JPS611059A - Manufacture of mis diode - Google Patents

Manufacture of mis diode

Info

Publication number
JPS611059A
JPS611059A JP59122500A JP12250084A JPS611059A JP S611059 A JPS611059 A JP S611059A JP 59122500 A JP59122500 A JP 59122500A JP 12250084 A JP12250084 A JP 12250084A JP S611059 A JPS611059 A JP S611059A
Authority
JP
Japan
Prior art keywords
layer
electrode
sample
diode
mis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59122500A
Other languages
Japanese (ja)
Inventor
Satoshi Yanagiura
聡 柳浦
Makoto Tsunoda
誠 角田
Shohei Eto
江藤 昌平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59122500A priority Critical patent/JPS611059A/en
Publication of JPS611059A publication Critical patent/JPS611059A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PURPOSE:To obtain stable performance and excellent durability by laminating insulating organic polymer layer formed by depositing a conductive layer, a semiconductor layer and a different annular polymer to become electrodes and a metal layer to become electrodes. CONSTITUTION:An Au electrode 14 is formed on a glass substrate 15 as an operating electrode. A poly N-methylpyrrole film 12 is formed on the electrode to obtain pi-conjugate polymer sample. Then, a poly P-phenylene-1,3,4-oxadiazole film 11 is formed by a depositing method as an insulating organic polymer layer on the sample. Further, an In layer 10 is formed thereon. A MIS diode obtained in this manner has high performance and stable performance with excellent durability.

Description

【発明の詳細な説明】 〔発明の技術分野、〕 この発F!Aは、絶縁性有機高分子層が、窒素および硫
黄原子の内の少なくとも一種を含む異節環ポリマーを蒸
着して形成されたものであるMISダイオードの製造方
法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This F! A relates to a method for manufacturing an MIS diode in which the insulating organic polymer layer is formed by vapor-depositing a heterocyclic polymer containing at least one of nitrogen and sulfur atoms.

〔従来技術〕[Prior art]

第1図は一般的なMISダイオードの断面図で、(1)
、(6)はリード線、(2)は電極となる金属層、(3
)は絶縁層、(4)は半導体層、(5)は電極となる導
電層であり、金属−絶縁物一半導体(MIS )の順に
構成されたもので、従来より第2図に示す5i−810
2−金属構造のもの、即ちMOSダイオードが実用化さ
れている。図において、(7) tri 5io2層、
(8)はSi層である。以前よシSiO’2−8i構造
に帰因する劣化が起ると言われていたが、現在ではこの
問題の解明が進み、理想に近いMO8構造が作られるよ
うになり、実用性も高まってきている。
Figure 1 is a cross-sectional view of a typical MIS diode, (1)
, (6) is a lead wire, (2) is a metal layer that becomes an electrode, (3
) is an insulating layer, (4) is a semiconductor layer, and (5) is a conductive layer that becomes an electrode, and is constructed in the order of metal-insulator-semiconductor (MIS). 810
2-Those with a metal structure, ie, MOS diodes, have been put into practical use. In the figure, (7) tri 5io 2 layers,
(8) is a Si layer. In the past, it was said that deterioration occurred due to the SiO'2-8i structure, but now this problem has been clarified, MO8 structures close to the ideal have been created, and their practicality has increased. ing.

これ等の製法としては、Siの気相成長の方法に酸素、
又は酸素を含むCO2,H2Oなどのガスを導入しSi
上に5i02を成長させる方法、およびSiH4と02
を反応させて5102を製膜する方法などがある。
These manufacturing methods include the vapor phase growth method of Si with oxygen,
Alternatively, a gas containing oxygen such as CO2 or H2O may be introduced to
How to grow 5i02 on and SiH4 and 02
There is a method of forming 5102 into a film by reacting.

最近になって三十尾らによって下記刊行物に示されるよ
うに、有機MISダイオードも作られる様になったが、
これ等は、有機半導体の上にポリエチレン(PE)やス
テアリン酸を蒸着法などにより20〜100X程度の層
に堆積し、その上に金属電極をつけたものである(刊行
物、即ち、高分子論文集、第41巻、第183頁、19
84年4月発行)。また無機半導体の上に上記の方法で
有機高分子層を設けたMISダイオードも知られている
Recently, organic MIS diodes have also started to be made, as shown in the following publication by Miso et al.
These are made by depositing polyethylene (PE) or stearic acid on an organic semiconductor to a layer thickness of about 20 to 100X by vapor deposition, and then attaching a metal electrode to the layer (Publications, i.e., polymer Collected Papers, Volume 41, Page 183, 19
(Published in April 1984). Also known is a MIS diode in which an organic polymer layer is provided on an inorganic semiconductor by the above method.

