 12 connected to a lead wire of a rotor winding (not shown). Further, in FIG. 8, a measuring instrument (for example, an oscilloscope 24) for measuring a field current and a field voltage (system voltage) is provided.
  • an oscilloscope 24 for measuring a field current and a field voltage (system voltage) is provided.
  • FIG. 8 shows the rotation mechanism of the brushes 12 and the power supply from the DC power supply 14 to the brushes 12 in a simplified manner
  • Fig. 9 shows the windmill 7 as the prime mover.
  • FIG. 2 is a configuration diagram illustrating the connection of the DC power supply 14 and the rotation mechanism of the brush 12 more specifically.
  • a wind turbine 7 and a gear 23 serving as a prime mover are connected to the rotating shafts of a rotor 6 and a commutator 8.
  • the brush 12 that contacts the commutator 8 is attached and fixed to a support member 13 including a brush holder.
  • the support member 13 has teeth on its outer periphery that match the gear 25.
  • a slip ring (not shown in FIG.
  • FIG. 10 is a diagram showing an example of a circuit configuration of the DC power supply 14.
  • the DC power supply 14 shown in FIG. 1 has both functions of a voltage source and a current source, and has a switch 111 for outputting the output of the battery 110 as a voltage source as a voltage source. It has a resistor 112, a transistor 113, a Zener diode 114, and a bias resistor 115, which function as a current source when 1 is opened.
  • the switch 11 when the switch 11 is turned on, the voltage of the battery 110 is directly applied to the slip rings 10 and 11 (not shown) to function as a voltage source.
  • the switch 1 1 1 is opened, the current of the resistor 1 1 2 is adjusted to reverse bias by the diode 1 1 4, so that the conduction current of the transistor 1 1 3 is controlled to be constant. And can function as a current source.
  • FIGS. 11 to 13 are graphs showing the voltage and current waveforms by the oscilloscope 24, that is, the field voltage and the field current waveform, in the circuit shown in FIG. You.
  • Fig. 11 shows the circuit switch 27 (Fig. 9) of the synchronous motor 9 connected to the AC commercial power supply by opening the circuit switch 26 of the DC power supply 14 without passing the rotor winding current.
  • Fig. 9 shows the voltage V and the current I of the field winding 1 shown in Fig. 5 in a state where the coil is open, and the current I is the inductance of the field winding 1 with respect to the voltage V. Minutes late.
  • Fig. 12 shows the circuit switches 26 and 27 of Fig. 9 turned on, the synchronous motor 9 is driven to rotate the brushes 12 at the synchronous speed, and the DC power supply (voltage source) 14 is slip ringed. And a state where a voltage is applied by connecting to the rotor winding 4 via the brush 12.
  • the terminal voltage of the DC power supply 14 was 20 V
  • the secondary voltage V of the transformer 19 was 8 V AC.
  • the induced electromotive force generated in the rotor winding 4 depending on the number of rotor windings based on the change in magnetic flux due to the current I in the field winding 1 is lower than the DC power supply voltage.
  • the movement of the contact position between 2 and the commutator piece 8 1 generates a rotating magnetic field in the rotor winding 4, and this rotating magnetic field changes the field flux by the field winding 1, and the field winding 1 Generates an electromotive force.
  • a field current I having almost the opposite phase to the field voltage V flows, and power is transmitted from the generator to the grid side.
  • the rotating magnetic field formed by the exciting current from the DC power supply 14 changes the magnetic flux of the field winding 1, thereby inducing an electromotive force in the field winding 1.
  • the field current I at this time has an opposite phase with a small phase shift with respect to the field voltage V, and the excitation current by the DC power supply 14 is 15 mA, and the excitation current is extremely small.
  • FIG. 13 is a graph showing a waveform in which the rotor 6 is rotated by the prime mover (for example, manually) via the speed increaser 23 in the circuit state of the waveform shown in FIG.
  • the waveform of the field current I does not change in phase as compared with the waveform of FIG. 10, and the peak value increases with the rotation of the prime mover. That is, the output energy of the prime mover is converted into a generated current, and a large amplitude field current I is obtained.
  • the frequency and phase of the field current are constant regardless of the rotation speed of the rotor 6.
  • the power generation device has an advantage in that power generation can be constantly obtained even when there is a wide range of change in rotational driving force, and in the case of system interconnection, an apparatus such as an impeller is not required. Have. In addition, it is easy to obtain an output of a constant frequency.
  • an adjusting device for adjusting the frequency and the like and an output control can be obtained. Control equipment, protection equipment, etc., can be simplified, reducing equipment costs and maintenance. be able to.
  • each commutator piece 81 is configured so as to be connected to each unit winding, but a current flows through the rotor winding 4 and a rotating magnetic field is applied to the rotor 6.
  • a current flows through the rotor winding 4 and a rotating magnetic field is applied to the rotor 6.
  • the number of commutator pieces can be reduced. You.
  • a power generation device including a rotor having a rotor winding and a stator having a stator winding, and generating power from the stator winding by rotating the rotor.
  • the rotor winding is excited by a DC power supply through contact switching means that is energized at a predetermined cycle, so that it is possible to generate power at a predetermined frequency.
  • stator winding is connected to an AC power supply and is AC-excited, there is an effect that a system interconnection is possible.
  • the rotor winding is formed by arranging the unit windings in the circumferential direction of the rotor core, and all the unit windings are formed as electrically coupled windings. This has the effect that it is possible to make effective use of.
  • the rotor winding has an electric input / output terminal for each unit winding, and a current is supplied to the electric input / output terminal from the DC power supply through the contact switching means, so that each unit winding is provided.
  • the rotor is energized at a predetermined cycle in the circumferential direction of the rotor core where the rotor is disposed, so that power can be generated regardless of the magnitude of the rotational driving force, and the effect of effectively utilizing the rotational energy can be obtained.
  • the rotor winding has a plurality of unit windings as one set, and each set has an electric input / output terminal, and the electric input / output terminal is contact-switched from a DC power supply.
  • the DC power supply includes both a voltage source and a current source.
  • a voltage source and a current source.
  • the contact switching means has a commutator that rotates integrally with the rotor and a brush that rotates independently by contacting the commutator, thereby forming a rotating magnetic field having an arbitrary period. This has the effect that it can be performed.
  • the power generation device can generate power regardless of the magnitude of the rotational driving force, and is suitable for a single operation or system-linked power generation device.

Abstract

A rotation device rotates a rotor iron core (5) having a rotor winding (4) together with a commutator (8) with respect to a fixed iron core (2) having a field winding (1) and being excited. The rotation device includes a brush (12) in contact with the commutator (8) and rotated by a synchronous motor (9), a DC power source (14) for applying DC voltage to the brush (12), a windmill (7) for rotating a rotor (6), and an AC power source connected as an exiting power source of the field winding (1) and a drive power source of the synchronous motor (9).

Description

技術分野 Technical field
この発明は、 交流発電装置に関し、 殊に小型ィ匕を図り回転駆動力の大小にかか わらず一定周波数の出力を得るようにした発電装置に関するものである。  The present invention relates to an AC power generator, and more particularly to a power generator having a small size and capable of obtaining an output of a constant frequency regardless of the magnitude of the rotational driving force.
明 背景技術 田 . .  Akira background technology field.
例えば、 水力発電や火力発電の原理としては、 水車やタービンの回転駆動力を 交流発電機に伝え、 この交流発電機の回転子の回転に基づき発電し、 交流電力を 出力するものである。 この場合、 発電機出力としての交流電力を得るためには、 一定の周波数になること、 定格を超えない電圧に調整されていること、 さらには 使用電力や送電線路の送電容量に応じた電流および位相が調整されること、 等種 々の調整制御が必要になる。 このために、 例えば、 発電機入力である水車やター ビンの回転力を調整するためガスや水量の調整制御すなわちガバナによる調整制 御、 原動機の羽根の角度調整、 等の種々の機械的調整や制御が必要になる。  For example, the principle of hydroelectric power and thermal power generation is to transmit the rotational driving force of a water turbine or turbine to an AC generator, generate power based on the rotation of the rotor of the AC generator, and output AC power. In this case, in order to obtain AC power as generator output, the frequency must be constant, the voltage must be adjusted so that it does not exceed the rating, and the current and current according to the power used and the transmission capacity of the transmission line The phase is adjusted, and various kinds of adjustment control are required. For this purpose, for example, various mechanical adjustments such as adjustment control of gas and water flow, that is, adjustment control by a governor, adjustment of the angle of blades of a prime mover, and the like to adjust the rotational force of a turbine and a turbine, which are generator inputs, are performed. Control is needed.
一方、 最近の趨勢として、 小水力発電、 風力発電などの小出力の発電装置 (風 力発電は最近では大出力のものも出現している) も種々商品化されており、 自然 環境下 のいわゆるクリーンなエネルギーを余すところなく電力に変えようとす る動向に沿うものである。 そして、 これら小出力の発電装置にあってもガバナ等 の装置や設備が必要となり保守点検も面倒となるのであるが、 さらにはこれらの 発電装置の設置については、 回転駆動力を得るための風力等の強弱変化の影響を できるだけ少なくするように前述の火力発電等と同等あるいはそれ以上に予め設 置環境を考慮することにより効率よくエネルギーを取得できる設置場所を厳密に 選択するという必要も生ずる。  On the other hand, recently, various types of low-power generators such as small hydropower and wind power have been commercialized (wind power has recently emerged with large power), and so-called natural power generation systems This is in line with the trend to completely convert clean energy into electricity. Even with these low-power generators, governors and other equipment and facilities are required, and maintenance and inspection are troublesome.In addition, installation of these power generators requires wind power to obtain rotational driving force. There is also a need to strictly select an installation location where energy can be efficiently obtained by considering the installation environment in advance to be equal to or greater than that for thermal power generation, etc., in order to minimize the effects of dynamic changes such as the above.
また、 発電機である以上単独運転用のものを除き系統連系をする必要があるが、 この系統連系をする場合発電機出力を商用電源周波数に同期させる必要があるた め、 従来では交流出力をー且直流に変換しィンバ一タによって商用交流電源に同 期された交流を作成し、 この交流を系統につなぐという方策を採っている。 In addition, since it is a generator, it is necessary to connect to the grid except for the one for independent operation. In the case of this system interconnection, it is necessary to synchronize the generator output with the commercial power supply frequency.Conventionally, the AC output is converted to DC and the AC is synchronized with the commercial AC power by an inverter to create AC. However, we are taking measures to connect this exchange to the grid.
特許文献 1  Patent Document 1
特開 2 0 0 2— 3 1 5 3 9 6号公報  Japanese Patent Application Laid-Open No. 2000-213 15 3 96
'上述のように大規模な発電プラントにあっても、 あるいは小出力の発電装置に あっても、 設備コストの低減、 装置の簡素化、 係員による保守点検の軽減等のた めに発電機の本体である交流発電機以外の検出器、 調整装置、 制御装置、 保護装 置等極めて多く存在する装置や設備をできるだけ複合化して簡素化し、 あるいは できれば除去することによつて発電装置のスリム化を図りたいという要請がある。 そしてこのスリム化の要請に沿うことは、 装置の小型ィヒにつながり、 季節や時期 によって、 例えば、 水量の豊富な時期、 風の強い時期に簡便に設置して発電する という、 簡便に設置や収納を可能とする発電装置の提供につながる。 '' Even in a large-scale power plant as described above or a low-output power generator, the generator is required to reduce equipment costs, simplify the equipment, and reduce maintenance and inspection by staff. Simplify the power generation system by combining and simplifying as much as possible the devices and facilities that exist, such as detectors, adjustment devices, control devices, and protection devices other than the main unit, such as detectors, adjustment devices, control devices, and protection devices. There is a request to do so. In line with this demand for slimness, this leads to smaller equipment, and depending on the season and season, for example, it can be easily installed and used to generate electricity when the water is abundant or when the wind is strong. This leads to the provision of a power generation device that enables storage.
