JPS61105404A - Pattern detecting device - Google Patents

Pattern detecting device

Info

Publication number
JPS61105404A
JPS61105404A JP22703184A JP22703184A JPS61105404A JP S61105404 A JPS61105404 A JP S61105404A JP 22703184 A JP22703184 A JP 22703184A JP 22703184 A JP22703184 A JP 22703184A JP S61105404 A JPS61105404 A JP S61105404A
Authority
JP
Japan
Prior art keywords
light
line image
measured
reflected light
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22703184A
Other languages
Japanese (ja)
Inventor
Koji Oka
浩司 岡
Moritoshi Ando
護俊 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22703184A priority Critical patent/JPS61105404A/en
Publication of JPS61105404A publication Critical patent/JPS61105404A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Abstract

PURPOSE:To correct reflected light to a proper position even if it is displaced owing to the displacement of a body to be measured by irradiating the pattern of the object body with light from a light source through a deflecting means and controlling the deflecting means with the output of a line image detecting means. CONSTITUTION:The laser light emitted by a laser light source 2 is incident slantingly on the body 1 to be measured through the deflecting means 5 and a cylindrical lens 6 and its reflected light is supplied to the 1st and the 2nd line image detecting means 4 and 8. If the object body 1 is displaced in the direction of the optical axis of reflected light to a position 1', the reflected light from the light source 2 does reach a detecting means 4. Then, the beam of the reflected light is detected by a detecting means 8. Displacement from a light intensity distribution at a reference position A is detected by a peak position detecting circuit 9 and a displacement-voltage converting means 10 and fed back to the deflecting means 5 to adjust the laser light as shown by a broken line, so the reflected irradiation light is incident on the detecting means 4 all the time to obtain a pattern image of the object body 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はパターン検知装置に係り、特に光源から斜めに
照射した光をプリント基板等のパターンを有する被測定
物に照射し、該被測定物が位置変動した場合の変動量を
検出し、光源と被測定物間に配設した偏向手段を用いて
照射光を偏向させて上記した変動があっても常にライン
イメージ検知手段に被測定物の反射光が検知出来るよう
にしたパターン検知装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pattern detection device, and in particular, the present invention relates to a pattern detection device, in particular, which irradiates an object to be measured having a pattern, such as a printed circuit board, with light irradiated obliquely from a light source to detect the object to be measured. detects the amount of change when the position of The present invention relates to a pattern detection device capable of detecting reflected light.

〔従来の技術〕[Conventional technology]

近時プリント基板上のパターンは益々微細化し。 In recent years, patterns on printed circuit boards have become increasingly finer.

高密度化されてきている。特に積層プリント、ttの中
間層に於ては組立積層後の修復が不可能なために、事前
にパターンの欠陥を検出しておくことが必要であるが、
一般的にはこれらのパターン検査は目視で行われること
が多く1作業量の点でこれら目視検査は不可能な状態に
なって来ている。このような要求によってプリント基板
のパターンを自動検出するパターン検出装置としては被
測定物であるプリント基板のパターンの位置変動の影響
を少なくするために第6図に示すように被測定物1に対
し、レーザ光源2の位置をパターン面に直交するように
配置し1反射光をハーフ鏡3を介してラインイメージ検
知手段4で検出するような光学系が用いられていた。こ
のような光学系によると被測定物1が1′位置まで変位
ΔZしたとしても反射光がイメージ検知手段に到達しな
いことはなく、被測定物0位置変動の影響は少なかった
It is becoming more dense. In particular, it is necessary to detect pattern defects in advance because it is impossible to repair the intermediate layer of laminated prints and TT after assembly and lamination.
Generally, these pattern inspections are often performed visually, and these visual inspections are becoming impossible due to the amount of work required. In response to these requirements, a pattern detection device that automatically detects the pattern of a printed circuit board is designed to detect the pattern of the printed circuit board as shown in Fig. 6 in order to reduce the influence of positional fluctuations of the pattern of the printed circuit board, which is the object to be measured. An optical system was used in which a laser light source 2 was arranged perpendicular to the pattern surface and one reflected light was detected by a line image detection means 4 via a half mirror 3. According to such an optical system, even if the object 1 to be measured is displaced ΔZ to the 1' position, the reflected light does not fail to reach the image detecting means, and the influence of the change in the 0 position of the object to be measured is small.

然し反面パターンのコントラストが小さいと。However, on the other hand, the contrast of the pattern is low.