しかし、従来の蒸着法によるPKやステアリン酸層の堆
積は、均一な膜が出来ない、ピンホールが出来易い、膜
厚のコントロールが錐しい、膜が熱に弱く電極を蒸着す
る際やふれやすい、耐久性に欠けるなどMISダイオー
ドの絶縁層の堆積法としては実用的ではない。又、5i
02を用いた場合はコストが高く、装置が高価格になる
という欠点があった。
However, when depositing PK and stearic acid layers using conventional vapor deposition methods, a uniform film cannot be formed, pinholes are easily formed, it is difficult to control the film thickness, and the film is sensitive to heat and easily comes into contact with the electrodes during vapor deposition. This method is not practical as a deposition method for an insulating layer of MIS diodes due to lack of durability. Also, 5i
When using 02, there was a drawback that the cost was high and the device was expensive.

〔発明の概要〕[Summary of the invention]

この発明は、上記従来のものの欠点を除去するためにな
されたもので、電極となる導電層、半導体層、異節環ポ
リマーを蒸着して形成された絶縁性有機高分子層および
電極となる金属層を積層することにより、容易に、高性
能で、性能が安定しており、しかも耐久性に優れたMI
Sダイオードの製造方法を提供することを目的とするも
のである。
This invention was made in order to eliminate the drawbacks of the conventional methods described above, and includes a conductive layer that serves as an electrode, a semiconductor layer, an insulating organic polymer layer formed by vapor depositing a heterocyclic polymer, and a metal that serves as an electrode. By stacking layers, MI can be easily created with high performance, stable performance, and excellent durability.
It is an object of the present invention to provide a method for manufacturing an S diode.

〔発明の実施例〕[Embodiments of the invention]

この発明に係わる電極となる導電層に用いる導電材料と
しては、一般的に電極に用いる、例えば金および白金等
の金属およびカーボン等があり、単独及び各種基板と共
に用いる。
The conductive material used for the conductive layer serving as the electrode according to the present invention includes metals such as gold and platinum, carbon, etc., which are generally used for electrodes, and are used alone or in conjunction with various substrates.

この発明に係わる半導体層に用いる半導体としては、例
えば81等の無機半導体および例えばπ−共役系高分子
等の有機半導体がある。ここにおいて、π−共役系高分
子としては例えばピロール、5N−置換ピロールの共重
合体、ピロールのホモポリマー、N−置換ピロールのホ
モポリマー、ポリチェニレン、ポリアニリン、ポリフラ
ン、ポリアズレン、ポリビニルピリジン、およびポリチ
オフェン、などの内の少なくとも一種が好ましく用いら
れる。
Semiconductors used in the semiconductor layer according to the present invention include inorganic semiconductors such as 81 and organic semiconductors such as π-conjugated polymers. Here, the π-conjugated polymers include, for example, pyrrole, a copolymer of 5N-substituted pyrrole, a homopolymer of pyrrole, a homopolymer of N-substituted pyrrole, polythenylene, polyaniline, polyfuran, polyazulene, polyvinylpyridine, and polythiophene, At least one of the following is preferably used.

例えば、上記π−共役系高分子の半導体層を電極となる
導電層に設けるには、上記π−共役系高分子に相当する
モノマーおよび支持電解質を有機溶媒に溶かし反応溶液
とし、上記導電層を作用電極とし、例えば白金などの対
極との間に電流を通じて電解重合法により作用電極上に
所望のπ−共役系高分子層を析出させ、析出したπ−共
役系高分子層をよく洗滌した後、窒素雰囲気中で乾燥す
るという方法を用いる。この場合、析出したπ−共役系
高分子層は反応時に支持電解質のアニオンがドーピング
されP型半導体となる。一方、このP型半導体を脱ドー
プし、さらにカチオンをドープすること忙より、n型半
導体とすることができる。ここで、有機溶媒としては、
支持電解質および上記七ツマ−を溶解させるものならよ
く、例えばアセトニトリル、ニトロメンセ°ン、ニトロ
メタン、N、N−ジメチルホルムアミド(DMF) 、
ジメチルスルホキシド(DMSO)、ジクロロメタン、
テトラヒドロ7ラン、エチルアルコールおよびメチルア
ルコール等の極性溶媒が単独又は2種以上の混合溶媒と
して用いられる。支持電解質としては酸化電位および還
元電位が高く、電解重合にそれ自身が酸化又は還元反応
を受けず、かつ溶媒中に溶解させることによって溶液に
電導性を付与することのできる物質であり、例えば、過
塩素酸テトラアルキルアンモニウム塩、テトラアルキル
アンモニウム、テトラフルオロボレート塩、テトラアル
キルアンモニウム、ヘキサフルオロホスフェート塩、テ
トラアルキルアンモニウム、パラトルエンスルホネート
塩および水酸化ナトリウム等が用いられるが、勿論2種
以上を併用しても構わない。
For example, in order to provide a semiconductor layer of the above-mentioned π-conjugated polymer on a conductive layer serving as an electrode, a monomer corresponding to the above-mentioned π-conjugated polymer and a supporting electrolyte are dissolved in an organic solvent to form a reaction solution, and the above-mentioned conductive layer is A desired π-conjugated polymer layer is deposited on the working electrode by electrolytic polymerization by passing a current between the working electrode and a counter electrode such as platinum, and the deposited π-conjugated polymer layer is thoroughly washed. , a method of drying in a nitrogen atmosphere is used. In this case, the deposited π-conjugated polymer layer is doped with the anion of the supporting electrolyte during the reaction and becomes a P-type semiconductor. On the other hand, by dedoping this P-type semiconductor and further doping with cations, it can be made into an n-type semiconductor. Here, the organic solvent is
Any material that dissolves the supporting electrolyte and the above-mentioned 7mers may be used, such as acetonitrile, nitromenthene, nitromethane, N,N-dimethylformamide (DMF),
dimethyl sulfoxide (DMSO), dichloromethane,
Polar solvents such as tetrahydro7rane, ethyl alcohol, and methyl alcohol may be used alone or as a mixed solvent of two or more. The supporting electrolyte is a substance that has a high oxidation potential and reduction potential, does not itself undergo an oxidation or reduction reaction during electrolytic polymerization, and can impart conductivity to a solution by dissolving it in a solvent. For example, Perchloric acid tetraalkylammonium salts, tetraalkylammonium, tetrafluoroborate salts, tetraalkylammonium, hexafluorophosphate salts, tetraalkylammonium, paratoluenesulfonate salts, sodium hydroxide, etc. are used, but of course two or more of them can be used in combination. I don't mind if you do.