また、 風力発電等では設置場所を厳密に選択してなるべく定常入力が得られる ようにしているのが、 仮に、 回転駆動力に大きな変化があつたとしてもその変化 の影響を少なくして恒常的に発電出力が得られる発電装置を得たいという要請が める。  Also, in wind power generation, etc., the installation location is strictly selected to obtain a steady input as much as possible, but even if there is a large change in the rotational driving force, the effect of the change is reduced and the There is a demand for a power generator that can generate power output.
さらに、 例えば船舶とか山小屋等に使用される単独運転用の発電装置などにお レヽては特別な場合であるが、 他の発電装置や送配電設備との系統連系を取る場合 においては、 同期を採る必要があることから、 従来ではインバータが別途必要と なって高価なものとなり、 またインバータの利用に伴う交流一直流、 あるいは直 流一交流変換作用にて効率が低下するという問題があった。 また、 系統連系を行 う場合、 断線等による負荷停電時でもィンバータの動作による活線に伴う危険を 防止すベく系統切り離しのための単独運転防止対策や負荷短絡時の防護のための 高速遮断器等の連系保護装置が必要となるため、 高価で構成上複雑なものとなら ざるを得なかった。 さらには、 風力発電において、 強風時に回転駆動力を発電装置から切り離すこ となく、 風力エネルギーを発電にできるだけ利用したレ、という要請もある。 Furthermore, this is a special case, for example, for an isolated power generator used for ships and mountain huts, etc. In the past, there was a problem that an inverter was separately required and expensive, and the efficiency was reduced due to the AC-DC or DC-AC conversion effect associated with the use of the inverter. . In addition, in the case of grid interconnection, measures to prevent the danger associated with live lines due to inverter operation even in the event of a load failure due to disconnection, etc. Since an interconnecting protection device such as a circuit breaker is required, it must be expensive and complicated in configuration. Furthermore, in wind power generation, there is also a demand that wind energy should be used for power generation as much as possible without separating the rotational driving force from the power generator during strong winds.
この発明は、 上述の問題に鑑みてなされたものであり、 調整制御装置等の設備 や装置あるいは保守点検作業をできるだけ少なくしてスリムな発電装置とし、 入 力である回転駆動力の大小にかかわらず発電を可能とし、 系統連系をする場合に はィンバータ等の変換器や従来系統連系に必要な単独運転防止対策や連系保護装 置等の構成をできるだけ少なくし、 回転エネルギーをできるだけ有効利用するよ うにした発電装置を得ることを目的とする。 発明の開示  The present invention has been made in view of the above-described problems, and has a slim power generation device by minimizing equipment and devices such as an adjustment control device or maintenance and inspection work as much as possible, regardless of the magnitude of the rotational driving force as input. In the case of system interconnection, the configuration of converters such as inverters, measures to prevent islanding and interconnection protection devices required for conventional system interconnection are minimized, and rotational energy is as effective as possible. The purpose is to obtain a power generator that can be used. Disclosure of the invention
上述の目的を達成するため、 この発明にかかる発電装置は、 回転子卷線を有す る回転子と固定子卷線を有する固定子とで構成され、 該回転子の回転により該固. 定子巻線から発電出力を得る発電装置において、 前記回転子卷線は所定の周期で 通電される接触スイッチング手段を介して直流電源にて励磁される とを特徴と する。 '  In order to achieve the above object, a power generator according to the present invention includes a rotor having a rotor winding and a stator having a stator winding, and the stator is rotated by rotation of the rotor. In a power generating apparatus for obtaining a power generation output from a winding, the rotor winding is excited by a DC power supply through contact switching means that is energized at a predetermined cycle. '
この発明によれば、 接触スイッチング手段にて回転子卷線に所定の周期にて励 磁電流を流すことになるので、 固定子卷線に磁束変化による起電力が誘起し、 発 電が可能となる。  According to the present invention, the exciting current is caused to flow in the rotor winding at a predetermined cycle by the contact switching means, so that an electromotive force is induced in the stator winding due to a change in magnetic flux, and power generation is possible. Become.
つぎの発明にかかる発電装置は、 上記の発明において、 前記固定子卷,線は、 交 流電源に接続されて交流励磁されることを特徴とする。  The power generator according to the next invention is characterized in that, in the above invention, the stator winding and the wire are connected to an AC power supply and are AC-excited.
この発明によれば、 固定子卷線を界磁卷線として交流励磁することになるので、 この交流励磁と同期する接触スィツチング手段のオン/オフを回転子卷線の励磁 周期とすれば、 系統連系が可能となる。  According to the present invention, since the stator winding is AC-excited as the field winding, the on / off of the contact switching means synchronized with the AC excitation is defined as the excitation cycle of the rotor winding. Interconnection becomes possible.
つぎの発明にかかる発電装置は、 上記の発明において、 前記回転子卷線は、 回 転子鉄心の周方向に単位卷線を並べて形成され、 全単位卷線は電気的に結合した 卷線に形成されたことを特徴とする。  In the power generator according to the next invention, in the above invention, the rotor winding is formed by arranging unit windings in a circumferential direction of a rotor core, and all the unit windings are electrically connected windings. It is characterized by being formed.
この発明によれば、 回転子卷線は、 回転子鉄心に単位卷線を鼓上卷きにして単 相あるいは多相の卷線を形成し、 励磁電流を流すことができる。 According to the present invention, the rotor winding is formed by simply winding the unit winding around the rotor core and drumming. A phase or multi-phase winding can be formed and an exciting current can be passed.
つぎの発明にかかる発電装置は、 上記の発明において、 前記回転子卷線は、 各 単位卷線ごとに電気的入出力端子を有し、 該電気的入出力端子に前記直流電源か ら前記接触スィツチング手段を介して通電され、 各単位卷線が配置される前記回 転子鉄心の周方向に所定の周期で回転励磁されることを特徴とする。  In the power generation device according to the next invention, in the above invention, the rotor winding has an electric input / output terminal for each unit winding, and the electric input / output terminal is connected to the contact from the DC power supply. It is characterized in that electricity is supplied via switching means, and rotation is excited at a predetermined period in the circumferential direction of the rotor core on which each unit winding is arranged.
この発明によれば、 回転子卷線は、 電気的入出力端子を介して単位卷線ごとに 周方向に順に励磁されるので、 回転磁界を形成することができる。  According to the present invention, since the rotor windings are sequentially excited in the circumferential direction for each unit winding via the electric input / output terminal, a rotating magnetic field can be formed.
つぎの発明にかかる発電装置は、 上記の発明において、 前記回転子卷線は、 複 数の各単位卷線を一組とし、 各組ごとに電気的入出力端子を有し、 該電気的入出 · 力端子に前記直流電源から前記接触スイッチング手段を介して通電され、 各単位 卷線が配置される回転子鉄心の周方向に所定の周期で回転励磁されることを特徴 とする。  In the power generation device according to the next invention, in the above invention, the rotor winding has a plurality of unit windings as one set, and each set has an electric input / output terminal. · A power terminal is energized from the DC power supply via the contact switching means, and is rotationally excited at a predetermined cycle in a circumferential direction of a rotor core in which each unit winding is arranged.
この発明によれば、 電気的入出力端子を介して複数一組の単位卷線ごとに周方 向に順に励磁することによつても、 回転磁界を形成することができる。  According to the present invention, the rotating magnetic field can also be formed by sequentially exciting the plurality of unit windings in the circumferential direction via the electrical input / output terminals.
つぎの発明にかかる発電装置は、 上記の発明において、 前記直流電源、は、 電圧 源および電流源の双方を含むことを特徴とする。  In the power generation device according to the next invention, in the above invention, the DC power supply includes both a voltage source and a current source.
この発明によれば、 電圧源と電流源との切り換えによって、 回転子卷線に流れ る電流を制御することができる。  According to the present invention, the current flowing in the rotor winding can be controlled by switching between the voltage source and the current source.
つぎの発明にかかる発電装置は、 上記の発明において、 前記接触スイッチング 手段は、 前記回転子と一体に回転する整流子と該整流子に接触して独自に回転す るブラシとを有することを特徴とする。  In the power generation device according to the next invention, in the above invention, the contact switching means has a commutator that rotates integrally with the rotor and a brush that rotates independently by contacting the commutator. And
この発明によれば、 回転可能な整流子とは別に、 ブラシの独自回転によるスィ ツチングを行うことにより回転子に任意の周期の回転磁界を形成することができ る。  According to the present invention, a rotating magnetic field having an arbitrary period can be formed in the rotor by performing switching by a unique rotation of the brush, separately from the rotatable commutator.
つぎの発明にかかる発電装置は、 上記の発明において、 前記ブラシは同期電動 機にて回転されることを特徴とする。  The power generator according to the next invention is characterized in that, in the above invention, the brush is rotated by a synchronous motor.
この発明によれば、 系統と同期する同期電動機にてブラシを回転駆動すること で、 系統と同期する発電が可能である。 図面の簡単な説明 According to the present invention, the brush is rotationally driven by the synchronous motor synchronized with the grid. Therefore, power generation synchronized with the grid is possible. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の第 1の実施の形態にかかる発電装置の簡略構成図であり、 第 2図は、 回転子卷線 4に流れる電流方向の変化を説明するための図であり、 第 3図は、 回転子の回転磁界によって界磁卷線に生ずる磁界の変化を説明するため の図であり、 第 4図は、 第 1の実施の形態の発電装置における回転子 6の回転速 度と界磁卷線 1に生ずる起電力 (電圧) との関係を示す図であり、 第 5図は、 こ の発明の第 2の実施形態にかかる発電装置の簡略構成図であり、 第 6図 (a ) は、 第 2の実施の形態の発電装置にぉレ、て回転子 6の回転速度と回転子卷線 4に生ず る起電力 (電圧) との関係を示す図であり、 第 6図 (b ) は、 第 2の実施の形態 の発電装置にぉレヽて回転子 6の回転速度と界磁卷線 1に生ずる起電力 (電圧) と の関係を示す図であり、 第 7図は、 直流電源 1 4を視点とした第 2の実施の形態 の発電装置の特性を第 6図 ) に示す回転子卷線 4に発生する電圧のグラフ上 に示した説明図であり、 第 8図は、 実際に製作した試作機の構成を示す図であり、 第 9図は、 直流電源 1 4の接続とブラシ 1 2の回転機構をさらに具体的に例示し た図であり、 第 1 0図は、 直流電源 1 4の回路構成の一例を示す図であり、 第 1 1図は、 回転駆動力がない場合の界磁電圧 Vと界磁電流 Iの波形 (直流電源非接 続、 同期電動機非駆動) を示す図であり、 第 1 2図は、 回転駆動力がない場合の 界磁電圧 Vと界磁電流 Iの波形 (直流電源接続、 同期電動機駆動) を示す図であ り、 第 1 3図は、 回転駆動力がある場合の界磁電圧 Vと界磁電流 Iの 形 (直流 電源接続、 同期電動機駆動) を示す図である。 発明を実施するための最良の形態  FIG. 1 is a simplified configuration diagram of a power generator according to a first embodiment of the present invention, and FIG. 2 is a diagram for explaining a change in a direction of a current flowing through a rotor winding 4, FIG. 3 is a diagram for explaining a change in a magnetic field generated in the field winding due to the rotating magnetic field of the rotor. FIG. 4 is a diagram illustrating the rotational speed of the rotor 6 in the power generator according to the first embodiment. FIG. 5 is a diagram showing the relationship between the temperature and the electromotive force (voltage) generated in the field winding 1. FIG. 5 is a simplified configuration diagram of a power generator according to a second embodiment of the present invention. FIG. 7A is a diagram showing the relationship between the rotation speed of the rotor 6 and the electromotive force (voltage) generated in the rotor winding 4 in the power generator according to the second embodiment. FIG. 6 (b) shows the relationship between the rotation speed of the rotor 6 and the electromotive force (voltage) generated in the field winding 1 in the power generator according to the second embodiment. FIG. 7 shows the characteristics of the power generator of the second embodiment from the viewpoint of the DC power supply 14 on the graph of the voltage generated in the rotor winding 4 shown in FIG. 6). FIG. 8 is a diagram showing the configuration of the prototype actually manufactured, and FIG. 9 is a more specific example of the connection of the DC power supply 14 and the rotation mechanism of the brush 12. FIG. 10 is a diagram showing an example of the circuit configuration of the DC power supply 14. FIG. 11 is a diagram showing the waveforms of the field voltage V and the field current I when there is no rotational driving force. Fig. 12 shows the waveforms of the field voltage V and the field current I when there is no rotational driving force (DC power supply not connected, synchronous motor not driven). Fig. 13 shows the shapes of the field voltage V and the field current I when there is a rotational driving force (DC power supply connection, synchronous motor drive). It is a diagram. BEST MODE FOR CARRYING OUT THE INVENTION
以下に添付図面を参照して、 この発明にかかる発電装置の好適な実施の形態を 詳細に説明する。  Hereinafter, preferred embodiments of a power generation device according to the present invention will be described in detail with reference to the accompanying drawings.