S/Nが悪化するという問題が生じる。A problem arises in that the S/N ratio deteriorates.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明ではこのような問題を解決するために。 The present invention aims to solve such problems.

被測定物に対し光源からの光を斜めから照射するように
した光照射方式によってコントラストを高めるようにす
ることでS/Nの悪化を防止するようにしたものである
が、一方この方式によると被測定物の位置変動が生じた
ときにラインイメージ検出手段(例えばCCD)への入
射が完全にずれてしまう問題が発生する。このような被
測定物の位置変動要因としては被測定物を載置した載置
台の位置変動や被測定物がプリント基板である場合はそ
の厚みや銅箔パターンが基板の片側または両側にあるか
の差等によるものである。
This method uses a light irradiation method that irradiates the object to be measured with light from a light source obliquely to increase the contrast and prevent deterioration of the S/N ratio. When the position of the object to be measured changes, a problem arises in that the incidence on the line image detection means (for example, CCD) is completely shifted. Factors that cause the position of the DUT to vary include changes in the position of the mounting table on which the DUT is placed, and if the DUT is a printed circuit board, its thickness and whether the copper foil pattern is on one or both sides of the board. This is due to the difference in

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、上述の問題点を解決したパターン検知装置を
提供するものであり、第1図は本発明の原理的な構成を
示す。第1図において1はプリント基板等の被測定物で
1′は上記したような各種要因でΔZ位置変動した被測
定物を表す。
The present invention provides a pattern detection device that solves the above-mentioned problems, and FIG. 1 shows the basic configuration of the present invention. In FIG. 1, 1 represents an object to be measured such as a printed circuit board, and 1' represents an object to be measured whose position has changed by ΔZ due to various factors as described above.

2はレーザ等の光源で該光源よりのレーザ光2aは偏光
手段5及びシリンドリカルレンズ6を介して被測定物1
に照射される。照射されたレーザ光は被測定物のパター
ン表面で角度θで反射されレンズ7及びハーフ13を通
過してCOD等よりなる第1のラインイメージ検知手段
4に入射して被測定物1のパターンイメージを検出する
。さらに反射光中に配した第1のラインイメージ検知手
段4とレンズ7間のハーフ鏡3からの反射光は同じ<C
OD等よりなる第2のラインイメージ検知手段8に照射
される。該第2のラインイメージ検知手段8は第1のラ
インイメージ検知手段4の配列方向と直交するように配
置される。
Reference numeral 2 denotes a light source such as a laser, and the laser beam 2a from the light source is transmitted to the object to be measured 1 via a polarizing means 5 and a cylindrical lens 6.
is irradiated. The irradiated laser beam is reflected at an angle θ on the pattern surface of the object to be measured, passes through the lens 7 and the half 13, and enters the first line image detection means 4 made of COD or the like, which generates a pattern image of the object to be measured 1. Detect. Furthermore, the reflected light from the half mirror 3 between the first line image detection means 4 arranged in the reflected light and the lens 7 is the same <C
The light is irradiated onto a second line image detection means 8 made of OD or the like. The second line image detection means 8 is arranged perpendicular to the arrangement direction of the first line image detection means 4.

第2のラインイメージ検知手段8で得られた信号は第2
図に示すように反射ビームの幅方向の光強度分布曲線1
1を示す。第2のラインイメージ検知手段8からの出力
はピーク位置検出回路9に加えられる。そして被測定物
1が1′位置まで変位した時の光強度分布のピーク位置
の基準位置からの変位を変位−電圧変換回路10で検知
して該検知出力で偏向手段5を制御するようになしたも
のである。
The signal obtained by the second line image detection means 8 is
Light intensity distribution curve 1 in the width direction of the reflected beam as shown in the figure.
1 is shown. The output from the second line image detection means 8 is applied to a peak position detection circuit 9. Then, the displacement of the peak position of the light intensity distribution from the reference position when the measured object 1 is displaced to the 1' position is detected by the displacement-voltage conversion circuit 10, and the deflection means 5 is controlled by the detected output. This is what I did.