この発明に係わる絶縁性有機高分子層に用いる異部壌ポ
リマーとしては、分子構造内にチアジアゾール環、チア
ゾロベンズチアゾール環、トリアゾール環、オキサゾー
ル環およびオキサジアゾール環の内の少なくとも一種を
含む有機高分子化合物が用いられ、例えば、ポリP−7
エコンー1゜3.4−オキサジアゾール、ポリm−フエ
ニレン−1,3,4−オキサジアゾール、ポリP−フェ
ニレンー1.3.4−チアジアゾール、ポリm−フエニ
レン−1,3,4−チアジアゾール、ポリ−1,3,4
−チアゾール−2,5−イレンビニレン−1,4−フェ
ニレンビニレンポリ−1,3,4−ジアゾール−2,5
−イレンビニレン−1,4−フェニレンビニレン、ポリ
チアゾロ[4,5−f〕ペンスチアゾール−2,6−イ
レンピニレンー1.4−7二二レンビニレン、ポリ−3
,5−P−フエニレン−4−フェニル−1,2,4−ト
リアゾール、ポリペンゾイミ1ノベンゾチアゾール、ポ
リ−2,6−ジアニリツペンゾビスチアゾール、ピロメ
リックジアンヒドライドおよび2゜5−ジアミノ−1,
3,4−チアジアゾールから合成されるポリイミド、ポ
リP−フェニレンオキサゾール並びにポリm−7二二レ
ンオキサゾールの内の少なくとも一種があり、これらは
、加熱蒸着法、高周波スパッタリング法、イオンブレー
ティング法、電子ビーム法およびイオンクラスクービー
ム法の内のいずれかの蒸着法による蒸着膜として用いら
れる。
The heterogeneous polymer used in the insulating organic polymer layer according to the present invention is an organic polymer containing at least one of a thiadiazole ring, a thiazolobenzthiazole ring, a triazole ring, an oxazole ring, and an oxadiazole ring in its molecular structure. A polymer compound is used, for example, polyP-7
Eco-1゜3.4-oxadiazole, poly m-phenylene-1,3,4-oxadiazole, poly P-phenylene-1,3,4-thiadiazole, poly m-phenylene-1,3,4-thiadiazole , poly-1,3,4
-thiazole-2,5-ylene vinylene-1,4-phenylene vinylene poly-1,3,4-diazole-2,5
-ylenevinylene-1,4-phenylenevinylene, polythiazolo[4,5-f]pensthiazole-2,6-ylenepynylene-1.4-7 22lenevinylene, poly-3
, 5-P-phenylene-4-phenyl-1,2,4-triazole, polypenzimi-1nobenzothiazole, poly-2,6-dianilitupenzobisthiazole, pyromeric dianhydride and 2°5-diamino- 1,
There is at least one type of polyimide synthesized from 3,4-thiadiazole, poly P-phenylene oxazole, and poly m-7 dinilene oxazole. It is used as a vapor deposited film by either the beam method or the ion class Scoobeam method.