[第 1の実施形態] 第 1図は、 この発明の第 1の実施の形態にかかる発電装置の簡略構成図である。 この発電装置は、 単独運転の発電装置としても系統連系の発電装置としても機能 させることができるが、 この実施形態は、 単独運転の発電装置として機能させる 場合の構成を示すものである。 なお、 同図に示す構成図では、 発電装置の構成を わかりやすく説明するために多少の変形を加え、 あるいは模式的な構成として表 示している。 例えば、 実際の発電装置では、 回転子 6が磁極片 2 2の内部に挿入 される形で構成されるが、 同図では、 回転子 6の概略構造を明確にするため磁極 片 2 2と重ならないように表示している。 [First Embodiment] FIG. 1 is a simplified configuration diagram of a power generator according to a first embodiment of the present invention. This power generator can function both as a single-operation power generator and as a grid-connected power generator, but this embodiment shows a configuration in the case of functioning as a single-operation power generator. In the configuration diagram shown in the figure, the configuration of the power generation device is slightly modified or shown as a schematic configuration in order to easily explain the configuration. For example, in an actual power generator, the rotor 6 is inserted into the pole piece 22, but in the figure, the rotor 6 is overlapped with the pole piece 22 in order to clarify the schematic structure of the rotor 6. It is displayed so that it does not become.
第 1図において、 界磁卷線 (固定子卷線) 1が卷カゝれた固定子鉄心 2を有する固 定子 3に対して.、 回転子卷線 4が卷カゝれた回転子鉄心 5を有する回転子 6が原動 機である風車 7を駆動源として回転自在に配置される。 回転子 6には、 回転子卷 線 4と結線されている複数の整流子片 8 1を有する整流子 8がー体に回転可能に 取り付けられている。 In FIG. 1, a field winding (stator winding) 1 is wound on a stator 3 having a stator core 2, and a rotor winding 4 is wound on a rotor core. A rotor 6 having 5 is rotatably arranged using a windmill 7 as a driving motor as a drive source. A commutator 8 having a plurality of commutator pieces 81 connected to the rotor winding 4 is rotatably attached to the rotor 6.
界磁卷線 1が卷回された固定子鉄心 2のヨーク 2 1の端は、 磁極片 2 2をそれ ぞれ有する 2極の界磁極を構成する。 この場合、 界磁極としては、 2極の構成だ けでなく 2の倍数の極数とすることもできる。 また、 界磁卷線 1は、 三相交流電 源にも接続することができるが、 界磁極として 3極もしくは 3の倍数の極数に構 成することもできる。 なお、 第 1図の固定子鉄心 2の形状は、 実際に即した形状 ではなく、 説明の都合上、 固定子鉄心 2のヨーク 2 1の端を形成しているものと して示している。 また、 磁極片 (界磁極) 2 2は、 回転子 6に合わせた形状とし、 ヨーク 2 1は、 磁極片 2 2を連結して界磁卷線 1が卷回された構造として簡略図 示している。  The ends of the yoke 21 of the stator core 2 on which the field windings 1 are wound constitute two field poles each having a pole piece 22. In this case, the field poles can have not only a two-pole configuration but also a multiple of two. Further, the field winding 1 can be connected to a three-phase AC power supply, but can also be configured to have three poles or a multiple of three as the field poles. It should be noted that the shape of the stator core 2 in FIG. 1 is not an actual shape, but is shown as forming the end of the yoke 21 of the stator core 2 for convenience of explanation. Further, the pole piece (field pole) 22 has a shape adapted to the rotor 6, and the yoke 21 has a simplified diagram as a structure in which the pole pieces 22 are connected and the field winding 1 is wound. I have.
回転子 6は、 その外周の周方向に等しく配置して形成され軸方向に直線状に形 成されたスロット内にコイル辺 4 1を揷入した複数の型卷コィルからなる回転子 卷線 4を有している。 各型卷コイルの卷線端 (電気的入出力端子) はそれぞれ整 流子片 8 1に個別に結線されている。 以上説明したように、 固定子 3および回転 子 6の構造は、 いわゆる交流整流子機の構造である。 このように、 ブラシ 1 2は、 整流子 8に接触しつつ同期電動機 9の駆動にて整 流子 8の周方向に同期回転されることになる。 すなわち、 第 1図は発電機として はいわゆる交流整流子機の構造を有しているのであるが、 ブラシ 1 2は、 対をな すブラシ相互の位置関係を保ったまま、 しかも整流子片 8 1との間で所望の接触 抵抗値を保ったままで整流子 8の周方向 (以下単に周方向と称する) に同期回転 されることになる。 ブラシ 1 2の同期回転状態は、 回転子 6ひいては整流子 8が 風車からの回転駆動力がなく停止中であろうと回転駆動力により回転中であろう と常に保たれる。 The rotor 6 is composed of a plurality of type winding coils each having a coil side 41 inserted into a slot formed linearly in the axial direction and arranged equally in the circumferential direction of the outer periphery thereof. have. The winding ends (electrical input / output terminals) of each type coil are individually connected to the rectifier pieces 81, respectively. As described above, the structures of the stator 3 and the rotor 6 are so-called AC commutator machines. Thus, the brush 12 is synchronously rotated in the circumferential direction of the rectifier 8 by the drive of the synchronous motor 9 while being in contact with the commutator 8. In other words, Fig. 1 has the structure of a so-called AC commutator machine as a generator, but the brushes 12 keep the positional relationship between the brushes forming a pair, and the commutator pieces 8 The commutator 8 is synchronously rotated in the circumferential direction (hereinafter, simply referred to as the circumferential direction) while maintaining the desired contact resistance value between 1 and 1. The synchronous rotation state of the brushes 12 is always maintained regardless of whether the rotor 6 and the commutator 8 are stopped due to no rotational driving force from the windmill or are being rotated by the rotational driving force.
なお、 第 1図において、 同期電動機 9の回転軸 1 7に取り付けられたスリップ リング 1 0、 1 1は、 設置状態に置かれる直流電源 1 4を回転部分であるブラシ 1 2に接続するために必要であるが、 直流電源 1 4を回転軸に搭載した一体回転 する構造とするときにはスリップリング 1 0、 1 1やこのスリップリング 1 0、 1 1に接触するブラシは不要になる。  In FIG. 1, slip rings 10 and 11 attached to a rotating shaft 17 of the synchronous motor 9 are used to connect a DC power supply 14 placed in an installed state to a brush 12 which is a rotating part. Although it is necessary, when the DC power supply 14 is mounted on the rotating shaft and is integrally rotated, the slip rings 10 and 11 and the brushes contacting the slip rings 10 and 11 are not required.
第 2図は、 回転子卷線 4に流れる電流方向の変化を説明するための図であり、 1 2個の単位卷線 (型卷コィル) からなる回転子卷線 4と回転子卷線 4が接続さ れる整流子 8とを有する交流整流子機を平面的に展開した状態を示している。 こ こで、 一般的な交流整流子機に備えられた回転子卷線の構造は、 本願発明の発電 装置に備えられる回転子卷線 4の構造と基本的な点において同一であるため、 こ の交流整流子機を例にとって上述の電流方向の変化の説明を行う'ことにする。 第 2図において、 整流子 8の整流子片 8 1にブラシ 1 2が接触することによつ て、 直流電源 1 4と回転子卷線 4との間で閉回路が形成される。 このとき、 直流 電源 1 4による電流は、 同図中、 左側の二の位置から右側の二の位置に向って回 転子卷線 4内を右方向と左方向の 2方向に分流することになる。 ついで、 ブラシ 1 2の回転によって、 つぎのブラシ移動位置、 例えば、 整流子片 8 1のホ、 ホ位 置に、 ブラシ 1 2が接触した場合では、 左側のホの位置から右側のホの位置に向 つて回転子卷線 4内を右方向と左方向の 2方向に分流することになる。  FIG. 2 is a diagram for explaining the change in the direction of the current flowing through the rotor winding 4. The rotor winding 4 composed of 12 unit windings (type winding coil) and the rotor winding 4 The figure shows a state in which an AC commutator machine having a commutator 8 to which is connected is flatly developed. Here, since the structure of the rotor winding provided in the general AC commutator machine is basically the same as the structure of the rotor winding 4 provided in the power generator of the present invention, The above-described change in the current direction will be described by taking the AC commutator machine as an example. In FIG. 2, the brush 12 contacts the commutator piece 81 of the commutator 8 to form a closed circuit between the DC power supply 14 and the rotor winding 4. At this time, the current from the DC power supply 14 is divided into two directions, right and left, in the rotor winding 4 from the two positions on the left to the two positions on the right in the figure. Become. Then, when the brush 1 2 contacts the next brush movement position by the rotation of the brush 1 2, for example, the position of the commutator piece 8 1, the position of the brush on the left side is shifted from the position of the left side to the position of the right side. Then, the flow in the rotor winding 4 is divided into two directions, right and left.
このように、 ブラシ 1 2を商用電源周波数に同期させて回転させることによつ てブラシ 1 2の接触位置が順にシフトし、 回転子卷線 4内を流れる直流電源 1 4 からの電流が順に隣の単位卷線に変移していくことになる。 このことは、 直流電 源 1 4カゝら回転子卷線 4内に流れる電流によって生じた図中破線で示す電磁石 M 力 電流の変移によつて商用電源周波数に同期して回転する回転磁界を発生させ ることになる。 つまり、 整流子片 8 1上のブラシ 1 2'の順移動により、 ブラシ 1 2と整流子片 8 1との導通切り替わり (接触スィッチング手段を構成すること) が生じ、 直流電源 1 4カゝらの電流が回転子卷線 4における変移電流によつて回転 子 6に回転磁界を生起させることになる。 Thus, by rotating the brushes 12 in synchronization with the commercial power frequency, As a result, the contact position of the brush 12 shifts in order, and the current from the DC power supply 14 flowing in the rotor winding 4 is sequentially shifted to the next unit winding. This means that a rotating magnetic field that rotates in synchronism with the frequency of the commercial power supply is generated by the change in the electromagnet M force current indicated by the dashed line in the figure caused by the current flowing in the DC winding 14 and the rotor winding 4. Will be done. That is, due to the forward movement of the brushes 12 'on the commutator pieces 81, conduction switching between the brushes 12 and the commutator pieces 81 (constituting contact switching means) occurs, and the DC power supply 14 This current causes the rotor 6 to generate a rotating magnetic field due to the transition current in the rotor winding 4.