〔作  用〕[For production]

レーザ光源2から照射したレーザ光は偏向手段5とシリ
ンドリカルレンズ6を通して被測定物1に斜めに入射し
て反射光は第1及び第2のラインイメージ検知手段4.
8に与えられる。金波測定物lが反射光軸方向にΔ2だ
け変位して1′位置に来たとするとレーザ光源2からの
照射ビームは被測定物1′のB位置に入射されその反射
光は一点鎖線で示すような軌跡をとってレンズ7を通過
し反射光は第1のラインイメージ検知手段4に到達しな
い。そこで第2のラインイメージ検知手段8によって反
射光のビームを検出する。これは第2図12のように反
射光の幅方向の光強度分布を表すので基準位置A点での
光強度分布11からの変位をピーク位置検出回路9と変
位−電圧変換回路lOで検知して偏向手段5にフィード
バンクしてレーザ光を破線で示すようにA点すなわちΔ
h=oとなるように調整してやれば第1のラインイメー
ジ検知手段4には常に照明された反射光が入射されて被
測定物1のパターンイメージを得ることができる。
Laser light emitted from the laser light source 2 obliquely enters the object to be measured 1 through the deflection means 5 and the cylindrical lens 6, and the reflected light is transmitted to the first and second line image detection means 4.
given to 8. If the gold wave measurement object l is displaced by Δ2 in the direction of the reflected optical axis and reaches the 1' position, the irradiation beam from the laser light source 2 will be incident on the measurement object 1' at position B, and the reflected light will be reflected as shown by the dashed line. The reflected light does not reach the first line image detecting means 4 as it passes through the lens 7 along a certain trajectory. Therefore, the second line image detection means 8 detects the reflected light beam. This represents the light intensity distribution in the width direction of the reflected light as shown in FIG. and feedbank the laser beam to the deflection means 5 at point A, that is, Δ, as shown by the broken line.
If the adjustment is made so that h=o, the illuminated reflected light is always incident on the first line image detection means 4, and a pattern image of the object to be measured 1 can be obtained.

〔実 施 例〕〔Example〕

第3図について本発明の一実施例を詳記する。 One embodiment of the invention will now be described in detail with reference to FIG.

なお、第1図と同一部分には同一符号を付して重複説明
を省略する。偏向手段5としては偏向鏡5aに照射され
たレーザ光源2からのレーザ光を駆動モータ5bで回動
させて破線で示すように被測定物1′の変位による反射
光の光軸ずれを補正してA位置に照射させる。上記偏向
手段としては機械的な構成を示したが例えば超音波光偏
向素子の光学的な偏向手段を用いることもできる。第4
図には被測定物lまたは1′に照射したレーザ光の反射
光がハーフ鏡3で第1及び第2のラインイメージ検知手
段4,8に入射される際にラインイメージ検知手段4.
8を長手方向に互に直交するように配置した場合の斜視
図が示されている。第2ラインイメージ検知手段8で第
2図に示す反射光の幅方向の光強度分布が得られた状態
でピーク位置検出回路9の入力端子T2には第5図(a
)に示す入力11.12が与えられて第1の差動増幅器
AMP+のマイナス入力端子に加えられる。−万端子T
Iには基準電圧源よりの電圧が与えられて基準電圧設定
抵抗R8で調整された基準電圧が第1の差動増幅器のA
MP+のプラス入力端子に加えられて基準電圧を閾値1
3とした第5図(b)に示す波形14を該第1の差動増
幅器AMP+の出力端に出力する。一方入力端子T2に
加えられた第2のラインイメージ検知手段8からの出力
はコンデンサC1と抵抗R1よりなる微分回路によって
第5図(C)に示すような微分波形15と成され第2の
差動増幅器AMP2のプラス入力端子に加えられる。マ
イナス入力端子は接地位置に接続されているので該第2
の差動増幅器A M P 2出力には第5図(d)に示
す波形が出力される。このように第1及び第2の差動増
幅器AMP +、AMP 2の出力はアンドゲート回路
ANDに加えられて出力端子T3に第5図(elに示す
波形17を取り出す。アンドゲート回路に通す理由は第
5図15の零クロス点波形を確実に得るためである。
Note that the same parts as in FIG. 1 are given the same reference numerals, and redundant explanation will be omitted. The deflection means 5 rotates the laser light from the laser light source 2 that is irradiated onto the deflection mirror 5a by a drive motor 5b to correct the optical axis shift of the reflected light due to the displacement of the object to be measured 1' as shown by the broken line. to irradiate position A. Although a mechanical configuration is shown as the deflection means, for example, an optical deflection means such as an ultrasonic light deflection element may also be used. Fourth
In the figure, when the reflected light of the laser beam irradiated onto the object to be measured l or 1' is incident on the first and second line image detecting means 4, 8 by the half mirror 3, the line image detecting means 4.
8 is shown in a perspective view when they are arranged perpendicularly to each other in the longitudinal direction. When the second line image detection means 8 has obtained the light intensity distribution in the width direction of the reflected light shown in FIG.
) are applied to the negative input terminal of the first differential amplifier AMP+. -Multiple terminal T
A voltage from a reference voltage source is applied to I, and the reference voltage adjusted by the reference voltage setting resistor R8 is applied to A of the first differential amplifier.
The reference voltage applied to the positive input terminal of MP+ is set to threshold 1.
A waveform 14 shown in FIG. 5(b) with a value of 3 is output to the output terminal of the first differential amplifier AMP+. On the other hand, the output from the second line image detection means 8 applied to the input terminal T2 is formed into a differentiated waveform 15 as shown in FIG. It is applied to the positive input terminal of the dynamic amplifier AMP2. Since the negative input terminal is connected to the ground position,
The waveform shown in FIG. 5(d) is output from the differential amplifier AMP2. In this way, the outputs of the first and second differential amplifiers AMP+ and AMP2 are applied to the AND gate circuit AND, and the waveform 17 shown in FIG. 5 (el) is taken out at the output terminal T3. Reason for passing it through the AND gate circuit This is to ensure that the zero cross point waveform shown in FIG. 5 is obtained.