この発明に係わる電極となる金端層の金属としては、半
導体層がP型の場合は、例えばインジクム(工nLガリ
クム(Ga入インジクムーガリウム合金、アルミニクム
(A/ )、銀(Ag)、スズ(Sn)およびグルマニ
クム(Ge )などの仕事関数の小さい金属が、n型の
場合には、例えば金(Au)、白金(pt)および銅(
Cu)などの仕事関数の大きい金属が用いられ、蒸着、
スパッタリング、CVD成長およびメンキなどの方法で
被着させる。
When the semiconductor layer is P-type, the metal of the gold edge layer that becomes the electrode according to the present invention may be, for example, indicum (Indium gallium alloy containing Ga, aluminum (A), silver (Ag), When metals with small work functions such as tin (Sn) and glumanicum (Ge) are n-type, for example, gold (Au), platinum (pt), and copper (
Metals with large work functions such as Cu) are used, and vapor deposition,
Deposition is performed by methods such as sputtering, CVD growth, and coating.

なお、この発明により得られたMISダイオードの電気
特性は蒸着時に用いる材料に大きく依存する。発明者等
は上記様々の異W5#1ポリマーの蒸着膜について検討
した結果、ポリP−フェニレンー1.3.4−オキサジ
アゾールの蒸着膜を用いたものが絶縁性有機高分子層と
して特に有効であることを見出した。上記蒸着膜を用い
たこの発明の一夫施例によるMISダイオードは、逆方
向電圧印加時の電流が小さく、整流比が他の異部壌ポリ
マーの蒸着膜を用いたものに比べて著るしく優れており
、しかもその耐久性も実用に耐えうるものである。
Note that the electrical characteristics of the MIS diode obtained according to the present invention largely depend on the material used during vapor deposition. The inventors investigated various vapor-deposited films of W5#1 polymers mentioned above, and found that a vapor-deposited film of polyP-phenylene-1.3.4-oxadiazole is particularly effective as an insulating organic polymer layer. I found that. The MIS diode according to Kazuo's embodiment of the present invention using the above-mentioned vapor-deposited film has a small current when reverse voltage is applied, and has a significantly superior rectification ratio compared to those using other vapor-deposited films of heterogeneous polymers. Moreover, its durability is sufficient for practical use.

以下、この発明の実施例について具体的に説明するが、
この発明は、これらに限定されるものではない。
Examples of the present invention will be described in detail below.
This invention is not limited to these.

実施例1 3、5 am X 7 cIRのガラス基板上に真空蒸
着法によって厚さ1oooAのクロム層を設け、更にこ
の上に金(AU )層をzoooXの厚さに真空蒸着法
によって設けたものを作用電極とした(有効作用電極面
積は2備×3.5σ)。
Example 1 A chromium layer with a thickness of 100A was provided by vacuum evaporation on a glass substrate of 3, 5 am was used as the working electrode (effective working electrode area is 2 x 3.5σ).

100m1のアセトニトリル中にN−メチルピロール(
o、sg)、テトラエチルアンモニクムバークロレイ)
 (0,7g)  を溶解させた液を反応溶液とした。
N-methylpyrrole (
o, sg), tetraethylammonicum barchlorei)
(0.7 g) was dissolved therein and used as a reaction solution.

対極として白金(pt庵極を、参照電極として5CE(
飽和カロメル電極)を使用し、反応溶液中に作用電極と
共に浸し、窒累ガス雰囲気下で作用電極を陽極として対
極との間に一定電流(0,15mA)を90分間流し、
作用電極上にπ−共役系高分子層を約4oooXの厚さ
に析出させ、アセトニトリルで洗浄後、窒素ガス雰囲気
下で乾燥し、π−共役系高分子試料(I)を得た。
Platinum (PT-an electrode) was used as the counter electrode, and 5CE (5CE) was used as the reference electrode.
A saturated calomel electrode) was immersed together with the working electrode in the reaction solution, and a constant current (0.15 mA) was passed between it and the counter electrode for 90 minutes with the working electrode as the anode in a nitrous gas atmosphere.
A π-conjugated polymer layer was deposited on the working electrode to a thickness of about 4 ooo×, washed with acetonitrile, and then dried in a nitrogen gas atmosphere to obtain a π-conjugated polymer sample (I).

次に、π−共役系高分子試料(1,)の上に、絶縁性有
機高分子層としてポリm−フエニレン−1゜3.4−オ
キサジアゾール層をlOXの厚さに真空加熱蒸着法によ
り設けた。この際の蒸着条件は、圧力1.OXl 0 
’ Torr 、加熱温度350℃、ポリP−フェニレ
ンー1,3.4−オキサジアゾールの仕込み量0、Ig
、π−共役系高分子試料(I)と加熱源との距離10(
!II+1蒸着時間10秒間である。このようにしてπ
−共役系高分子試料(ロ)を得る。
Next, on the π-conjugated polymer sample (1,), a polym-phenylene-1゜3.4-oxadiazole layer was deposited as an insulating organic polymer layer to a thickness of 1OX by vacuum heating evaporation. Established by The vapor deposition conditions at this time were pressure 1. OXl 0
' Torr, heating temperature 350°C, amount of polyP-phenylene-1,3.4-oxadiazole charged 0, Ig
, the distance between the π-conjugated polymer sample (I) and the heating source is 10 (
! II+1 deposition time is 10 seconds. In this way π
- Obtain a conjugated polymer sample (b).

さらに、π−共役系高分子試料(II)の上に真空、蒸
着法によりインジウム(In)層を約3ooo1の厚さ
で設けることにより得られたMISダイオードをMIS
ダイオード試料(I)とする。
Furthermore, an MIS diode obtained by providing an indium (In) layer with a thickness of about 3001 on the π-conjugated polymer sample (II) by vacuum evaporation method was used as an MIS diode.
Let it be a diode sample (I).

実施例2 実施例1で得られたπ−共役系高分子試料(I)を用い
て、この上に、蒸着時間を15秒問とする他は実施例1
と同様にして、絶縁性有機高分子層を15Xの厚さで設
けたものをπ−共役系高分子試料(III)とする。
Example 2 Using the π-conjugated polymer sample (I) obtained in Example 1, the same procedure as Example 1 was performed except that the vapor deposition time was 15 seconds.
Similarly, a π-conjugated polymer sample (III) was obtained by providing an insulating organic polymer layer with a thickness of 15X.

さらにπ−共役系高分子試料(m)の上に工n層を約3
ooo!の厚さで設けることによって得られたMISダ
イオードをMISダイオード試料(2)とする。
Furthermore, about 3 layers of nano-layers are added on top of the π-conjugated polymer sample (m).
ooooo! The MIS diode obtained by providing it with a thickness of 2 is referred to as MIS diode sample (2).

実施例3 実施例1で得られたπ−共役系高分子試料CI)を用い
て、この上に、蒸着時間を20秒間とする他は実施例1
と同様にして、絶縁性有機高分子層を20Xの厚さで設
けたものをπ−共役系高分子試料(ff)とする。さら
にπ−共役系高分子試料(酌の上にIn層を約aooo
!の厚さで設けることKよって得られたMISダイオー
ドをMISダイオード試料(3)とする。
Example 3 Using the π-conjugated polymer sample CI obtained in Example 1, the same procedure as in Example 1 was applied, except that the evaporation time was 20 seconds.
Similarly, a π-conjugated polymer sample (ff) is obtained by providing an insulating organic polymer layer with a thickness of 20×. Furthermore, a π-conjugated polymer sample (approximately aooo In layer on top of the cup)
! The MIS diode obtained by providing a thickness of K is referred to as MIS diode sample (3).

実施例4 実施例1で得られた作用電極の上に、実施例1と同様に
、絶縁性有機高分子層をxoXの厚さで設けたものを絶
縁性有機高分子試料(I)とする。
Example 4 An insulating organic polymer sample (I) was prepared by providing an insulating organic polymer layer with a thickness of xoX in the same manner as in Example 1 on the working electrode obtained in Example 1. .

次に絶縁性有機高分子試料(I)をプラズマCVD装置
の中に入れ、10’−” I’orrまで減圧する。
Next, the insulating organic polymer sample (I) is placed in a plasma CVD apparatus, and the pressure is reduced to 10'-''I'orr.

装置内の絶縁性有機高分子試料(I)を300℃まで加
熱し、そこに48.5%ホスフィンを含むホスフインー
モノシラジ混合ガスを40 ci / min a L
、さらに全体の圧力が0.4Torrになる様に水素力
The insulating organic polymer sample (I) in the device was heated to 300°C, and a phosphine-monosilazie mixed gas containing 48.5% phosphine was added thereto at 40 ci/min a L.
, further hydrogen power so that the overall pressure becomes 0.4 Torr.

スを流す。気圧が安定したら2 Torrまで気圧を上
げ、25Wで5分間13.56MHzのプラズマを発生
させ、絶縁性有機高分子試料(I)の上Kn型のアモル
ファスシリコン層を設けることによって絶縁性有機高分
子試料(ロ)を得る。さらに絶縁性有機高分子試料(n
)の上にIn層を約3oooXの厚さで設ける事によっ
て得られたMISダイオードをMISダイオード試料(
ff)とする。
Run the stream. Once the atmospheric pressure stabilized, the atmospheric pressure was increased to 2 Torr, a 13.56 MHz plasma was generated at 25 W for 5 minutes, and a Kn-type amorphous silicon layer was formed on the insulating organic polymer sample (I). Obtain a sample (b). Furthermore, an insulating organic polymer sample (n
) was obtained by providing an In layer with a thickness of about 3oooX on top of the MIS diode sample (
ff).

比較例1 実施例1で得られたπ−共役系高分子試料(I)の上に
In層を約aoooXの厚さで設けることによって得ら
れた有機ショットキー・ダイオードを比較試料(I)と
する。
Comparative Example 1 An organic Schottky diode obtained by providing an In layer with a thickness of about aoooX on the π-conjugated polymer sample (I) obtained in Example 1 was used as a comparative sample (I). do.

比較例2 実施例1で得られたπ−共役系高分子試料(I)の上に
ポリエチレン(pa)層を真空加熱蒸着法を用いて10
Xの厚さになる様に設けた。この際の蒸着条件は、圧力
1.OXl 0 ’ Torr、加熱温度250℃、P
Eの仕込み量0.05g、π−共役系高分子試料(I)
と加熱源との距離7ひ、蒸着時間5秒である。この様に
して得られた試料をπ−共役系高分子試料(V)とする
Comparative Example 2 A polyethylene (pa) layer was deposited on the π-conjugated polymer sample (I) obtained in Example 1 for 10 minutes using a vacuum heating evaporation method.
It was provided to have a thickness of X. The vapor deposition conditions at this time were pressure 1. OXl 0' Torr, heating temperature 250℃, P
Charge amount of E: 0.05 g, π-conjugated polymer sample (I)
The distance between the sample and the heating source was 7 mm, and the deposition time was 5 seconds. The sample thus obtained is referred to as a π-conjugated polymer sample (V).

さらに、π−共役系高分子試料(V)の上にIn層を約
30001の厚さで設けることによって得られたMIS
ダイオードを比較試料(2)とする。
Furthermore, MIS obtained by providing an In layer with a thickness of about 30001 on the π-conjugated polymer sample (V)
A diode is used as a comparison sample (2).

第3図にMISダイオード試料(1)ないし試料(3)
の第4図にMISダイオード試料(4)の、第5図に比
較試料(1)の第6図に比較試料(2)の断面図を示す
Figure 3 shows MIS diode samples (1) to (3).
FIG. 4 shows a cross-sectional view of the MIS diode sample (4), FIG. 5 shows a cross-sectional view of a comparative sample (1), and FIG. 6 shows a cross-sectional view of a comparative sample (2).

図において(9)、(13) 、(16) 、(22)
はリード線、(10)、 (20)  はIn電極、(
11) 、(19)はP−フエニレン−1,3,4−オ
キサジアゾール蒸着膜、(12)はポリN−メチルピロ
ール膜、(14) 、(17)はAu電極(15) 、
(21)はガラス基板、(18)はn型シリコン層、(
23)はPE蒸着膜である。
In the figure (9), (13), (16), (22)
is a lead wire, (10), (20) are In electrodes, (
11), (19) are P-phenylene-1,3,4-oxadiazole vapor deposited films, (12) are polyN-methylpyrrole films, (14), (17) are Au electrodes (15),
(21) is a glass substrate, (18) is an n-type silicon layer, (
23) is a PE vapor deposited film.

第7図はMISダイオード試料(1)ないし試料(4)
ならびに比較試料(1)および比較試料(2)の電圧(
V)による電流(I)の変化を示すI−V特性図である
Figure 7 shows MIS diode samples (1) to (4).
and the voltage of comparative sample (1) and comparative sample (2) (
FIG. 3 is an IV characteristic diagram showing changes in current (I) due to V).

図中、(24) 、(25)は比較試料(1)および比
較試料(2)の特性、(26)〜(29〕は各々MIS
ダイオード試料(1)〜試料(4)の特性である。なお
、正電圧側が順方向負電圧側が逆方向である。これによ
ると、この発明の実施例によシ得られたMISダイオー
ドは、良好な整流特性が観測され、しかも絶縁層の層厚
に依存する特異的変化が見られ、製造時の層厚制御によ
り所望の特性のMISダイオードを得ることができるこ
とが解る。
In the figure, (24) and (25) are the characteristics of comparative sample (1) and comparative sample (2), and (26) to (29] are the MIS
These are the characteristics of diode samples (1) to (4). Note that the positive voltage side is the forward direction, and the negative voltage side is the reverse direction. According to this, the MIS diode obtained according to the embodiment of the present invention has good rectifying characteristics, and also exhibits a specific change depending on the layer thickness of the insulating layer. It can be seen that a MIS diode with desired characteristics can be obtained.

また耐久性の面でも比較試料(1)及び比較試料(2)
は製造後−週間程経過すると整流性が悪くなるが、この
発明により得られたMISダイオードは1力月経過して
も特性の変化は見られなかった。
Also, in terms of durability, comparative sample (1) and comparative sample (2)
However, the rectifying properties of the MIS diode deteriorated after about a week had passed after manufacture, but no change in the characteristics of the MIS diode obtained by the present invention was observed even after one month had passed.

なお、上記実施例では、絶縁性有機高分子層に用いる異
節環ポリマーとして、分子構造内に、オキサジアゾール
環を含むものを用いた場合についてのべたが、分子構造
内に、チアジアゾール環、チアゾロベンズチアゾール環
、トリアゾール環およびオキサゾール環の内の少なくと
も一種を含むものも同様の効果を示す。
In addition, in the above example, a case was described in which a polymer containing an oxadiazole ring in the molecular structure was used as the heterocyclic polymer used in the insulating organic polymer layer. Those containing at least one of a thiazolobenzthiazole ring, a triazole ring, and an oxazole ring exhibit similar effects.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、この発明は、電極となる導電層、
半導体層、異節環ポリマーを蒸着して形成された絶縁性
有機高分子層および電極となる金属層を積層することに
より、容易に、高性能で、性能が安定しており、しかも
耐久性に優れたMISダイオードの製造方法を得ること
ができる。なお、この発明では上記絶縁性有機高分子層
の層厚制御も容易であり、例えば光センサーおよび光電
変換素子など種々の電子部品の製造に有用である。
As explained above, the present invention includes a conductive layer serving as an electrode,
By laminating a semiconductor layer, an insulating organic polymer layer formed by vapor-depositing a heterocyclic polymer, and a metal layer that serves as an electrode, it is possible to easily achieve high performance, stable performance, and durability. An excellent method for manufacturing MIS diodes can be obtained. In addition, in the present invention, the layer thickness of the insulating organic polymer layer can be easily controlled, and is useful for manufacturing various electronic components such as optical sensors and photoelectric conversion elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なMISダイオードの断面図、第2図は
従来のMOSダイオードの断面図、第3図及び第4図は
それぞれこの発明の実施例によるMISダイオードの断
面図、第5図は一般的な有機ショットキーダイオードの
断面図、第6図は従来の一般的な有機MISダイオード
の断面図である。第7図はこの発明の実施例のMISダ
イオード、一般的な有機ショットキーダイオード、およ
び従来の一般的な有機MISダイオードを比較するため
の電流(I)−電圧(V)特性図である。 図において、(1)+ (6)はリード線、(2)は電
極となる金属層、(3)は絶縁層、(4)は半導体層、
(5)は電極となる導電層、(7)は5i02層、(8
)はSi層、(9)。 (13)はリード線、(10)は工n層、(11)はポ
リP−フェニレンー1.3.4−オキサジアゾール蒸着
膜、(12)はポリN−メチルビロール膜、(14) 
#−1Au電極、(15)はガラス基板、(16) 、
 (22)はリード線、(17)はAu電極、(18)
はn型シリコン層、(19)はゾ ポリp−フエニレン−1,3,4−オキサシアブール蒸
着膜、(20)はIn電極、(21)はガラス基板、(
23)はPE蒸着膜、(24) 、 (25)は各々比
較試料(1)および比較試料(2〕の特性、(25) 
、 (26) 、 (27) 、 (28)は各々この
発明の実施例によるMISダイオード試料(1)〜(4
)の特性である。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a sectional view of a general MIS diode, FIG. 2 is a sectional view of a conventional MOS diode, FIGS. 3 and 4 are sectional views of MIS diodes according to embodiments of the present invention, and FIG. 5 is a sectional view of a conventional MOS diode. A cross-sectional view of a general organic Schottky diode. FIG. 6 is a cross-sectional view of a conventional general organic MIS diode. FIG. 7 is a current (I)-voltage (V) characteristic diagram for comparing the MIS diode of the embodiment of the present invention, a general organic Schottky diode, and a conventional general organic MIS diode. In the figure, (1) + (6) are lead wires, (2) is a metal layer that becomes an electrode, (3) is an insulating layer, (4) is a semiconductor layer,
(5) is a conductive layer that becomes an electrode, (7) is a 5i02 layer, (8
) is a Si layer, (9). (13) is a lead wire, (10) is an engineered n-layer, (11) is a polyP-phenylene-1.3.4-oxadiazole vapor deposited film, (12) is a polyN-methylvirol film, (14)
#-1 Au electrode, (15) is glass substrate, (16),
(22) is a lead wire, (17) is an Au electrode, (18)
is an n-type silicon layer, (19) is a zopolyp-phenylene-1,3,4-oxacyaburu vapor deposited film, (20) is an In electrode, (21) is a glass substrate, (
23) is the PE deposited film, (24) and (25) are the characteristics of comparative sample (1) and comparative sample (2), respectively.
, (26), (27), and (28) are MIS diode samples (1) to (4) according to embodiments of the present invention, respectively.
). In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)電極となる導電層、半導体層、絶縁性有機高分子
層および電極となる金属層を積層したMISダイオード
において、上記絶縁性有機高分子層は、異節環ポリマー
を蒸着して形成されたものであることを特徴とするMI
Sダイオードの製造方法。
(1) In an MIS diode in which a conductive layer serving as an electrode, a semiconductor layer, an insulating organic polymer layer, and a metal layer serving as an electrode are laminated, the insulating organic polymer layer is formed by vapor-depositing a heterocyclic polymer. MI characterized by being
Method of manufacturing S diode.
(2)異節環ポリマーが、分子構造内にチアジアゾール
環、チアゾロベンズチアゾール環、トリアゾール環、オ
キサゾール環およびオキサジアゾール環の内の少なくと
も一種を含む有機高分子化合物であることを特徴とする
特許請求の範囲第1項記載のMISダイオードの製造方
法。
(2) The heterocyclic polymer is an organic polymer compound containing at least one of a thiadiazole ring, a thiazolobenzthiazole ring, a triazole ring, an oxazole ring, and an oxadiazole ring in its molecular structure. A method for manufacturing an MIS diode according to claim 1.
(3)蒸着は、加熱蒸着法、高周波スパッタリング、イ
オンブレーティング法、電子ビーム法およびイオンクラ
スタービーム法の内のいずれかにより行なわれることを
特徴とする特許請求の範囲第1項又は第2項記載のMI
Sダイオードの製造方法。
(3) Claim 1 or 2, characterized in that the vapor deposition is performed by any one of a heated vapor deposition method, high frequency sputtering, ion blating method, electron beam method, and ion cluster beam method. MI listed
Method of manufacturing S diode.
(4)異節環ポリマーが、ポリP−フエニレン−1、3
、4−オキサジアゾールである特許請求の範囲第2項記
載のMISダイオードの製造方法。
(4) Heterocyclic polymer is polyP-phenylene-1,3
, 4-oxadiazole, the method for manufacturing an MIS diode according to claim 2.
JP59122500A 1984-06-12 1984-06-12 Manufacture of mis diode Pending JPS611059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59122500A JPS611059A (en) 1984-06-12 1984-06-12 Manufacture of mis diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59122500A JPS611059A (en) 1984-06-12 1984-06-12 Manufacture of mis diode

Publications (1)

Publication Number Publication Date
JPS611059A true JPS611059A (en) 1986-01-07

Family

ID=14837378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59122500A Pending JPS611059A (en) 1984-06-12 1984-06-12 Manufacture of mis diode

Country Status (1)

Country Link
JP (1) JPS611059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069407A (en) * 1990-11-02 1991-12-03 Williams Andy C Mounting bracket for communication related devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069407A (en) * 1990-11-02 1991-12-03 Williams Andy C Mounting bracket for communication related devices

Similar Documents

Publication Publication Date Title
EP2942826B1 (en) Doped perovskites and their use as active and/or charge transport layers in optoelectronic devices
US7132598B2 (en) Hole transporting agents and photoelectric conversion device comprising the same
US5107308A (en) Field-effect transistor
JPH0555568A (en) Thin organic film transistor
Wang et al. Delocalized molecule surface electronic modification for enhanced performance and high environmental stability of CsPbI2Br perovskite solar cells
US20070096089A1 (en) Organic semiconductor diode
Jiang et al. Efficient perovskite solar cells employing a solution-processable copper phthalocyanine as a hole-transporting material
Lei et al. A solution-processed pillar [5] arene-based small molecule cathode buffer layer for efficient planar perovskite solar cells
Jiang et al. Polyacetylene derivatives in perovskite solar cells: from defect passivation to moisture endurance
Al Kurdi et al. A naphthalene diimide side-chain polymer as an electron-extraction layer for stable perovskite solar cells
US10003036B2 (en) Hybrid heterojunction photovoltaic device
KR102093431B1 (en) Perovskite solar cell and method of preparing the Perovskite solar cell
Ghaderian et al. The impact of fluorine atoms on a triphenylamine-based dopant-free hole-selective layer for perovskite solar cells
Lin et al. Ambipolar carrier transport properties of triphenylamine/dibenzofulvene derivative and its application for efficient nip perovskite solar cells
Kang et al. Cationic polyelectrolytes as convenient electron extraction layers in perovskite solar cells
JPS611059A (en) Manufacture of mis diode
Liu et al. Molecular Engineering of Peripheral Substitutions to Construct Efficient Acridine Core-Based Hole Transport Materials for Perovskite Solar Cells
CN112467035B (en) Schottky type perovskite photoelectric detector and preparation method thereof
JPS61163658A (en) Manufacture of mis diode
CN113948645A (en) Perovskite battery preparation method
JPS61163659A (en) Manufacture of mis diode
KR101455600B1 (en) Organic thin film transistor and method for preparing thereof
US20190272960A1 (en) Dopant-free inexpensive hole transporting materials for highly efficient and stable perovskite solar cells
JPH038375A (en) Electric element
JP4704629B2 (en) Thin film transistor and manufacturing method thereof