第 3図は、 回転子の回転磁界によって界磁卷線に生ずる磁界の変ィヒを説明する ための図である。 回転子 6において、 直流電源 1 4からスリップリング 1 1 (図 示省略) 、 ブラシ 1 2 a (図中黒丸で示す) を介して流れ込む電流が回転子卷,線 4を流れ、 ブラシ 1 2 b (図中白丸で示す) 、 スリップリング 1 0 (図示省略) を抜けて直流電源 1 4に戻る。 この回転子卷線 4を流れる電流によって、 回転子 6には同図に示すような回転磁界が生ずる。 この回転磁界は、 磁極片 2 2での磁 界の変化をもたらし、 界磁卷線 1に誘導起電力を生じさせる。  FIG. 3 is a diagram for explaining a change in a magnetic field generated in a field winding by a rotating magnetic field of a rotor. In the rotor 6, a current flowing from the DC power supply 14 through the slip ring 11 (not shown) and the brush 12a (shown by a black circle in the figure) flows through the rotor winding and the wire 4, and the brush 1 2b (Indicated by white circles in the figure), return to the DC power supply 14 through the slip ring 10 (not shown). The current flowing through the rotor winding 4 generates a rotating magnetic field in the rotor 6 as shown in FIG. This rotating magnetic field causes a change in the magnetic field in the pole pieces 22, causing an induced electromotive force in the field winding 1.
第 3図では、 界磁卷線 1に生ずる磁界の強度変化を、 図中 N、 Sの文字の大き さによって示している。 この磁界の変ィヒは、 界磁卷線に鎖交する磁束量が変化す ることによって引き起こされる。 (1 ) の状態では、 同図左側の磁極片では回転 磁界の N極と逆極性の S極が生じ、 同図右側の磁極片では回転磁界の S極と逆極 性の N極が生ずる。 これに対して、 (5 ) の状態では、 同図左側の磁極片では回 転磁界の S極と逆極性の N極が生じ、 同図右側の磁極片では回転磁界の N極と逆 極性の S極が生ずる。 このように、 回転磁界の回転によって界磁卷線に生ずる磁 界の強さが (1 ) 〜 (5 ) のように変化する。 一方、 界磁卷線に生ずる起電力は 磁束量の変化、 つまり磁界の変化量に比例するので、 同図に示すように、 (3 ) の状態ときに最大となり、 (1 ) および (5 ) の状態のときには略 0となる。 これまでの説明では、 特に断りを入れることなく、 風車 7は停止している状態 にあり、 回転子 6は物理的に回転していないものとして取り扱つてきた。 そこで、 つぎに、 風車 7の回転によつて回転子 6が物理的に回転している場合にっレ、て説 明する。 In FIG. 3, the change in the intensity of the magnetic field generated in the field winding 1 is indicated by the size of the characters N and S in the figure. This change in the magnetic field is caused by a change in the amount of magnetic flux linked to the field winding. In the condition (1), the pole piece on the left side of the figure has an S pole of the opposite polarity to the N pole of the rotating magnetic field, and the pole piece on the right side of the figure has an N pole of the opposite polarity to the S pole of the rotating magnetic field. On the other hand, in the condition (5), the pole piece on the left side of the figure has an N pole opposite in polarity to the S pole of the rotating magnetic field, and the pole piece on the right side in the same figure has a polarity opposite to the N pole of the rotating magnetic field. An S pole occurs. Thus, the strength of the magnetic field generated in the field winding by the rotation of the rotating magnetic field changes as shown in (1) to (5). On the other hand, the electromotive force generated in the field winding is proportional to the change in the amount of magnetic flux, that is, the change in the magnetic field. Therefore, as shown in the figure, it becomes maximum in the state of (3), and (1) and (5) In the state of, it is almost 0. In the description so far, the wind turbine 7 has been stopped and the rotor 6 has been treated as physically non-rotating without any special notice. Therefore, Next, the case where the rotor 6 is physically rotated by the rotation of the windmill 7 will be described.
まず、 回転磁界の周期について考える。 回転磁界の変化は、 上述したようにブ ラシ 1 2を回転させることによって生ずる。 すなわち、 回転磁界の変化は、 第 3 図に示すように、 (1 ) 〜 (5 ) の間で半周期の回転磁界が形成され、 この周期 は、 界磁卷線 1に誘導される起電力の周期と同一である。 すなわち、 回転磁界の 周期は、 ブラシ 1 2の回転周期と同一であり、 回転子 6の回転速度には依存しな レ、。 このことから、 第 1図において、 界磁卷線 1から出力される交流出力の周波 数は、 回転子 6の回転速度に依存することなく、 同期電動機 9によって制御する ことができる。 例えば、 同期電動機 9が商用電源の周波数に同期して回転するこ とにより、 商用電源と同一周波数の交流出力を取り出すことができる。  First, consider the period of the rotating magnetic field. The change in the rotating magnetic field is caused by rotating the brush 12 as described above. That is, as shown in FIG. 3, the change in the rotating magnetic field is such that a half-period rotating magnetic field is formed between (1) to (5), and this period is caused by the electromotive force induced in the field winding 1. Is the same as the period. That is, the period of the rotating magnetic field is the same as the rotation period of the brushes 12 and does not depend on the rotation speed of the rotor 6. From this, in FIG. 1, the frequency of the AC output output from the field winding 1 can be controlled by the synchronous motor 9 without depending on the rotation speed of the rotor 6. For example, when the synchronous motor 9 rotates in synchronization with the frequency of the commercial power supply, an AC output having the same frequency as the commercial power supply can be obtained.
つぎに、 界磁卷線 1に生ずる起電力の大きさについて考える。 界磁卷線 1に生 ずる起電力の大きさが界磁卷線 1を鎖交する磁束の変化量に比例するという事実 は、 上述したとおりである。 つまり、 界磁卷線 1に生ずる起電力の大きさは、 単 位時間あたりに界磁卷線 1を鎖交する磁束量に比例することになる。 一方、 風車 7が物理的に回転し、 回転速度が増加するにつれて、 界磁卷線 1を横切る回転子 卷線 4の単位卷線の数が増加する。 これは、 単位時間当たりに界磁卷線 1を通過 する磁束量が増大することであり、 したがって、 回転子 6の回転速度が増加する と、 界磁卷線 1に生ずる起電力が増大することになり、 この関係を示したものが 第 4図である。  Next, the magnitude of the electromotive force generated in the field winding 1 will be considered. The fact that the magnitude of the electromotive force generated in the field winding 1 is proportional to the amount of change in the magnetic flux linking the field winding 1 is as described above. That is, the magnitude of the electromotive force generated in the field winding 1 is proportional to the amount of magnetic flux interlinking the field winding 1 per unit time. On the other hand, as the windmill 7 physically rotates and the rotation speed increases, the number of unit windings of the rotor winding 4 that crosses the field winding 1 increases. This means that the amount of magnetic flux passing through the field winding 1 per unit time increases, so that when the rotation speed of the rotor 6 increases, the electromotive force generated in the field winding 1 increases. Figure 4 shows this relationship.
第 4図は、 第 1の実施の形態の発電装置における回転子 6の回転速度と界磁卷 線 1に生ずる起電力 (電圧) との関係を示す図である。 同図に示す 2本のカーブ は、 それぞれ異なる作用によって生ずる起電力を示しており、 一方は、 トランス 結合作用による起電力 (T) であり、 他方は、 回転による起電力 (R) である。 なお、 これらの 2つの起電力の定義 (意味) については、 後述する。  FIG. 4 is a diagram showing the relationship between the rotation speed of the rotor 6 and the electromotive force (voltage) generated in the field winding 1 in the power generator according to the first embodiment. The two curves shown in the figure show the electromotive force generated by the different actions, one is the electromotive force (T) due to the transformer coupling action, and the other is the electromotive force (R) due to rotation. The definition (meaning) of these two electromotive forces will be described later.
つぎに、 第 1図に示すこの実施の形態の発電装置において、 風車 7の動きを加 味したときの動作について、 第 1図または第 4図を用いて説明する。 具体的には、 Next, the operation when the movement of the windmill 7 is taken into account in the power generator of this embodiment shown in FIG. 1 will be described with reference to FIG. 1 or FIG. In particular,
( 1 ) 回転子 6が停止している場合  (1) When rotor 6 is stopped
また、 風車 7の回転により生ずる回転駆動力によって、  Also, by the rotational driving force generated by the rotation of the windmill 7,
( 2 ) 回転子 6が同期速度未満で回転している場合  (2) When the rotor 6 is rotating below the synchronous speed
( 3 ) 同期速度で回転している場合  (3) When rotating at synchronous speed
( 4 ) 同期速度を超える速度で回転している場合、  (4) When rotating at a speed exceeding the synchronous speed,
の各状態にわ って、 界磁卷線 1での発生電圧などについて説明する。  For each state, the voltage generated in the field winding 1 and the like will be described.
(回転子 6が停止している場合)  (When rotor 6 is stopped)
第 1図にぉレ、て、 ブラシ 1 2が同期速度で回転するとき、 回転子卷線 4には、 ブラシ 1 2の移動によつて直流電源 1 4力 ら流れる直流電流の切り替わりが生じ る。 また、 この直流電流の切り替わりにより、 回転子 6には同期回転磁界が生じ、 この回転磁界によつて界磁巻線 1には、 この直流電流の切り替わりに同期した誘 導起電力が生じる。 ここで、 この界磁卷線 1に生ずる起電力は、 界磁卷線 1と回 転子卷線 4との磁気結合に基づいて発生し、 また、 このとき発生する起電力の大 き +さは、 両者の卷線比等に依存するので、 この起電力をトランス結合作用による 起電力と呼称する。  As shown in FIG. 1, when the brush 12 rotates at the synchronous speed, the DC current flowing from the DC power supply 14 changes in the rotor winding 4 due to the movement of the brush 12. . Further, the switching of the DC current generates a synchronous rotating magnetic field in the rotor 6, and the rotating magnetic field generates induced electromotive force in the field winding 1 in synchronization with the switching of the DC current. Here, the electromotive force generated in the field winding 1 is generated based on the magnetic coupling between the field winding 1 and the rotor winding 4, and the magnitude of the electromotive force generated at this time is + Since this depends on the winding ratio of the two, this electromotive force is called the electromotive force due to the transformer coupling action.
第 4図にも示すように、 風車 7の停止状態において、 このトランス結合作用に よる起電力が生じている。 のように、 風車 7が停止して回転駆動力がなく回転 子 6が停止している状態でも、 界磁卷線 1が界磁極での磁束変化を受けるので、 誘導起電力が生ずる。  As shown in FIG. 4, when the wind turbine 7 is stopped, an electromotive force is generated by this transformer coupling action. As described above, even when the wind turbine 7 is stopped and there is no rotational driving force and the rotor 6 is stopped, the field winding 1 undergoes a change in magnetic flux at the field poles, so that an induced electromotive force is generated.
(回転子 6が同期速度未満の速度で回転しているとき)  (When the rotor 6 is rotating at a speed less than the synchronous speed)
界磁卷線 1に生ずる誘導起電力に関し、 風車 7が停止している状態から回転し 始め、 回転子 6が同期速度未満の速度で回転している場合はつぎのようになる。 風車 7の回転駆動力により回転子 6が回転し始め物理的回転が増大するにつれて、 回転子 6の回転と回転磁界の同期回転との間の速度差が次第に小さくなつていく。 すなわち、 回転子 6が停止しているときと比べ、 回転子 6の回転速度が同期速 度に近づくこととなって、 回転子 6が停止している際に生じたトランス結合作用 のみによる起電力が、 回転子 6の回転に伴って減少する一方、 回転子 6には、 ブ ラシ 1 2の回転に伴ぅスィツチング動作により直流励磁された卷線が存在するの で、 この直流励磁された卷線の回転により発生する起電力が次第に増大する。 な お、 この起電力を、 上記の 「トランス結合作用による起電力」 と区別するために、 「回転による起電力」' と呼称する。 Regarding the induced electromotive force generated in the field winding 1, when the wind turbine 7 starts to rotate from a stopped state and the rotor 6 rotates at a speed less than the synchronous speed, the following occurs. As the rotor 6 begins to rotate due to the rotational driving force of the windmill 7 and the physical rotation increases, the speed difference between the rotation of the rotor 6 and the synchronous rotation of the rotating magnetic field gradually decreases. That is, the rotation speed of the rotor 6 approaches the synchronous speed as compared with when the rotor 6 is stopped, and the transformer coupling action that occurs when the rotor 6 is stopped. The electromotive force caused by only the rotation of the rotor 6 decreases with the rotation of the rotor 6.On the other hand, the rotor 6 has a winding that is DC-excited due to the switching operation accompanying the rotation of the brushes 12 and The electromotive force generated by the rotation of the excited winding gradually increases. Note that this electromotive force is referred to as “electromotive force due to rotation” ′ to distinguish it from the above “electromotive force due to transformer coupling action”.