上記アンドゲート回路ANDからの出力は変位−電圧変
換回路lOに加えられる。該変位−電圧変換回路10と
しては偏向手段の使用形態に応じて変位−電流変換回路
であっても変位−周波数変換回路であってもよく要はピ
ーク位置の基準位置(第2図曲線11のA点)からの偏
位Δhを電圧等の電気的出力に変換すればよい。このた
めに。
The output from the AND gate circuit AND is applied to the displacement-voltage conversion circuit IO. The displacement-voltage conversion circuit 10 may be a displacement-current conversion circuit or a displacement-frequency conversion circuit depending on the usage of the deflecting means. What is necessary is to convert the deviation Δh from point A) into an electrical output such as a voltage. For this.

例えば、コンピュータIQaによってメモリ10bの基
準位置と比較させてそれに応じた電圧を駆動モータ5b
にフィードバックさせることで該駆動モータを回動させ
て破線で示すように変位した被測定物1′のA点にレー
ザ光が入射するように調整させるようになされる。勿論
ハード的な構成も可能である。
For example, the computer IQa compares it with a reference position in the memory 10b and applies a corresponding voltage to the drive motor 5b.
By feeding back the drive motor, the laser beam is adjusted so as to be incident on point A of the object to be measured 1' which has been displaced as shown by the broken line. Of course, a hardware configuration is also possible.

〔発明の効果〕〔Effect of the invention〕

本発明は上述の如(構成させかつ動作させたので被測定
物のパターンのコントラストを大きくとることが出来る
だけでなく第1のラインイメージ検知手段に入射する反
射光が被測定物の変位によってずれても適正位置に補正
出来て常に正しいパターンイメージを検出することが可
能となる。また第1及び第2のラインパターン検知手段
を互いに直交するように配したので一方のラインパター
ン検知手段にはパターンの光分布強度出力を得ることが
出来る特徴を有する。
Since the present invention is constructed and operated as described above, it is possible not only to increase the contrast of the pattern of the object to be measured, but also to prevent the reflected light incident on the first line image detection means from being shifted due to the displacement of the object to be measured. It is possible to always detect the correct pattern image because the correct position can be corrected even if the line pattern detection means It has the feature of being able to obtain a light distribution intensity output of .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のパターン検知装置の原理的な系統図、
第2図は第1図の第2のラインイメージ検知手段の波形
説明図、第3図は本発明のパターン検知装置の一実施例
を示す光学系と回路図、第4図は第1図及び第3図に示
したラインイメージ検知手段及びハーフ鏡に入反射する
反射光との関係を示す斜視図、第5図は第3図のピーク
位置検出回路の波形説明図、第6図は従来の光学系配置
を示す模式図である。 1.1′・・・被測定物、    12・・・レーザ光
源、    3・・・ハーフ鏡、    4・・・第1
のラインイメージ検知手段、    5・・・偏向手段
、    5a・・・偏向鏡。 5b・・・駆動モータ、    6・・・シリンドリカ
ルレンズ、    7・・・レンズ、    8・・・
第2のラインイメージ検知手段、    9・・・ピー
ク位置検出回路、    10・・・変位−電圧変換回
路。 第1図 第2図 第4図 第5図
FIG. 1 is a basic system diagram of the pattern detection device of the present invention.
2 is a waveform explanatory diagram of the second line image detection means in FIG. 1, FIG. 3 is an optical system and circuit diagram showing an embodiment of the pattern detection device of the present invention, and FIG. Fig. 3 is a perspective view showing the relationship between the line image detection means and the reflected light entering and reflecting on the half mirror, Fig. 5 is a waveform explanatory diagram of the peak position detection circuit of Fig. 3, and Fig. 6 is a conventional FIG. 3 is a schematic diagram showing the arrangement of the optical system. 1.1'...Object to be measured, 12...Laser light source, 3...Half mirror, 4...First
Line image detection means, 5... Deflection means, 5a... Deflection mirror. 5b... Drive motor, 6... Cylindrical lens, 7... Lens, 8...
2nd line image detection means, 9... Peak position detection circuit, 10... Displacement-voltage conversion circuit. Figure 1 Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 光源からの光を偏向手段を介して被測定物のパターンに
照射し、該被測定物からの反射光を第1のラインイメー
ジ検知手段で検出すると共に該被測定物と第1のライン
イメージ検知手段間に配したハーフ鏡を介して、上記第
1のラインイメージ検知手段と直交するように配された
第2のラインイメージ検知手段によって被測定物の反射
光強度分布を検出し、該第2のラインイメージ検知手段
の出力を電気出力に変換して上記偏向手段を制御してい
ることを特徴とするパターン検知装置。
The light from the light source is irradiated onto the pattern of the object to be measured via the deflection means, the reflected light from the object is detected by the first line image detection means, and the object to be measured and the first line image are detected. A second line image detecting means arranged orthogonally to the first line image detecting means detects the reflected light intensity distribution of the object to be measured through a half mirror arranged between the means. A pattern detection device characterized in that the output of the line image detection means is converted into an electrical output to control the deflection means.
JP22703184A 1984-10-29 1984-10-29 Pattern detecting device Pending JPS61105404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22703184A JPS61105404A (en) 1984-10-29 1984-10-29 Pattern detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22703184A JPS61105404A (en) 1984-10-29 1984-10-29 Pattern detecting device