また、 第 6図にも示すように、 回転子 6が同期速度未満で回転している場合、 発電装置全体としては、 回転子 6の物理的回転に基づかないトランス結合作用に よる起電力 (T) が減少する反面、 回転子 6の回転に基づいて発生する回転によ る起電力 (R) が増大する。 回転子 6の回転速度が ί曾大するにつれ、 ブラシ 1 2 の回転に依存した導通切り替わり速度が相対的に遅くなって、 回転子卷線 4のリ ァクタンスが減少し、 回転子卷線 4のインピーダンスが減少する。 この結果、 回 転磁界を生じさせる電流が増大して磁界が強くなり、 界磁卷線 1での誘導起電力 も大きくなる。  Also, as shown in FIG. 6, when the rotor 6 is rotating at a speed lower than the synchronous speed, the electromotive force (T) due to the transformer coupling action that is not based on the physical rotation of the rotor 6 as a whole of the power generation device ) Decreases, but the electromotive force (R) due to rotation generated based on the rotation of the rotor 6 increases. As the rotation speed of the rotor 6 increases, the conduction switching speed depending on the rotation of the brushes 12 becomes relatively slow, so that the reactance of the rotor winding 4 decreases and the rotation of the rotor winding 4 decreases. The impedance decreases. As a result, the current that generates the rotating magnetic field increases, the magnetic field becomes stronger, and the induced electromotive force in the field winding 1 also increases.
(回転子 6が同期速度で回転しているとき)  (When rotor 6 is rotating at synchronous speed)
風車 7の回転駆動力によって回転子 6の回転とブラシ 1 2の回転に伴う導通切 り替わりによる回転磁界とが同一の同期速度になった場合には、 偶然に選択され た回転子卷線 4の入出力端子のみが導通して直流電源 1 4力 らの直流電流に基づ く直流磁界によって生じた電磁石 (回転子卷線 4の切り替わりによらない) の同 期回転によって、 界磁卷線 1には起電力が生ずる。 なお、 この起電力は、 界磁卷 線 1を電磁石の磁束が横切ることによって生ずるので、 前述した回転による起電 力のみが生じ、 回転子卷線 4には直流電源のみが流れるためトランス結合作用は 消滅し、 この作用による起電力は略 0となる (第 4図参照) 。  If the rotation of the rotor 6 and the rotating magnetic field generated by the switching of conduction due to the rotation of the brushes 12 attain the same synchronous speed due to the rotational driving force of the wind turbine 7, the rotor winding 4 selected by chance Only the input / output terminals of the DC power supply conduct, and the synchronous rotation of the electromagnet (independent of the switching of the rotor winding 4) generated by the DC magnetic field based on the DC current from the DC power supply 14 forces the field winding. 1 generates an electromotive force. Since this electromotive force is generated by the magnetic flux of the electromagnet crossing the field winding 1, only the above-described electromotive force is generated by the rotation, and only the DC power flows through the rotor winding 4, so that the transformer coupling action occurs. Disappears, and the electromotive force due to this action becomes almost zero (see Fig. 4).
(回転子 6が同期速度を超えて回転しているとき)  (When the rotor 6 is rotating beyond the synchronous speed)
風車 7の高速回転によって回転子 6の回転が同期速度を超える速度 (同期速度 超という) で回転する場合は、 回転子 6が同期回転して回転子卷線 4の電磁石が 同期回転する場合よりもさらに高速に回転することとなる。 つまり、 界磁卷線 1 およぴ回転子卷線 4に流れる電流による回転磁界は、 回転子 6の回転よりも遅れ て回転することとなる。 したがって、 界磁卷線 1の磁束変化や回転磁界の回転の 元となるブラシ 1 2が回転しない瞬間でも、 回転子 6自体は物理的に回転してい ることになる。 その結果、 回転子卷線 4の電磁石の同期回転によつて界磁卷線 1 に生ずる回転による起電力に対し、 さらに同期速度を超える分だけの回転子 6の 回転に起因する磁束変化に基づいた起電力が界磁卷線 1に加わる。 また、 トラン ス結合作用による界磁卷線 1に生じる電圧は、 回転子 6の回転が同期速度を超過 することにより、 回転子卷線 4の電流の切り替わりが生じ、 再ぴ発生する。 なお、 この電圧は、 同期速度未満の場合と同相で、 回転子 6の回転の増大に伴い、 増大 する (第 4図参照) 。 When the rotation of the rotor 6 is rotated at a speed exceeding the synchronous speed due to the high speed rotation of the windmill 7 (referred to as exceeding the synchronous speed), the rotor 6 is synchronously rotated and the electromagnet of the rotor winding 4 is synchronously rotated. Also rotates at a higher speed. In other words, the rotating magnetic field caused by the current flowing through the field winding 1 and the rotor winding 4 lags behind the rotation of the rotor 6. Will rotate. Therefore, the rotor 6 itself is physically rotating even at the moment when the brush 12 that causes the change in the magnetic flux of the field winding 1 and the rotation of the rotating magnetic field does not rotate. As a result, the electromotive force generated by the rotation of the field winding 1 due to the synchronous rotation of the electromagnet of the rotor winding 4 is based on the magnetic flux change caused by the rotation of the rotor 6 that exceeds the synchronous speed. The generated electromotive force is applied to the field winding 1. In addition, the voltage generated in the field winding 1 due to the trans-coupling action is generated again when the rotation of the rotor 6 exceeds the synchronous speed, whereby the current of the rotor winding 4 is switched. This voltage increases in phase with the rotation speed of the rotor 6 in the same phase as when the speed is less than the synchronous speed (see FIG. 4).
上述した動作 (作用) を纏めると、 界磁卷線 1に発生する電圧は、 つぎのよう になる。 '  Summarizing the above-mentioned operation (action), the voltage generated in the field winding 1 is as follows. '
( 1 ) 回転子 6が停止状態のときは、 トランス結合作用による起電力のみが 生じ、  (1) When the rotor 6 is stopped, only the electromotive force is generated by the transformer coupling action,
( 2 ) 回転子 6が同期速度未満の速度で回転しているときは、 トランス結合 作用による起電力が減少する反面、 回転による起電力が増大し、  (2) When the rotor 6 is rotating at a speed less than the synchronous speed, the electromotive force due to the transformer coupling action decreases, but the electromotive force due to rotation increases,
( 3 ) 回転子 6が同期速度で回転しているときは、 回転による起電力のみが 生じ、 トランス結合作用による起電力は略 0となり、  (3) When the rotor 6 is rotating at the synchronous speed, only the electromotive force due to the rotation is generated, and the electromotive force due to the transformer coupling action is substantially zero.
( 4 ) 回転子 6が同期速度を超えて回転しているときは、 回転による起電力 は増加し、 トランス結合作用による起電力は同期速度を境に再び上昇する。  (4) When the rotor 6 is rotating beyond the synchronous speed, the electromotive force due to rotation increases, and the electromotive force due to the transformer coupling rises again at the synchronous speed.
このように、 回転子 6が停止状態から同期速度を超えて回転する領域の全域に わたって、 同期速度で回転してレヽる回転子卷線 4が発生する回転磁界の周期に同 期した同期周波数の発電出力を得ることができる。 なお、 第 4図にも示すように、 回転子 6が同期速度未満で回転し ΪΓいる領域では、 同期発電機としての振る舞い を呈し、 回転子 6が同期速度を超えて回転している領域では、 誘導発電機として の振る舞いを呈することになる。  In this manner, over the entire region where the rotor 6 rotates beyond the synchronous speed from the stop state, the synchronous rotation synchronized with the period of the rotating magnetic field generated by the rotor winding 4 rotating at the synchronous speed occurs. A power generation output of a frequency can be obtained. As shown in FIG. 4, in a region where the rotor 6 is rotating below the synchronous speed, the rotor 6 behaves as a synchronous generator, and in a region where the rotor 6 is rotating beyond the synchronous speed. However, it behaves as an induction generator.
なお、 回転子 6の回転速度が増大すると回転子卷線 4に流れる電流が増加する 力 回転子卷線 4のリアクタンスが大きくなり、 回転子卷線 4に流れる電流は制 限される。 したがって、 第 4図に示すように、 回転による起電力も徐々に飽和す るようになる。 一方、 回転子卷線 4に流す電流を小さくすれば界磁卷線 1の起電 力を抑制することもできる。 つまり、 回転子 6の回転速度の増大によって増加す る回転子電流を積極的に制御することにより、 回転速度の変動に応じて、 所望の レベルの交流出力を得ることができる。 When the rotation speed of the rotor 6 increases, the current flowing in the rotor winding 4 increases. The reactance of the rotor winding 4 increases, and the current flowing in the rotor winding 4 is restricted. Limited. Therefore, as shown in Fig. 4, the electromotive force due to rotation gradually becomes saturated. On the other hand, if the current flowing through the rotor winding 4 is reduced, the electromotive force of the field winding 1 can be suppressed. In other words, a desired level of AC output can be obtained in accordance with the fluctuation of the rotation speed by positively controlling the rotor current that increases as the rotation speed of the rotor 6 increases.
以上説明したように、 この実施の形態の発電装置によれば、.回転子卷線を有す る回転子と固定子卷線を有する固定子とを備え、 回転子卷線が所定の周期で通電 される接触スィツチング手段を介して直流電源にて励磁されるようにしているの で、 回転子の回転速度に比例した交流出力を取り出すことができる。  As described above, according to the power generator of this embodiment, the power generator includes the rotor having the rotor winding and the stator having the stator winding, and the rotor winding has a predetermined period. Since the excitation is performed by the DC power supply through the energized contact switching means, an AC output proportional to the rotation speed of the rotor can be obtained.
[第 2の実施形態]  [Second embodiment]
第 5図は、 この発明の第 2の実施形態にかかる発電装置の簡略構成図である。 この実施形態は、 系統連携の発電装置として機能させる場合の構成を示すもので ある。 同図に示す発電装置は、 第 1図に示す発電装置の界磁卷線 1を商用電源に 接続し、 発電装置の発電出力を商用電源 (系統) 側に出力させて系統連携できる ように構成している。 なお、 その他の構成については、 第 1図に示す第 1の実施 の形態の構成と同一または同等であり、 これらの構成部については、 同一符号を 付して示している。  FIG. 5 is a simplified configuration diagram of a power generator according to a second embodiment of the present invention. This embodiment shows a configuration in the case of functioning as a power generation device of system cooperation. The power generator shown in Fig. 1 is configured so that the field winding 1 of the power generator shown in Fig. 1 is connected to the commercial power source, and the power output of the power generator is output to the commercial power source (system) side so that the power system can be linked. are doing. The other configuration is the same as or equivalent to the configuration of the first embodiment shown in FIG. 1, and these components are denoted by the same reference numerals.
つぎに、 第 5図に示すこの実施の形態の発電装置の動作について説明する。 な お、 第 6図 (a ) は、 第 2の実施の形態の発電装置における回転子 6の回転速度 と回転子卷線 4に生ずる起電力 (電圧) との関係を示す図であり、 第 6図 (b ) は、 第 2の実施の形態の発電装置における回転子 6の回転速度と界磁卷線 1に生 ずる起電力 (電圧) との関係を示す図である。  Next, the operation of the power generator of this embodiment shown in FIG. 5 will be described. FIG. 6 (a) is a diagram showing the relationship between the rotation speed of the rotor 6 and the electromotive force (voltage) generated in the rotor winding 4 in the power generator according to the second embodiment. FIG. 6 (b) is a diagram showing the relationship between the rotation speed of the rotor 6 and the electromotive force (voltage) generated in the field winding 1 in the power generator according to the second embodiment.
第 5図において、 第 1の実施の形態のところで説明したように、 ブラシ 1 2が 同期速度で回転するとき、 回転子卷線 4には、 ブラシ 1 2の移動によつて直流電 源 1 4から流れる直流電流の切り替わりが生じる。 また、 この直流電流の切り替 わりによつて生じた同期回転磁界によって、 上記で定義したトランス結合作用に よる起電力が生じる。 なお、 この起電力が回転子 6が停止している状態でも生ず ることは、 第 1の実施の形態のときと同様である。 In FIG. 5, as described in the first embodiment, when the brush 12 rotates at the synchronous speed, the rotor winding 4 is moved from the DC power supply 14 by the movement of the brush 12. Switching of the flowing DC current occurs. In addition, the synchronous rotating magnetic field generated by the switching of the DC current generates an electromotive force due to the transformer coupling action defined above. Note that this electromotive force is not generated even when the rotor 6 is stopped. This is the same as in the first embodiment.
一方、 この実施の形態の発電装置では、 第 1の実施の形態の発電装置と異なり、 界磁卷線 1の界磁電流による磁束の変ィ匕によつて回転子卷線 4に交流起電力電圧 、 発生していることである。 これに、 ブラシ 1 2の回転によって選択された 2 つの整流子片の間に直流電源 1 4の端子電圧が印加されることになる。 このとき、 回転子卷線 4には、 界磁磁束による誘導起電力と直流電源 1 4による印加電圧と が互いに逆方向に印加されることとなる。 この逆向きに印加されるという事象は、 同期速度未満の場合であり.、 後述する。 したがって、 回転子卷線 4に回転磁界を 生起させるためには、 直流電源 1 4による端子電圧が界磁卷線 1と回転子卷線 4 との卷数比によって決定される誘導起電力電圧より高く設定することが必要であ る。  On the other hand, in the power generator according to this embodiment, unlike the power generator according to the first embodiment, the AC electromotive force is applied to the rotor winding 4 due to the change of the magnetic flux by the field current of the field winding 1. The voltage that is occurring. The terminal voltage of the DC power supply 14 is applied between the two commutator pieces selected by the rotation of the brush 12. At this time, the induced electromotive force due to the field magnetic flux and the voltage applied by the DC power supply 14 are applied to the rotor winding 4 in opposite directions. The phenomenon of application in the opposite direction is a case where the speed is lower than the synchronous speed, which will be described later. Therefore, in order to generate a rotating magnetic field in the rotor winding 4, the terminal voltage of the DC power supply 14 is determined by the induced electromotive force voltage determined by the turns ratio between the field winding 1 and the rotor winding 4. It needs to be set high.
すなわち、 回転子卷線に発生する電圧に着目すれば、.回転子卷線に発生する電 圧を E 2とし、 直流電源電圧を E 1とするとき、 E 1 = E 2となる回転子 6の回 転速度 P 1が存在し、 回転子 6の回転速度がこの; P 1を超える領域が発電領域と なる (第 6図 (a ) 参照) 。 一方、 界磁卷線に発生する電圧で見れば、 回転によ る起電力 (R) は、 P 1の点からスタートして直線的に増加するカーブとなり、 トランス結合作用による起電力 (T) は、 第 1の実施の形態のときと同様に界磁 卷線 1と回転子卷線 4との卷数比によって決定される所定の電圧からスタートし て直線的に減少し、 回転子 6の回転が同期速度で 0となり、 同期速度を超えて再 び上昇する (第 6図 (b ) 参照) 。  In other words, focusing on the voltage generated in the rotor winding, when the voltage generated in the rotor winding is E 2 and the DC power supply voltage is E 1, the rotor in which E 1 = E 2 is satisfied. A rotation speed P1 exists, and the rotation speed of the rotor 6 exceeds this; the region exceeding P1 is the power generation region (see Fig. 6 (a)). On the other hand, in terms of the voltage generated in the field winding, the electromotive force (R) due to rotation becomes a linearly increasing curve starting from the point P1, and the electromotive force (T) due to the transformer coupling action. Starting from a predetermined voltage determined by the winding ratio of the field winding 1 and the rotor winding 4 and decreasing linearly as in the first embodiment, the rotor 6 The rotation becomes 0 at the synchronous speed and rises again beyond the synchronous speed (see Fig. 6 (b)).
上述したことから明らかなように、 この実施の形態の発電装置では、 回転子 6 が P 1の点から同期速度を超えて回転する領域の全域にわたって、 同期速度で回 転している回転磁界の周期に同期した同期周波数の発電出力を得ることができる。 なお、 第 6図 (a ) , 6— 2に示すように、 回転子 6の回転速度が P 1から同期 速度未満の領域では、 同期発電機としての振る舞いを呈し、 回転子 6が同期速度 を超えて回転している領域では、 誘導発電機としての振る舞いを呈することにな る。 . 一方、 上記の領域以外、 すなわち、 回転子 6の回転速度が P 1以下の領域での 動作について考察するとつぎのようになる。 すなわち、 この領域では、 第 6図 ( a ) に示すように、 直流電源 1 4による回転子卷線 4への印加電圧 (E 1 ) が界 磁卷線 1による回転子卷線 4に発生する起電力 (E 2 ) より低くなり、 直流電源 1 4側に電流が流れ込むことになる。 したがって、 この領域では、 誘導電動機と しての振る舞いを呈することになる。 このとき、 カットイン風速近傍のブレード の回転始動を支援できる (第 6図 (b ) 参照) 。 As is apparent from the above description, in the power generator of this embodiment, the rotor 6 rotates at the synchronous speed over the entire region where the rotor 6 exceeds the synchronous speed from the point P1. It is possible to obtain a power generation output of a synchronous frequency synchronized with the cycle. As shown in Figs. 6 (a) and 6-2, in the region where the rotational speed of the rotor 6 is less than the synchronous speed from P1, the behavior as a synchronous generator is exhibited, and the rotor 6 adjusts the synchronous speed. In the region where it rotates beyond, it will behave as an induction generator. . On the other hand, the operation in the region other than the above-mentioned region, that is, in the region where the rotation speed of the rotor 6 is equal to or lower than P1, is as follows. That is, in this region, as shown in FIG. 6 (a), a voltage (E 1) applied to the rotor winding 4 by the DC power supply 14 is generated in the rotor winding 4 by the field winding 1. It becomes lower than the electromotive force (E 2), and current flows into the DC power supply 14 side. Therefore, in this region, it behaves as an induction motor. At this time, it is possible to assist the rotation start of the blade near the cut-in wind speed (see Fig. 6 (b)).
また、 直流電源 1 4の電圧 (E 1 ) を界磁卷線 1による回転子卷線 4に発生す る起電力 (E 2 ) と同等、 あるいは若干高めに設定しておけば、 直流電源 1 4の 電圧が低下したとしても、 上記充電電流によつて直流電源 1 4の電圧が復旧した 後は、 誘導電動機として振る舞うことはないので、 この発電装置が系統負荷とな らない状態を維持することができる。  If the voltage (E 1) of the DC power supply 14 is set equal to or slightly higher than the electromotive force (E 2) generated in the rotor winding 4 by the field winding 1, the DC power supply 1 Even if the voltage of (4) drops, after the voltage of DC power supply (14) is restored by the above charging current, it will not behave as an induction motor, so that this generator does not become a system load be able to.
第 7図は、 直流電源 1 4を視点とした第 2の実施の形態の発電装置の特性を第 6図 (a ) に示す回転子卷線 4に発生する電圧のグラフ上に示した説明図である。 以下、 同図を用いて、 この発電装置の特性を説明する。 なお、 同図に示すように、 回転子 6の回転速度に基づいた 3つの領域、 すなわち、  FIG. 7 is an explanatory diagram showing the characteristics of the power generator according to the second embodiment from the viewpoint of the DC power supply 14 on the graph of the voltage generated in the rotor winding 4 shown in FIG. 6 (a). It is. Hereinafter, the characteristics of this power generation device will be described with reference to FIG. As shown in the figure, three regions based on the rotation speed of the rotor 6, namely,
( 1 ) 停止状態から回転速度 P 1までの領域  (1) Area from the stop state to the rotation speed P1
( 2 ) 回転速度 P 1を超え同期速度までの領域  (2) Range from rotation speed P1 to synchronous speed
( 3 ) 同期速度を超える領域  (3) Area exceeding synchronization speed
の各領域ごとに、 それぞれ説明する。  Each area will be described separately.
(停止状態から回転速度 P 1までの領域)  (Range from stop to rotation speed P 1)
この領域では、 上述したように、 直流電源 1 4側に電流が流れ込む領域である。 また、 この電流は、 直流電源 1 4を充電する方向に流れるので、 直流電源が二次 電池であれば充電することができる。 また、 この領域は、 上述したように、 誘導 電動機としての振る舞いを呈する領域でもあり、 風車 7のブレードの回転始動を 支援できる領域でもある。  In this region, as described above, the current flows into the DC power supply 14 side. In addition, since this current flows in the direction of charging the DC power supply 14, charging can be performed if the DC power supply is a secondary battery. Further, as described above, this region is a region exhibiting the behavior as an induction motor, and is also a region in which the rotation start of the blade of the windmill 7 can be supported.
(回転速度 P 1を超え同期速度までの領域) この領域は、 直流電源 1 4により発電可能な領域である。 第 7図に示すように、 直流電源電圧 (E 1 ) と回転子卷線 4に発生する電圧 (E 2 ) との差電圧 Δ V I に基づいて回転子卷線 4が励磁されるので、 回転速度の増大に伴って発電電圧が 増加することになる。 (Range exceeding the rotation speed P1 to the synchronous speed) This region is a region where the DC power supply 14 can generate power. As shown in FIG. 7, the rotor winding 4 is excited based on the difference voltage Δ VI between the DC power supply voltage (E 1) and the voltage (E 2) generated in the rotor winding 4, so that The generated voltage will increase as the speed increases.
(同期速度を超える領域)  (Area exceeding synchronization speed)
同期速度以上の領域では、 回転子卷線 4に流れる電流は、 第 7図に示すように 極性が反転する。 したがって、 この領域では、 直流電源電圧 ( E 1 ) と回転子巻 線 4に発生する電圧 (E 2 ) との差電圧 Δ ν 3に基づいて回転子卷線 4が励磁さ れることになり、 より大きな発電電圧が出力されることが理解できる。 なお、 厶 V 2は、 直流電源電圧を 0 Vにした場合の差電圧を示しており、 直流電源電圧が ない場合でも発電が可能であることを示している。  In the region above the synchronous speed, the polarity of the current flowing through the rotor winding 4 is reversed as shown in FIG. Therefore, in this region, the rotor winding 4 is excited based on the difference voltage Δν 3 between the DC power supply voltage (E 1) and the voltage (E 2) generated in the rotor winding 4, It can be understood that a larger power generation voltage is output. Note that the term V 2 indicates the difference voltage when the DC power supply voltage is set to 0 V, and indicates that power can be generated without the DC power supply voltage.
また、 上述した内容から、 この領域では、 二次電池である直流電源の極性を反 転することによって、 発電を可能としつつ、 この二次電池を充電することもでき ることを示している。  Further, from the above description, it is shown that in this region, by reversing the polarity of the DC power supply which is a secondary battery, it is possible to charge the secondary battery while enabling power generation.