Publications (1)

Publication Number Publication Date
JPS61105404A true JPS61105404A (en) 1986-05-23

Family

ID=16854432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22703184A Pending JPS61105404A (en) 1984-10-29 1984-10-29 Pattern detecting device

Country Status (1)

Country Link
JP (1) JPS61105404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225710A (en) * 1988-07-15 1990-01-29 Hitachi Ltd Measuring method for misalignment quantity and automatic focusing mechanism, surface roughness measuring instrument and pattern inspecting device using said method
CN102865514A (en) * 2012-09-18 2013-01-09 上海创波光电科技有限公司 Surface defect detection line light source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225710A (en) * 1988-07-15 1990-01-29 Hitachi Ltd Measuring method for misalignment quantity and automatic focusing mechanism, surface roughness measuring instrument and pattern inspecting device using said method
CN102865514A (en) * 2012-09-18 2013-01-09 上海创波光电科技有限公司 Surface defect detection line light source

Similar Documents

Publication Publication Date Title
US6639179B2 (en) Apparatus for producing microbore holes
TWI696052B (en) Apparatus and methods for performing laser ablation on a substrate
CN101098620A (en) Alignment of printed circuit board targets
US5331407A (en) Method and apparatus for detecting a circuit pattern
US4991968A (en) Three dimensional object surface determination with automatic sensor control
KR20200140213A (en) Apparatus for automatically correcting the position of laser scanning system
JPS61105404A (en) Pattern detecting device
JP2005118815A (en) Laser beam machining method and laser beam machining apparatus
JP2001334376A (en) Laser beam machining device and method of correction of laser beam spot position
CN109844645A (en) Pattern plotter device
JP2001300755A (en) Method and device for laser beam machining
JP2005170657A (en) Sheet detection device
JPH10328871A (en) Method of correcting irradiation position of laser beam machining device
JPS62127191A (en) Laser trimming device
KR20190122515A (en) Apparatus for automatically correcting the position of laser scanning system
JP3122150B2 (en) Method for detecting the movement reference position of a moving object
JP2000176661A (en) Laser beam machining method and its device
US3792262A (en) Scanning initiation position detecting device
JPS61225610A (en) Surface detector of threads
JP3168281B2 (en) Moving reference position detecting method and apparatus for moving object and moving reference position detecting optical unit
JP3301644B2 (en) Printing status monitoring device
JPH0540026A (en) Pattern reading device
JPS62150107A (en) Measuring apparatus
JPH0343951B2 (en)
JPH04298443A (en) Roll end position control method and device