つぎに、 試作機による実験例について述べる。 第 8図は、 実際に製作した試作 機の構成を示す図である。 同図に使用する符号は、 第 5図に示す構成と同一部分 については同一符号を付して示している。 第 8図において、 商用交流電源 1 8の 電圧を降圧する変圧器 1 9が備えられ、 変圧器 1 9の出力を交流電源として発電 機の界磁卷線 1によつて界磁回路が形成されて'!/、る。 商用交流電源 1 8は、 第 8 図では接続を省略しているが、 同期電動機 9を介してブラシ 1 2を同期回転させ る電源でもある。 回転子 6は、 増速機 2 3を介して、 例えば手動にて回転できる ように構成されている。 また、 また、 図示を省略した回転子卷線の引き出し線に 接続された整流子 8およびプラシ 1 2には、 直流電源 1 4が接続されている。 ま た、 第 8図においては、 界磁電流およぴ界磁電圧 (系統電圧) を計測するための 測定器 (例えばオシロスコープ 2 4 ) を備えている。  Next, an experimental example using the prototype will be described. FIG. 8 is a diagram showing the configuration of an actually manufactured prototype. In the figure, the same parts as those shown in FIG. 5 are denoted by the same reference numerals. In FIG. 8, a transformer 19 for reducing the voltage of the commercial AC power supply 18 is provided, and a field circuit is formed by the field winding 1 of the generator using the output of the transformer 19 as an AC power supply. hand'! / The connection of the commercial AC power supply 18 is omitted in FIG. 8, but is also a power supply for synchronously rotating the brush 12 via the synchronous motor 9. The rotor 6 is configured to be able to rotate, for example, manually via the speed increaser 23. Further, a DC power supply 14 is connected to the commutator 8 and the brush 12 connected to a lead wire of a rotor winding (not shown). Further, in FIG. 8, a measuring instrument (for example, an oscilloscope 24) for measuring a field current and a field voltage (system voltage) is provided.
第 8図は、 ブラシ 1 2の回転機構およぴブラシ 1 2への直流電源 1 4力 らの給 電を簡略ィヒして表示しているが、 第 9図は、 原動機として風車 7をつないだ例を 示しており、 直流電源 1 4の接続とブラシ 1 2の回転機構をさらに具体的に例示 した構成図である。 第 9図において、 原動機である風車 7および増速機 2 3が回 転子 6およぴ整流子 8の回転軸に連結される。 整流子 8に接触するブラシ 1 2は、 ブラシホルダを含む支持部材 1 3に取り付け固定される。 支持部材 1 3は、 外周 に歯車 2 5と嚙合う歯を有する。 また、 支持部材 1 3には、 ブラシ 1 2に対応し てスリップリング (第 9図では図示省略) が形成され、 このスリップリングが直 流電源 1 4に接続される。 このような構造により、 スリップリングを介して直流 電源 1 4に接続されたブラシ 1 2は、 同期電動機 9の駆動に基づレヽて同期速度で 回転することになる。 Fig. 8 shows the rotation mechanism of the brushes 12 and the power supply from the DC power supply 14 to the brushes 12 in a simplified manner, while Fig. 9 shows the windmill 7 as the prime mover. The connected example FIG. 2 is a configuration diagram illustrating the connection of the DC power supply 14 and the rotation mechanism of the brush 12 more specifically. In FIG. 9, a wind turbine 7 and a gear 23 serving as a prime mover are connected to the rotating shafts of a rotor 6 and a commutator 8. The brush 12 that contacts the commutator 8 is attached and fixed to a support member 13 including a brush holder. The support member 13 has teeth on its outer periphery that match the gear 25. Further, a slip ring (not shown in FIG. 9) is formed on the support member 13 in correspondence with the brush 12, and this slip ring is connected to the DC power supply 14. With such a structure, the brush 12 connected to the DC power supply 14 via the slip ring rotates at the synchronous speed based on the drive of the synchronous motor 9.
第 1 0図は、 直流電源 1 4の回路構成の一例を示す図である。 同図に示す直流 電源 1 4は、 電圧源と電流源の両者の機能を兼ね備え、 二次電池であるバッテリ 1 1 0の出力を電圧源として出力させるためのスィツチ 1 1 1と、 スィツチ 1 1 1を開いたときに電流源と機能させるための抵抗体 1 1 2、 トランジスタ 1 1 3、 ツエナーダイオード 1 1 4およびバイアス抵抗器 1 1 5とを備えている。 同図に おいて、 スィッチ 1 1 1が投入されるときには、 図示を省略しているスリップリ ング 1 0、 1 1にはバッテリ 1 1 0の電圧が直接加わって電圧源として機能する ことになる。 一方、 スィッチ 1 1 1を開いた場合には、 抵抗体 1 1 2の電流がッ エ^ "一ダイオード 1 1 4によって逆バイアスに調整されるので、 トランジスタ 1 1 3の通電電流が一定に制御され、 電流源として機能させることができる。  FIG. 10 is a diagram showing an example of a circuit configuration of the DC power supply 14. The DC power supply 14 shown in FIG. 1 has both functions of a voltage source and a current source, and has a switch 111 for outputting the output of the battery 110 as a voltage source as a voltage source. It has a resistor 112, a transistor 113, a Zener diode 114, and a bias resistor 115, which function as a current source when 1 is opened. In the figure, when the switch 11 is turned on, the voltage of the battery 110 is directly applied to the slip rings 10 and 11 (not shown) to function as a voltage source. On the other hand, when the switch 1 1 1 is opened, the current of the resistor 1 1 2 is adjusted to reverse bias by the diode 1 1 4, so that the conduction current of the transistor 1 1 3 is controlled to be constant. And can function as a current source.
第 1 1図〜第 1 3図は、 第 8図に示す回路にあって、 オシロスコープ 2 4によ る電圧おょぴ電流波形、 すなわち界磁電圧およぴ界磁電流波形を示すグラフであ る。 第 1 1図は、 第 9図において、 直流電源 1 4の回路スィッチ 2 6を開放して、 回転子卷線電流を流さないで、 交流商用電源につながる同期電動機 9の回路スィ ツチ 2 7 (第 9図参照)を開放した状態での、 第 5図に示す界磁卷線 1の電圧 Vお よび電流 Iを示しており、 電圧 Vに対して電流 Iが界磁卷線 1のィンダクタンス 分遅れる。 そして、 この電流 Iにより発生する交番磁界あるいは回転磁界に基づ き回転子卷線 4に誘導起電力が発生する。 第 1 2図は、 第 9図の回路スィッチ 2 6、 2 7を投入し、 同期電動機 9を駆動 してブラシ 1 2を同期速度で回転させ、 直流電源 (電圧源) 1 4をスリップリン グおよびブラシ 1 2を介して回転子卷線 4に接続し電圧を印加した状態を示して いる。 この場合、 直流電源 1 4の端子電圧としては 2 0 V、 変圧器 1 9の二次電 圧 Vとしては交流 8 Vを使用した。 この状態では、 界磁卷線 1の電流 Iによる磁 束変化に基づき回転子卷線数に依存して回転子卷線 4に発生する誘導起電力は直 流電源電圧より低く、 このためブラシ 1 2と整流子片 8 1との接触位置の移動に より回転子卷線 4には回転磁界が生じ、 この回転磁界が界磁卷線 1による界磁磁 束を変化させ、 界磁卷線 1に起電力を生ずる。 この結果、 第 1 2図に示すように、 界磁電圧 Vに対しほぼ逆相の界磁電流 Iが流れ、 発電機から系統側に電力が送ら れることになる。 すなわち、 直流電源 1 4による励磁電流にて形成された回転磁 界が界磁卷線 1の磁束を変化させることで、 界磁卷線 1に起電力を誘導したこと になる。 なお、 このときの界磁電流 Iは界磁電圧 Vに対し位相ずれが少ない逆相 であり、 また直流電源 1 4による励磁電流は 1 5 mAであり、 励磁電流は極めて 少ない。 FIGS. 11 to 13 are graphs showing the voltage and current waveforms by the oscilloscope 24, that is, the field voltage and the field current waveform, in the circuit shown in FIG. You. Fig. 11 shows the circuit switch 27 (Fig. 9) of the synchronous motor 9 connected to the AC commercial power supply by opening the circuit switch 26 of the DC power supply 14 without passing the rotor winding current. Fig. 9 shows the voltage V and the current I of the field winding 1 shown in Fig. 5 in a state where the coil is open, and the current I is the inductance of the field winding 1 with respect to the voltage V. Minutes late. Then, an induced electromotive force is generated in the rotor winding 4 based on the alternating magnetic field or the rotating magnetic field generated by the current I. Fig. 12 shows the circuit switches 26 and 27 of Fig. 9 turned on, the synchronous motor 9 is driven to rotate the brushes 12 at the synchronous speed, and the DC power supply (voltage source) 14 is slip ringed. And a state where a voltage is applied by connecting to the rotor winding 4 via the brush 12. In this case, the terminal voltage of the DC power supply 14 was 20 V, and the secondary voltage V of the transformer 19 was 8 V AC. In this state, the induced electromotive force generated in the rotor winding 4 depending on the number of rotor windings based on the change in magnetic flux due to the current I in the field winding 1 is lower than the DC power supply voltage. The movement of the contact position between 2 and the commutator piece 8 1 generates a rotating magnetic field in the rotor winding 4, and this rotating magnetic field changes the field flux by the field winding 1, and the field winding 1 Generates an electromotive force. As a result, as shown in FIG. 12, a field current I having almost the opposite phase to the field voltage V flows, and power is transmitted from the generator to the grid side. In other words, the rotating magnetic field formed by the exciting current from the DC power supply 14 changes the magnetic flux of the field winding 1, thereby inducing an electromotive force in the field winding 1. Note that the field current I at this time has an opposite phase with a small phase shift with respect to the field voltage V, and the excitation current by the DC power supply 14 is 15 mA, and the excitation current is extremely small.
第 1 3図は、 第 1 2図に示す波形の回路状態において、 原動機 (例えば手動) により増速機 2 3を介して回転子 6を回転させた波形を示すグラフである。 ここ では図示のとおり界磁電流 Iの波形は第 1 0図の波形と比べても位相の変化はな く、 波高値が原動機の回転に応じて大きくなる。 すなわち原動機の出力エネルギ 一が発電電流に変換され、 大きな振幅の界磁電流 Iが得られている。 なお、 回転 子 6の回転速度如何に関わらず、 界磁電流の周波数、 位相は一定である。  FIG. 13 is a graph showing a waveform in which the rotor 6 is rotated by the prime mover (for example, manually) via the speed increaser 23 in the circuit state of the waveform shown in FIG. Here, as shown in the figure, the waveform of the field current I does not change in phase as compared with the waveform of FIG. 10, and the peak value increases with the rotation of the prime mover. That is, the output energy of the prime mover is converted into a generated current, and a large amplitude field current I is obtained. The frequency and phase of the field current are constant regardless of the rotation speed of the rotor 6.
このように、 この実施形態の発電装置では、 広範囲な回転駆動力の変化があつ ても恒常的に発電電力が得られ、 系統連系を行う場合において、 インパータ等の 機器が不要となる利点を有している。 また、 一定周波数の出力を得ることが容易 にでき、 また、 その一方で、 前述した電流源、 電圧源としての直流電源装置を用 いることで、 周波数等調整のための調整装置や、 出力制御のための制御装置、 保 護装置等を簡素化することができ、 設備コストの低減や、 保守点検の軽減を図る ことができる。 As described above, the power generation device according to this embodiment has an advantage in that power generation can be constantly obtained even when there is a wide range of change in rotational driving force, and in the case of system interconnection, an apparatus such as an impeller is not required. Have. In addition, it is easy to obtain an output of a constant frequency. On the other hand, by using the DC power supply as the current source and the voltage source described above, an adjusting device for adjusting the frequency and the like and an output control can be obtained. Control equipment, protection equipment, etc., can be simplified, reducing equipment costs and maintenance. be able to.
なお、 第 5図に示すように、 各整流子片 8 1は各単位卷線に接続されているよ うに構成しているが、 回転子卷線 4に電流を流して回転子 6に回転磁界を形成す るという本発明の特徴に鑑みて、 例えば、 複数の単位卷線をひとまとめにして単 —の整流子片 8 1に接続するようにすれば、 整流子片数を少なくすることができ る。  As shown in FIG. 5, each commutator piece 81 is configured so as to be connected to each unit winding, but a current flows through the rotor winding 4 and a rotating magnetic field is applied to the rotor 6. In view of the feature of the present invention that forms a single winding, for example, if a plurality of unit windings are collectively connected to a single commutator piece 81, the number of commutator pieces can be reduced. You.
以上説明したようにこの発明によれば、 回転子卷線を有する回転子と固定子卷 線を有する固定子とで構成され、 回転子の回転により固定子卷線から発電出力を 得る発電装置において、 回転子卷線は所定の周期で通電される接触スィツチング 手段を介して直流電源にて励磁されるため、 所定の周波数で発電することが可能 であるという効果を奏する。  As described above, according to the present invention, there is provided a power generation device including a rotor having a rotor winding and a stator having a stator winding, and generating power from the stator winding by rotating the rotor. On the other hand, the rotor winding is excited by a DC power supply through contact switching means that is energized at a predetermined cycle, so that it is possible to generate power at a predetermined frequency.
つぎの発明によれば、 固定子卷線は、 交流電源に接続されて交流励磁されるの で、 系統連系が可能となるという効果を奏する。  According to the next invention, since the stator winding is connected to an AC power supply and is AC-excited, there is an effect that a system interconnection is possible.
つぎの発明によれば、 .回転子卷線は、 回転子鉄心の周方向に単位卷線を並べて 形成され、 全単位卷線は電気的に結合した卷線に形成されるので、 回転エネルギ 一の有効利用が可能になるという効果を奏する。  According to the following invention, the rotor winding is formed by arranging the unit windings in the circumferential direction of the rotor core, and all the unit windings are formed as electrically coupled windings. This has the effect that it is possible to make effective use of.
つぎの発明によれば、 回転子卷線は、 各単位卷線ごとに電気的入出力端子を有 し、 この電気的入出力端子に直流電源から接触スィツチング手段を介して通電し 各単位卷線が配置される回転子鉄心の周方向に所定の周期で回転励磁されるので、 回転駆動力の大小にかかわらず発電することができ、 回転エネルギーの有効利用 が可能になるという効果を奏する。  According to the next invention, the rotor winding has an electric input / output terminal for each unit winding, and a current is supplied to the electric input / output terminal from the DC power supply through the contact switching means, so that each unit winding is provided. The rotor is energized at a predetermined cycle in the circumferential direction of the rotor core where the rotor is disposed, so that power can be generated regardless of the magnitude of the rotational driving force, and the effect of effectively utilizing the rotational energy can be obtained.
つぎの発明によれば、 回転子卷線は、 複数の各単位卷線を一組とし、 各組ごと に電気的入出力端子を有し、 この電気的入出力端子に直流電源から接触スィツチ ング手段を介して通電し各単位卷線が配置される回転子鉄心の周方向に所定の周 期で回転励磁することにより、 回転駆動力の大小にかかわらず発電することがで き、 回転エネルギーの有効利用が可能になるという効果を奏する。  According to the next invention, the rotor winding has a plurality of unit windings as one set, and each set has an electric input / output terminal, and the electric input / output terminal is contact-switched from a DC power supply. Means for rotating the rotor core, on which the unit windings are arranged, in a circumferential direction at a predetermined period to generate electric power regardless of the magnitude of the rotational driving force. This has the effect of enabling effective use.
つぎの発明によれば、 直流電源は、 電圧源おょぴ電流源の双方を含むことによ り、 電圧源と電流源との切り換えによって、 回転子卷線に流れる電流を制御する ことができるという効果を奏する。 According to the next invention, the DC power supply includes both a voltage source and a current source. In other words, there is an effect that the current flowing through the rotor winding can be controlled by switching between the voltage source and the current source.
つぎの発明によれば、 接触スイッチング手段は、 回転子と一体に回転する整流 子とこの整流子に接触して独自に回転するブラシとを有することにより、 任意の 周期の回転磁界を形成することができるという効果を奏する。  According to the next invention, the contact switching means has a commutator that rotates integrally with the rotor and a brush that rotates independently by contacting the commutator, thereby forming a rotating magnetic field having an arbitrary period. This has the effect that it can be performed.
つぎの発明によれば、 ブラシは同期電動機にて回転するようにしているので、 商用電源と同期した発電が可能であるため、 系統連携できるという効果を奏する。 産業上の利用可能性  According to the next invention, since the brush is rotated by the synchronous motor, it is possible to generate electric power in synchronization with the commercial power supply, so that there is an effect that the system can be linked. Industrial applicability
以上のように、 この発明にかかる発電装置は、 回転駆動力の大小に関わらない 発電が可能であり、 単独運転あるいは系統連携の発電装置に適している。  As described above, the power generation device according to the present invention can generate power regardless of the magnitude of the rotational driving force, and is suitable for a single operation or system-linked power generation device.

Claims

請 求 の 範 囲 The scope of the claims
1 . 回転子卷線を有する回転子と固定子卷線を有する固定子とで構成され、 該回 転子の回転により該固定子卷線から発電出力を得る発電装置において、 1. A power generating device comprising a rotor having a rotor winding and a stator having a stator winding, wherein a power generation output is obtained from the stator winding by rotation of the rotor.
前記回転子卷線は所定の周期で通電される接触スィッチング手段を介して直流 電源にて励磁されることを特徴とする発電装置。  The power generator according to claim 1, wherein the rotor winding is excited by a DC power supply through contact switching means that is energized at a predetermined cycle.
2 . 前記固定子卷線は、 交流電源に接続されて交流励磁されることを特徴とする 請求の範囲第 1項に記載の発電装置。 2. The power generator according to claim 1, wherein the stator winding is connected to an AC power supply and is AC-excited.
3 . 前記'回転子卷線は、 回転子鉄心の周方向に単位卷線を並べて形成され、 全単 位卷線は電気的に結合した卷線に形成されたことを特徴とする請求の範囲第 1項 3. The 'rotor winding' is formed by arranging unit windings in the circumferential direction of a rotor core, and all unit windings are formed as electrically coupled windings. Clause 1
4 . 前記回転子卷線は、 各単位卷線ごとに電気的入出力端子を有し、 該電気的入 出力端子に前記直流電源から前記接触スィツチング手段を介して通電され、 各単 位卷線が配置される前記回転子鉄心の周方向に所定の周期で回転励磁されること を特徴とする請求の範囲第 3項に記載の発電装置。 4. The rotor winding has an electrical input / output terminal for each unit winding, and the electrical input / output terminal is energized from the DC power supply via the contact switching means, 4. The power generator according to claim 3, wherein the rotor is rotationally excited at a predetermined period in a circumferential direction of the rotor core on which the rotor core is disposed.
5 . 前記回転子卷線は、 複数の各単位卷線を一組とし、 各組ごとに電気的入出力 端子を有し、 該電気的入出力端子に前記直流電源から前記接触スィツチング手段 を介して通電され、 各単位卷線が配置される回転子鉄心の周方向に所定の周期で 回転励磁されることを特徴とする請求の範囲第 3項に記載の発電装置。 5. The rotor winding is a set of a plurality of unit windings, each set having an electric input / output terminal, and the electric input / output terminal is connected to the DC power supply via the contact switching means. 4. The power generator according to claim 3, wherein the power is supplied to the rotor and the rotor is rotated at a predetermined cycle in a circumferential direction of a rotor core on which the unit windings are arranged.
6 . 前記直流電源は、 電圧源および電流源の双方を含むことを特徴とする請求の 範囲第 1項に記載の発電装置。 6. The power generator according to claim 1, wherein the DC power supply includes both a voltage source and a current source.
7 . 前記接触スイッチング手段は、 前記回転子と一体に回転する整流子と該整流 子に接触して独自に回転するブラシとを有することを特徴とする請求の範囲第 1 項に記載の発電装置。 7. The power generator according to claim 1, wherein the contact switching means includes a commutator that rotates integrally with the rotor and a brush that rotates independently in contact with the commutator. .
8 . 前記ブラシは同期電動機にて回転されることを特徴とする請求の範囲第 7項 8. The brush according to claim 7, wherein the brush is rotated by a synchronous motor.
PCT/JP2003/012426 2002-09-27 2003-09-29 Power generation device WO2004030203A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003266680A AU2003266680A1 (en) 2002-09-27 2003-09-29 Power generation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-284401 2002-09-27
JP2002284401 2002-09-27
JP2003335615A JP3847740B2 (en) 2002-09-27 2003-09-26 Power generator
JP2003-335615 2003-09-26

Publications (1)

Publication Number Publication Date
WO2004030203A1 true WO2004030203A1 (en) 2004-04-08

Family

ID=32044649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012426 WO2004030203A1 (en) 2002-09-27 2003-09-29 Power generation device

Country Status (3)

Country Link
JP (1) JP3847740B2 (en)
AU (1) AU2003266680A1 (en)
WO (1) WO2004030203A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8097967B2 (en) 2008-06-30 2012-01-17 Demand Energy Networks, Inc. Energy systems, energy devices, energy utilization methods, and energy transfer methods
US8319358B2 (en) 2008-06-30 2012-11-27 Demand Energy Networks, Inc. Electric vehicle charging methods, battery charging methods, electric vehicle charging systems, energy device control apparatuses, and electric vehicles
WO2011005039A2 (en) * 2009-07-09 2011-01-13 Park Jae-Soon Apparatus for generating alternating current power by direct current supply brush that rotates with field pole generator, and apparatus for generating direct current power
US9525285B2 (en) 2011-06-13 2016-12-20 Demand Energy Networks, Inc. Energy systems and energy supply methods
KR101878443B1 (en) * 2016-07-25 2018-07-18 나필찬 DC motor generator apparatus having variable multiple brushes
KR102547853B1 (en) * 2021-05-27 2023-06-27 에이치디현대일렉트릭 주식회사 Apparatus for rectifying for exciter of generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152145A (en) * 1984-08-22 1986-03-14 Matsushita Electric Ind Co Ltd Commutator machine
JPH04133647A (en) * 1990-09-25 1992-05-07 Yan Tai-Haa Moving brush type ac/dc servo tracing step motor
JPH0746774A (en) * 1993-08-02 1995-02-14 Casio Comput Co Ltd Charger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152145A (en) * 1984-08-22 1986-03-14 Matsushita Electric Ind Co Ltd Commutator machine
JPH04133647A (en) * 1990-09-25 1992-05-07 Yan Tai-Haa Moving brush type ac/dc servo tracing step motor
JPH0746774A (en) * 1993-08-02 1995-02-14 Casio Comput Co Ltd Charger

Also Published As

Publication number Publication date
JP3847740B2 (en) 2006-11-22
AU2003266680A1 (en) 2004-04-19
JP2004140991A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP5972169B2 (en) Power conversion system and method
JP6008473B2 (en) Generator and manufacturing method thereof
US10033302B2 (en) Rotary solar converter
US8593030B2 (en) Rotating electric machine for generating a constant frequency AC Power Supply from a variable speed primemover
US9018783B2 (en) Doubly-fed induction generator wind turbine system having solid-state stator switch
EP0907997A1 (en) A.c. electrical machine and method of transducing power between two different systems
CN104242580A (en) Variable winding starter generator for automobile
JP5331662B2 (en) Converter for power generated by natural energy
CN108880363A (en) Three-level formula brushless synchronous machine asynchronous starting control method and system
JP6563143B2 (en) Brushless synchronous generator
WO2004030203A1 (en) Power generation device
US11863054B2 (en) Kinetic power generation unit
Zhao et al. Slot-PM-assisted hybrid reluctance generator with self-excited DC source for stand-alone wind power generation
Mirnikjoo et al. Design of an outer rotor flux switching permanent magnet generator for wind turbine
KR20140084410A (en) Synchronous generator system haing dual rotor
JP3914196B2 (en) Power generator
US20040164695A1 (en) Electrodynamic machines and components therefor and methods of making and using same
JP2004048988A (en) Switched reluctance machine
US20040164701A1 (en) Electrodynamic machines and components therefor and methods of making and using same
JP2014045649A (en) Electrical machine and method for operating electrical machine
US20180145620A1 (en) Systems and methods for providing grid stability
Singh Variable Frequency Transformer-State of Review
JP3795901B2 (en) Power generator
Kurihara et al. EMF and efficiency measurements of a novel self-excited reluctance generator
CN116846173A (en) Doubly-fed wind driven generator and power generation system thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase