JPS61105007A - Fluidized bed type combustion method and combustion mechanism - Google Patents

Fluidized bed type combustion method and combustion mechanism

Info

Publication number
JPS61105007A
JPS61105007A JP60201971A JP20197185A JPS61105007A JP S61105007 A JPS61105007 A JP S61105007A JP 60201971 A JP60201971 A JP 60201971A JP 20197185 A JP20197185 A JP 20197185A JP S61105007 A JPS61105007 A JP S61105007A
Authority
JP
Japan
Prior art keywords
fluidized bed
combustion
particles
fuel
gas stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60201971A
Other languages
Japanese (ja)
Other versions
JPH0799250B2 (en
Inventor
ギヤリイ オー.ゴールドバツク
ジエリイ エル.クーパー
ジヨン ルイス グイロリイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Garrett Corp
Original Assignee
Garrett Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Garrett Corp filed Critical Garrett Corp
Publication of JPS61105007A publication Critical patent/JPS61105007A/en
Publication of JPH0799250B2 publication Critical patent/JPH0799250B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/0007Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
    • F22B31/0084Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed with recirculation of separated solids or with cooling of the bed particles outside the combustion bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Treating Waste Gases (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は流動層式燃焼方法および燃焼機構に関し、固形
又は液体燃料を効果的に特に窒素酸化物を抑制して燃焼
させるに有用である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a fluidized bed combustion method and combustion mechanism, and is useful for effectively burning solid or liquid fuel, particularly while suppressing nitrogen oxides.

(従来の技術) 流動層を利用して硫黄を各社に含んだ石炭を燃焼する燃
焼装置が既に提案されている。この従来の燃焼装置にお
いて流動層にはいわゆる泡立ち流動層法(bubbli
nghed、 technology )が採用されて
おシ、この流動層の表面流速は4〜12フイ一ト/秒(
約120〜3600%/秒)にされ、平均粒径が約10
00 ミクロンの粒子で゛なっている。石炭粒子は流動
層内で燃焼され、このとき硫黄酸化物の放出を抑制する
ため石灰岩やドロマイトの吸収剤が流動層に加えられる
。この吸収剤は粒径が1000〜3000ミクロンの粒
子として流動層に加えられ、流動層には主に石炭の灰分
9反応した吸収剤、部分反応した吸収剤および一部燃焼
された燃料粒子が含まれる。また流動層内には熱をスチ
ームに伝達する管が配設され、且燃焼した熱ガスから熱
を除去し熱ガスの温度を低下するため、流動層の上部に
別の管が取9付けられている。燃焼中流動層から炭、灰
および部分反応した吸収剤の各微粒子が放出される。燃
料粒子を完全に燃焼しかつ反応していない吸収剤が硫黄
酸化物を更に効果的に吸収するため、これらの微粒子の
大半が対流式の熱交換器の下流に配設された再循環サイ
クロンによシ捕捉され流動層へ再び戻される。aめて細
かい粒子のみがサイクロンから放出され、フィルタ装置
へ送られ捕捉されるように設けられている。また再循環
路における流量は燃焼装置内へ供給される燃料および吸
収剤の固形分の全流量にほぼ等しくなるように設けられ
ている。
(Prior Art) Combustion devices that use a fluidized bed to burn coal containing sulfur have already been proposed. In this conventional combustion apparatus, the fluidized bed uses the so-called bubbling fluidized bed method (bubbly fluidized bed method).
The surface flow velocity of this fluidized bed is 4 to 12 feet/second.
(approximately 120 to 3600%/sec), and the average particle size is approximately 10
It is made up of 00 micron particles. Coal particles are burned in a fluidized bed, and limestone or dolomite absorbents are added to the fluidized bed to reduce the release of sulfur oxides. This absorbent is added to the fluidized bed as particles with a particle size of 1000-3000 microns, and the fluidized bed mainly contains coal ash9 reacted absorbent, partially reacted absorbent and partially burned fuel particles. It will be done. In addition, a tube is installed in the fluidized bed to transfer heat to the steam, and another tube is installed above the fluidized bed to remove heat from the combusted hot gas and lower the temperature of the hot gas. ing. During combustion, particulates of charcoal, ash, and partially reacted absorbent are released from the fluidized bed. Most of these particulates are transferred to the recirculating cyclone downstream of the convection heat exchanger to completely burn out the fuel particles and the unreacted absorbent absorbs the sulfur oxides more effectively. It is then captured and returned to the fluidized bed. It is provided that only the finest particles are emitted from the cyclone and sent to the filter device where they are captured. Further, the flow rate in the recirculation path is set to be approximately equal to the total flow rate of the solid content of the fuel and absorbent supplied into the combustion device.

(発明が解決しようとする問題点) しかしながら上述の従来の燃焼装置にはいくつかの問題
点があった。先ず燃焼されていない燃料微粒子が燃焼装
置から放出されてしまい、燃焼効率が約97X程度に低
下していた。これは炭素成分が42Xの石炭に比べ炭素
成分が9ONの石油コークスのような揮発成分の低い燃
料を燃焼する場合に極めて顕著になっていた。また吸収
剤の利用率も低く、通常の大気汚染規制の要件を満足さ
せるには、カルシツムと硫黄とのモル比を少なくとも3
対1に維持し90%の硫黄酸化物を抑制する必要があっ
た。従って比較的大量の吸収剤粒子により吸収剤粒子の
表面に硫黄酸化物が吸収されるが、粒子内部の大半の吸
収剤が未使用状態で放出されていた。更に燃焼装置より
燃料に含まれる窒素から生じ、大気を汚染する窒素酸化
物が放出されていた。この場合窒素酸化物の放出量が例
えば規制値の高い南カルフォルニアの規制レベルを越え
ていた。
(Problems to be Solved by the Invention) However, the conventional combustion apparatus described above has several problems. First, unburned fuel particulates were released from the combustion device, and the combustion efficiency was reduced to about 97X. This became extremely noticeable when burning a fuel with a low volatile component such as petroleum coke with a carbon content of 9ON compared to coal with a carbon content of 42X. Absorbent utilization is also low, requiring a molar ratio of calcium to sulfur of at least 3 to meet the requirements of normal air pollution regulations.
It was necessary to maintain a ratio of 1:1 and suppress sulfur oxides by 90%. Therefore, although sulfur oxides were absorbed on the surface of the absorbent particles by a relatively large amount of the absorbent particles, most of the absorbent inside the particles was released in an unused state. Furthermore, the combustion equipment was emitting nitrogen oxides, which are produced from the nitrogen contained in the fuel and pollute the atmosphere. In this case, the amount of nitrogen oxides released exceeded the regulatory level in Southern California, which has high regulatory limits.

一方燃焼装置の燃焼効率を向上するため、米国特許第4
,177.741号によシ再循環された微粒子を泡立ち
流動層に導入する前に凝集する方法が提案される。この
場合凝集された微粒子の流動層内への流出が有効に防止
されるので流動層内における燃焼が高められる。また米
国特許第4,259゜911号においては流動層内(=
燃料を噴射する前(二石炭微粒子および再循環された粒
子を凝集する構成が開示されている。且米国特許第4 
、329 。
On the other hand, in order to improve the combustion efficiency of combustion equipment, US Pat.
, 177.741 proposes a method of agglomerating recycled fine particles before introducing them into a bubbling fluidized bed. In this case, the agglomerated fine particles are effectively prevented from flowing into the fluidized bed, so that combustion within the fluidized bed is enhanced. In addition, in U.S. Patent No. 4,259°911, in a fluidized bed (=
A configuration for agglomerating coal particulates and recycled particles prior to fuel injection is disclosed, and US Pat.
, 329.

234号には、吸収剤の利用率を高めるため流動層の一
部を割愛し吸収剤を粒径50ミクロンまで粉砕して吸収
剤の表面積を犬にし、硫黄酸化物の吸収率を高める構成
が開示されている。この場合微細化された吸収剤粒子は
石炭(燃料)粒子と凝集されて再び流動層内に導入され
る。しかしながらこれらのいずれの構成も流動層式燃焼
装置の細部を改良するにとどまり、上記の問題点、特に
窒素酸化物等を充分に抑制するに至ってなかった。
In No. 234, in order to increase the utilization rate of the absorbent, a part of the fluidized bed is omitted and the absorbent is crushed to a particle size of 50 microns to increase the surface area of the absorbent, thereby increasing the absorption rate of sulfur oxides. Disclosed. In this case, the finely divided absorbent particles are aggregated with coal (fuel) particles and reintroduced into the fluidized bed. However, all of these configurations only improve the details of the fluidized bed combustion apparatus, and have not sufficiently suppressed the above-mentioned problems, particularly nitrogen oxides.

更にドイツ国特許第3,023,480号には吸収剤の
利用率を高め燃焼ガスから生ずる硫黄酸化物を抑制する
別の構成が開示されている。この場合燃焼ガスに粒径3
0〜200ミクロンの吸収剤粒子を含ませ、表面流速が
3〜30フイ一ト/秒(約90〜900m7秒)の流動
層に通過させ且流動層の粒子密度を0.1〜10KP/
m2にさせる。高流速のガスに含まれる粒子はサイクロ
ンによって除去され、温度が1300〜2000’lt
’ (約704〜1093℃)の流動層に戻されると共
に時間当りの再循環流量が流動層の重置の約5倍にされ
る。この構成によれば大きな表面積を有し活発に混合さ
れる微粒子を用いて硫黄酸化物を好適に抑制し得るが、
流動層に冷却管を配設し熱を回収する技術思想には至っ
てなかった。
Furthermore, German Patent No. 3,023,480 discloses another arrangement for increasing the utilization of the absorbent and suppressing sulfur oxides originating from the combustion gases. In this case, the combustion gas has a particle size of 3
It is passed through a fluidized bed containing absorbent particles of 0 to 200 microns and whose surface velocity is 3 to 30 feet/second (approximately 90 to 900 m7 seconds), and the particle density of the fluidized bed is adjusted to 0.1 to 10 KP/second.
Make it m2. Particles contained in the high flow rate gas are removed by a cyclone, and the temperature is 1300-2000'lt.
' (approximately 704 DEG -1093 DEG C.) and the recirculation flow rate per hour is approximately 5 times that of the overlapping fluidized bed. According to this configuration, sulfur oxides can be suitably suppressed using fine particles that have a large surface area and are actively mixed.
The technical idea of arranging cooling pipes in the fluidized bed to recover heat had not yet been reached.

また米国特許第4,111,158号には流動層の燃焼
効率、硫黄酸化物および窒素酸化物の抑制又は除去を増
進する構成が開示されている。この場合泡立ち流動層の
表面流速は4〜12フイ一ト/秒であ夛、且泡立ち流動
層の上面は明゛確に区分されていて、連接流動層の表面
流速は15〜45フイ一ト/秒(約450〜1350@
/秒)にされ、且連接流動層の上面は明確に区分されず
、粒子密度が燃焼装置の底部から頂部へ向って次第に変
化される。
U.S. Pat. No. 4,111,158 also discloses an arrangement for enhancing fluidized bed combustion efficiency and suppression or removal of sulfur oxides and nitrogen oxides. In this case, the surface flow velocity of the bubbling fluidized bed is 4 to 12 feet/sec, and the upper surface of the bubbling fluidized bed is clearly demarcated, and the surface flow velocity of the connected fluidized bed is 15 to 45 feet/sec. / second (approx. 450~1350@
/sec), and the top surface of the continuous fluidized bed is not clearly demarcated, and the particle density changes gradually from the bottom to the top of the combustion device.

燃焼装置内のガス流に含まれる粒子は燃焼装置の下流に
配設された再循環サイクロンにより分離され、流動層内
に再び導入される。粒径は30〜250ミクロンに及び
、粒子密度は燃焼装置の上部で10〜40Ky/m”に
なる。この場合燃焼装置および再循環路内の粒子および
ガスから熱は回収されず、且燃焼装置内の管が浸蝕を受
けやすく、また泡立ち流動層(500Ky/m” )の
粒子密度に比べ粒子密度が低いので、効果的に熱伝導が
されない。従って燃焼装置の底部から流動層の一部を取
り出し好適な熱交換器で冷却することにより熱が回収さ
れる。燃焼装置および再循環路内の良好に混合された内
の小径の燃料粒子を完全に燃焼することにより、高い燃
焼効率が得られる。細かな吸収剤粒子を用い、燃焼装置
および再循環路全体に亘って温度を有効レベルに維持す
ることにより、吸収剤の利用率が高められる。また燃焼
装置の全長に亘って燃焼空気を順次導入することによシ
、窒素酸化物の発生を抑制し得る。しかしながらこの燃
焼装置においては特に流動層を内在させた別の熱交換器
を必要とする上、大型の再循環用サイクロンを必要とす
る問題点があった。
Particles contained in the gas stream within the combustion device are separated by a recirculation cyclone located downstream of the combustion device and reintroduced into the fluidized bed. Particle sizes range from 30 to 250 microns and particle densities range from 10 to 40 Ky/m'' at the top of the combustor. In this case no heat is recovered from the particles and gases in the combustor and recirculation path, and The inner tubes are susceptible to erosion, and the particle density is low compared to that of the bubbling fluidized bed (500 Ky/m''), so there is no effective heat transfer. Heat is therefore recovered by removing a portion of the fluidized bed from the bottom of the combustion device and cooling it in a suitable heat exchanger. High combustion efficiency is achieved through complete combustion of well-mixed, small-diameter fuel particles in the combustor and recirculation path. Absorbent utilization is increased by using fine absorbent particles and maintaining temperatures at effective levels throughout the combustion device and recirculation path. Also, by sequentially introducing combustion air over the entire length of the combustion device, the generation of nitrogen oxides can be suppressed. However, this combustion apparatus particularly requires a separate heat exchanger containing a fluidized bed, and also has problems in that it requires a large recirculation cyclone.

米国特許第3,900,554号には触媒を用いること
なくアンモニアを噴射して窒素酸化物を抑制する構成が
開示されている。この場合アンモニアの基本的なガス反
応によ、i51742〜1832°F(約950〜10
00°O)において窒素酸化物が所望に応じ低減され得
、アンモニアと窒素酸化物とのモル比が2にしたとき2
0%抑制されるとしている。一方アンモニアと窒素酸化
物とのモル比が同様に2であるとき再循環サイクロン内
におけるように良好な混合が得られるとしてはいるが、
95%の窒素酸化物イオンを生成するには至っていなか
った。
US Pat. No. 3,900,554 discloses a structure in which ammonia is injected without using a catalyst to suppress nitrogen oxides. In this case, the basic gas reaction of ammonia
Nitrogen oxides can be reduced as desired at 00°O), when the molar ratio of ammonia to nitrogen oxides is 2
It is said that it will be suppressed by 0%. On the other hand, when the molar ratio of ammonia to nitrogen oxides is likewise 2, as in a recirculating cyclone, good mixing is obtained;
It was not possible to generate 95% of nitrogen oxide ions.

しかして本発明の目的は別個に流動層を内在させた熱交
換器あるいは大型の再循環サイクロンを用いることなく
高い燃焼効率を得る流動層式燃焼方法および燃焼機構を
提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a fluidized bed combustion method and combustion mechanism that achieves high combustion efficiency without using a separate heat exchanger incorporating a fluidized bed or a large recirculation cyclone.

(問題点を解決するための手段) 本発明によれば上記の目的は、泡立ち流動層を有する燃
焼装置が具備され、流動層内には熱伝達用の管が配設さ
れ、流動層の粒子の平均粒径が100〜800ミクロン
の範囲内にされ、20〜40 %の粒子が200ミクロ
ンよシ小さい粒径にされると共1:、流動層の表面流速
が3〜7フイ一ト/秒(約90〜210清/秒)にされ
流動層の他部の流速15〜45フイ一ト/秒より充分に
小(:され、且比較的小さな表面流速が小径の粒子から
なる層の一部ζ二持たせられて泡立ち流動層が生成され
その微粒子成分の放出流量が高くされ、好ましくは流動
層の上部において粒子密度が0.5にり7m3にされ、
流動層の他部の通常値10〜4 Q K9/ m3と併
存される構成をとること(二よシ達成される。
(Means for Solving the Problems) According to the present invention, the above object is achieved by providing a combustion apparatus having a bubbling fluidized bed, in which heat transfer pipes are disposed, and particles of the fluidized bed are provided. The average particle size of the fluidized bed is within the range of 100 to 800 microns, 20 to 40% of the particles have a particle size smaller than 200 microns, and the surface flow velocity of the fluidized bed is 3 to 7 feet/1. (approximately 90 to 210 feet/second), which is sufficiently lower than the flow rate of 15 to 45 feet/second in the rest of the fluidized bed, and the relatively small surface flow velocity in one part of the layer consisting of small-diameter particles. A bubbling fluidized bed is produced by increasing the discharge flow rate of the particulate components, preferably with a particle density of 0.5 and 7 m3 in the upper part of the fluidized bed,
Adopt a configuration that coexists with the normal value 10 to 4 Q K9/m3 of the other part of the fluidized bed (20 to 4 is achieved).

(作用) 上述の如き本発明においては特に流動層の他部と粒径は
同様であるが表面流速を極めて低くするから、粒子が極
めて小移動せしめられ、良好な泡立ち流動層を得る顕著
な作用を実現できる。
(Function) In the present invention as described above, the surface flow velocity is extremely low even though the particle size is the same as that of the other part of the fluidized bed, so the particles are moved extremely small, and this has a remarkable effect of obtaining a good bubbling fluidized bed. can be realized.

また本発明によれば従来の泡立ち流動層による燃焼装置
(ニルへ平均粒径が極めて小さくされる(500ミクロ
ン対1000ミクロン)から、その移動速度も相当速く
し得る。豆本発明にあっては、従来におけるような流動
層と再循環サイクロンとの間にガスおよび粒子を冷却す
る熱伝達面を存在させないので、燃焼又は硫黄吸収に際
し理想温度で作動する等熱再循環路を形成し得る。更に
本発明においては従来の流動層式燃焼装置と異なり、サ
イクロンの入口部でアンモニアを噴射するから、極めて
有効に窒素酸化物の放出を抑制し得る。また流動層内の
粒子の粒径な小さくするので、流動層内(二配設される
管の熱伝達係数が100〜300 K増大され得、瓦表
面流速を低くするので管の腐蝕が軽減され得る(管の腐
蝕は表面流速に対し指数函数的に増大する)。
In addition, according to the present invention, since the average particle size is extremely small (500 microns vs. 1000 microns) compared to the conventional bubbling fluidized bed combustion device, the moving speed can be considerably increased. Since there is no heat transfer surface to cool the gas and particles between the fluidized bed and the recirculation cyclone as in the prior art, an isothermal recirculation path can be created that operates at the ideal temperature during combustion or sulfur absorption. In the present invention, unlike conventional fluidized bed combustion equipment, ammonia is injected at the inlet of the cyclone, so the release of nitrogen oxides can be extremely effectively suppressed.Also, the particle size of particles in the fluidized bed can be reduced. Therefore, the heat transfer coefficient of the pipes installed in the fluidized bed (2) can be increased by 100 to 300 K, and the corrosion of the pipes can be reduced by lowering the tile surface flow velocity (the corrosion of the pipes is an exponential function of the surface flow velocity). increase).

(実施例) 図面には流動層を燃焼する燃焼装置(101を備えた本
発明による燃焼機構が示されている。燃焼装置C1lに
は燃焼室(111が包有されており、燃焼室αυはその
内部に配設された分配プレートα2上に粒子からなる流
動層Bを形成するように構成されている。
(Example) The drawing shows a combustion mechanism according to the present invention comprising a combustion device (101) for combustion of a fluidized bed.The combustion device C1l includes a combustion chamber (111), and the combustion chamber αυ is It is configured to form a fluidized bed B made of particles on a distribution plate α2 disposed therein.

また燃焼装置α[の燃焼室(111には流動層B内に位
置するように配設された冷却管住&と、燃料供給路Iと
、流動層取出路(L61とが包有される。更に燃焼室(
111の底部には流動化空気導入口αDが具備されてお
シ、粒子を流動化する空気が導入される。流動層Bの表
面から放出された熱ガスおよび微粒子はフリーボード部
(1(至)を通シ導管α■を経て流動層の上方に配設さ
れた再循環用のサイクロン(211へ送られる。
In addition, the combustion chamber (111) of the combustion device α [includes a cooling pipe located in the fluidized bed B, a fuel supply path I, and a fluidized bed outlet path (L61). Furthermore, the combustion chamber (
A fluidizing air inlet αD is provided at the bottom of 111, through which air for fluidizing particles is introduced. The hot gas and fine particles released from the surface of the fluidized bed B are sent to the recirculation cyclone (211) disposed above the fluidized bed through the freeboard section (1) and the conduit α2.

サイクロン(211から下方へ延びる直線状の侵入脚部
のは充分に長手に設けられていて微粒子が流動層へ円滑
に戻される。この場合サイクロン(21)の論点は約1
2ミクロンである。
The linear intrusion leg extending downward from the cyclone (211) is sufficiently long to allow the fine particles to return smoothly to the fluidized bed.In this case, the point of the cyclone (21) is approximately 1
It is 2 microns.

燃料が窒素と燃焼されるとき生じる窒素酸化物を抑制す
るため、サイクロン(21)の直上流に配設されたアン
モニア噴射器(ハ)からアンモニアが導管σ9内を流れ
る熱ガス流に噴射される。アンモニアはアンモニア供給
タンク(2滲からアンモニア噴射器(ハ)へ供給されて
いる。
To suppress nitrogen oxides produced when fuel is combusted with nitrogen, ammonia is injected into the hot gas stream flowing in conduit σ9 from an ammonia injector (c) located immediately upstream of the cyclone (21). . Ammonia is supplied from the ammonia supply tank (2) to the ammonia injector (c).

熱ガスはサイクロン■υかも導管器を経て対流式の熱交
換器(ハ)へ送られ、熱交換器(ハ)において熱ガスか
ら熱が吸収される。熱が除去された熱ガスは熱交換器(
至)からバッグハウスフィルタのようなフィルタ装置(
5)へ送られ、粉塵が除去されて煙突例から大気中へ放
出される。
The hot gas is sent to the convection type heat exchanger (c) through the cyclone ■υ or conduit, and the heat is absorbed from the hot gas in the heat exchanger (c). The hot gas from which the heat has been removed is transferred to a heat exchanger (
) to filter devices such as baghouse filters (
5), where the dust is removed and released into the atmosphere from the chimney.

更に詳述するに本発明による流動層式燃焼方法および燃
焼機構の燃焼装置においては、泡立ちする流動層Bの表
面流速がO,S〜7フィート/秒(約15〜210Gl
/秒)の範囲内にされ、流動層Bの粒子の直径は45〜
2000 ミクロンの範囲内にされると共に、流動層B
の粒子の40〜20Xは夫々直径200ミクロンより小
さくされる。流動層Bの粒子中相射的に大の粒子は使用
する供給原料のドロマイトの大きさに関係して定まる。
More specifically, in the fluidized bed combustion method and combustion apparatus of the combustion mechanism according to the present invention, the surface flow velocity of the bubbling fluidized bed B is O.S~7 ft/sec (about 15~210 Gl
/sec), and the particle diameter of fluidized bed B is 45~
2000 microns and fluidized bed B
40-20X of the particles are each smaller than 200 microns in diameter. The refractionally large particles in the particles of fluidized bed B depend on the size of the dolomite feedstock used.

また高温の流動層B内に配設される冷却管α3を介し流
動層Bから熱が一部除去されるように設けられ、冷却管
(13)の外側の熱伝達係数は流動層B内が微粒子から
なるので、100〜200 BTU/FT2・)ll’
t−F(ピーティーニー毎時平方フート度エフ、 IB
TU/FT2・HR−F =0.2048 xca1/
h ・m” ・’c )の範囲内にされる。また固形燃
料又は液体燃料が流動Jtj B内に直接供給される。
In addition, heat is partially removed from the fluidized bed B through a cooling pipe α3 arranged in the high temperature fluidized bed B, and the heat transfer coefficient outside the cooling pipe (13) is different from that inside the fluidized bed B. Since it consists of fine particles, 100 to 200 BTU/FT2・)ll'
t-F (petiny per hour square foot degree F, IB
TU/FT2・HR-F =0.2048 xca1/
solid or liquid fuel is fed directly into the flow Jtj B.

石灰石あるいはドロマイトのような硫黄吸収剤も流動層
B内に直接供給される。
A sulfur absorbent such as limestone or dolomite is also fed directly into fluidized bed B.

燃焼装置(Lαの燃焼室αDのフリーボード部αaは高
温にされ且熱伝達面が具備されてない。多量の微粒子が
流動層Bからフリーボード部αaへ放出され、熱ガスと
微粒子とが混合された状態でフリーボード部(1υ内に
充分長時間滞溜し化学反応を起こす。
The freeboard part αa of the combustion chamber αD of the combustion device (Lα) is heated to a high temperature and is not provided with a heat transfer surface.A large amount of fine particles are released from the fluidized bed B to the freeboard part αa, and the hot gas and fine particles are mixed. In this state, it remains in the freeboard area (1υ) for a sufficiently long time and a chemical reaction occurs.

流動層Bからフリーボード部(181へ放出された微粒
子の大半は再び流動層Bに戻されるが、相轟量の微粒子
が熱ガス流と共にサイクロンCI!υへ送られ、サイク
ロンシ旧二おいて熱ガスと分離され、流動層Bへ実質的
に同一温度をもって戻される。サイクロン(至)に導入
される熱ガスに含まれる微粒子の量ハ約0.5に5I/
11L2程度テアル。7!l−ボー1’部(181およ
びサイクロン圓において細かな炭粒子と酸素な多く含ん
だ燃焼ガスとを充分に混合せしめ充分長時間滞溜させる
ことによシ、混合気中の炭粒子カー完全に燃焼されてサ
イクロンC11から放出される。
Most of the particles released from the fluidized bed B to the freeboard section (181) are returned to the fluidized bed B, but a large amount of particles are sent to the cyclone CI!υ along with the hot gas flow, and It is separated from the hot gas and returned to the fluidized bed B at substantially the same temperature.The amount of fine particles contained in the hot gas introduced into the cyclone is approximately 0.5 to 5I/
About 11L2 teal. 7! By thoroughly mixing fine coal particles and combustion gas containing a large amount of oxygen in the l-bow 1' section (181 and cyclone circle) and allowing them to stagnate for a sufficiently long time, the coal particles in the mixture are completely removed. It is burned and released from cyclone C11.

この炭粒子により窒素酸化物の生成が最低1400°F
 (約760″C)までの温度において極めて効果的に
抑制され得よう。同様にフリーボード部(181および
サイクロン(2il内に燃焼ガスに含まれる硫黄酸化物
と細かな吸収剤粒子とが充分に混合され充分(:長時間
滞溜することにより、吸収剤によって硫黄酸化物が好適
に捕捉される。吸収剤微粒子の滞溜時間は流動層B内に
おいて約−秒、フリーボード部ttaおよびサイクロン
(211において約3秒となる。
These charcoal particles reduce nitrogen oxide formation down to 1400°F.
Similarly, in the freeboard section (181 and cyclone (2il) the sulfur oxides and fine absorbent particles contained in the combustion gases are sufficiently The sulfur oxides are properly captured by the absorbent by being thoroughly mixed and retained for a long time. At 211, it takes about 3 seconds.

サイクロン(21)は滴点が5ミクロンで、侵入脚部@
を介し5ミクロンよシ実質的に大きな粒子の大半が円滑
に流動層Bに再循環されるよう構成されており、フィル
タ装置から5ミクロン以上の粒子の放出が阻止され得る
。再循環過程において捕捉される粒子の流速は燃料と吸
収剤との混合流が流動層B内に供給される流速の約20
倍であシ、その時間当りの流量は流動層Bの重量の2倍
になる。
Cyclone (21) has a dropping point of 5 microns and an intrusion leg @
through which the majority of particles substantially larger than 5 microns are smoothly recycled to the fluidized bed B, and the emission of particles larger than 5 microns from the filter device can be prevented. The flow rate of particles trapped in the recirculation process is about 20 times higher than the flow rate at which the mixed flow of fuel and absorbent is fed into fluidized bed B.
If the flow rate is doubled, the flow rate per hour will be twice the weight of the fluidized bed B.

燃料には燃料と結合した窒素が含まれ、且窒素醗化物を
抑制する必要がある場合、サイクロン(2υの入口部の
直上流C二おいて燃焼熱ガス流にアンモニアが噴射され
る。触媒を用いることなく 、1743〜1832’?
 (950’C〜1000℃)の範囲内においてアンモ
ニア1:より窒素酸化物が所望に応じて最大効率で低減
され得るが、1450〜1650°F(約788〜89
9℃)で流動層Bを働かせ、燃焼後流動層B上部の温度
なO〜150@F (約−18〜66’C)にすること
1二よシ窒素酸化物が更に効果的に低減される。
If the fuel contains nitrogen combined with the fuel and it is necessary to suppress nitrogen fluoride, ammonia is injected into the combustion hot gas stream immediately upstream of the inlet of the cyclone (2υ). Without using, 1743-1832'?
Nitrogen oxides can be reduced with maximum efficiency as desired in the range of 1:1 ammonia within the range of 1450-1650°F (approximately 788-89°C).
By operating the fluidized bed B at a temperature of 9°C) and bringing the temperature at the top of the fluidized bed B after combustion to 0~150@F (approximately -18~66°C), nitrogen oxides can be further reduced effectively. Ru.

アンモニアと窒素酸化物とのモル比が1.5対2の割合
になるようにアンモニアを噴射すると、サイクロン(2
1J内で良好な混合が得られるので80〜95%の窒素
酸化物が抑制される。ある条件下では窒素酸化物はアン
モニアを噴射することなく抑制される。即ち燃焼温度が
1450°F(約788℃)程度に低くされ、燃料に一
定量の高割合の炭素が含まれているときは、再循環され
る粒子の大半が炭粒子である。本発明においては特(:
この炭微粒子により86%の窒素が抑制され窒素酸化物
が低減される。
When ammonia is injected so that the molar ratio of ammonia and nitrogen oxides is 1.5:2, a cyclone (2
Since good mixing is obtained within 1 J, nitrogen oxides are suppressed by 80-95%. Under certain conditions, nitrogen oxides can be suppressed without ammonia injection. That is, when combustion temperatures are lowered to as low as 1450 degrees Fahrenheit (about 788 degrees Celsius) and the fuel contains a certain high percentage of carbon, most of the recycled particles are charcoal particles. In the present invention, special features (:
These carbon particles suppress 86% of nitrogen and reduce nitrogen oxides.

ナイクロンレJから放出される燃焼熱ガスおよび粉塵は
対流式の熱交換器(ハ)へ送られ、熱交換器(至)にお
いて熱ガスから奪熱され、熱ガスが放出温度まで冷却さ
れる。最終的に熱ガスは熱交換器(ハ)からフィルタ装
置(5)へ送られ、粉塵が除去されて大気中に放出され
る。
The hot combustion gas and dust released from the Nylon Re J are sent to a convection type heat exchanger (c), where heat is removed from the hot gas and the hot gas is cooled to the release temperature. Finally, the hot gas is sent from the heat exchanger (c) to the filter device (5), where dust is removed and released into the atmosphere.

この場合本発明においては燃焼しにくいもの(例えば炭
素90%を含む揮発分の低い石油コークス)も含む各種
固形および液体燃料、又は硫黄、窒素およびその混合物
(いずれも大気汚染物質)を含む燃料を清浄に燃焼する
ことにある。従って本発明によれば、燃料は微粒子成分
でなる泡立ち流動層Bを用い熱ガスの再循環路を介し大
部分の微粒子を再循環させつつ燃焼される。炭素90%
の石油コークスを用いカルシウム/a黄のモル比を1.
8にした場合、燃焼効率は99.4.%で、硫黄酸化物
の98%が抑制された。アンモニア/窒素のモル比が2
.0のとき95.%の窒素酸化物が抑制された。この結
果はすべて同一の燃焼機構で燃焼して得たものである。
In this case, the present invention uses various solid and liquid fuels, including those that are difficult to combust (e.g. low-volatile petroleum coke containing 90% carbon), or fuels containing sulfur, nitrogen and mixtures thereof (all of which are air pollutants). The goal is to burn cleanly. Therefore, according to the present invention, fuel is combusted using a bubbling fluidized bed B consisting of fine particulate components while recirculating most of the particulates through the hot gas recirculation path. 90% carbon
Using petroleum coke, the molar ratio of calcium/a yellow was set to 1.
When set to 8, the combustion efficiency is 99.4. %, 98% of sulfur oxides were suppressed. The ammonia/nitrogen molar ratio is 2
.. 95 when 0. % of nitrogen oxides were suppressed. These results were all obtained by burning with the same combustion mechanism.

本発明の他の特徴は流動化範囲を最大15:1の如く大
にすることにある。流動層Bが微粒子でなっているので
、流動層Bの最小流動化速度は0.5フイ一ト/秒(約
15alI/秒)程度である。
Another feature of the invention is to increase the fluidization range, such as up to 15:1. Since the fluidized bed B is composed of fine particles, the minimum fluidization speed of the fluidized bed B is about 0.5 foot/second (about 15 alI/second).

実験例1 (石油コークスを用いた場合)図面で示した
構成の燃焼装置ααの燃焼室αυにおいて石油コークス
を空気中で燃焼した。燃焼室aυは耐火構造にし直径を
3フィート(約90(至))高さ12フィート(約36
0m)にすると共に、燃焼室αυの上部にサイクロンr
2I)を装着した。流動層Bの深さは31/2〜4フィ
ート(約105〜120偏)にし流動層B内に熱伝達用
の管(13を配設した。本実、験例において使用した石
油コークスの成分および発熱量は以下の通9である。
Experimental Example 1 (When petroleum coke is used) Petroleum coke was combusted in air in the combustion chamber αυ of a combustion apparatus αα having the configuration shown in the drawing. The combustion chamber aυ is of fireproof construction and has a diameter of 3 feet (approximately 90 mm) and a height of 12 feet (approximately 36 mm).
0 m), and a cyclone r is installed at the top of the combustion chamber αυ.
2I) was installed. The depth of the fluidized bed B was 31/2 to 4 feet (approximately 105 to 120 feet), and heat transfer pipes (13) were installed in the fluidized bed B. And the calorific value is as shown below.

炭素     89.7重量% 望素     1.9重量% 硫黄     2.1重量% 他の揮発分   4.4重量% 灰分     0,3重JILx 水分     1.6重量% 発熱量(HHI   14.270BTU/LB(ビー
テイーユ毎ボンド、IBTU/LB= T丁KcalΔ
9)この石油コークスは揮発分が少ないので燃焼しに<
<、大気汚染物質としての窒素酸化物および硫黄酸化物
を発生する窒素および硫黄を含んでいる。この石油コー
クスは燃料供給路(141から流動層Bへ導入され、燃
料の粒径は大部分50〜400ミクロンの範囲内にあっ
た。硫黄吸収剤としてのドロマイトが吸収剤供給路(1
51から流動層に導入された。
Carbon 89.7% by weight Elements 1.9% by weight Sulfur 2.1% by weight Other volatiles 4.4% by weight Ash 0.3 weight JILx Moisture 1.6% by weight Calorific value (HHI 14.270BTU/LB( Biteil per bond, IBTU/LB= T-cho KcalΔ
9) This petroleum coke has little volatile content, so it is difficult to burn.
<Contains nitrogen and sulfur, which generate nitrogen oxides and sulfur oxides as air pollutants. This petroleum coke was introduced into the fluidized bed B through the fuel supply channel (141), and the particle size of the fuel was mostly in the range of 50 to 400 microns.
51 into the fluidized bed.

ドロマイトの成分は以下の通りである。The components of dolomite are as follows.

炭酸力#シウム56,6(5−53,6)重量X炭酸マ
グネシウム  45.5(〜43,5)重量X不活性成
分       0.9重量%ドロマイトの粒径は47
00−1200ミクロンの範囲内にあシ、微粒子の形で
流動層B内で燃焼された。
Carbonation power #Sium 56,6 (5-53,6) Weight x Magnesium carbonate 45.5 (~43,5) Weight x Inert ingredients 0.9% by weight Dolomite particle size is 47
The reeds were burned in the fluidized bed B in the form of fine particles in the range of 0.00-1200 microns.

流動層Bには当初平均粒径が800ミクロンのドロマイ
トが含まれていた。
Fluidized bed B initially contained dolomite with an average particle size of 800 microns.

約500時間の燃焼後、流動層B(二は天分、旧吸収剤
および部分的に古くなった吸収剤とが含まれ、平均粒径
は約300ミクロンになった。流動層Bの平均表面流速
は4フイ一ト/秒(約1200717秒)であり、平均
表面流速を一定レベルに保つために周期的に流動層Bを
保守する必要があった。
After approximately 500 hours of combustion, the average surface of fluidized bed B (containing natural, old and partially aged absorbent, with an average particle size of approximately 300 microns) The flow rate was 4 feet/second (approximately 1,200,717 seconds), and it was necessary to periodically maintain fluidized bed B to keep the average surface flow rate at a constant level.

サイクロン圓は、燃焼室任υ内の大半が5ミクロンよシ
大きい粒子で占められ、且浸入脚部器を設けることによ
シ粒子が実質的に抵抗を受けずに自在に流動層Bに回収
されるように設計された。この結果微粒子の再循環流量
が大となシ、時間当りの再循環流量は流動層Bの重置の
2倍になると共に固形分供給流量の20倍になった。燃
料粒子と吸収剤の粒子は極めて小さな粒径になるまでガ
ス流と共に流動層Bから離れず、流動層Bの作用によシ
流動層B内に保持され細分化された。燃焼室(111に
より、炭素を約90%含む燃焼困難な燃料も高効率で完
全に燃焼された。再循環路と等温に保つことにより、燃
焼効率を更に高め得た。燃料粒子は流動層B内で燃焼温
度まで完全に加熱されフリーボード部(lFj又はサイ
クロン(2Il内のいずれにおいても冷却されることは
なかった。流動層Bの温度を1600’? (約871
”O)1mシ20〜30x(7)過剰の空気をもって燃
焼したとき燃焼効率は99.4Xであった。この場合燃
焼後の流動層B上方の温度は50〜100@F (約1
0〜38’O)の範囲内であった。
In the cyclone circle, most of the combustion chamber space is occupied by particles larger than 5 microns, and by providing an infiltration leg device, the particles can be freely collected into the fluidized bed B with virtually no resistance. was designed to be As a result, the recirculation flow rate of fine particles was large, and the recirculation flow rate per hour was twice that of the overlapping fluidized bed B and 20 times the solid content supply flow rate. The fuel particles and absorbent particles did not leave the fluidized bed B along with the gas flow until they became extremely small in size, and were held within the fluidized bed B and fragmented by the action of the fluidized bed B. With the combustion chamber (111), even difficult-to-burn fuel containing about 90% carbon was completely combusted with high efficiency. Combustion efficiency could be further increased by keeping the temperature isometric with the recirculation path.Fuel particles were placed in the fluidized bed B The temperature of the fluidized bed B was set to 1600'? (approximately 871
”O) 1m x 20~30x (7) When combustion was performed with excess air, the combustion efficiency was 99.4X. In this case, the temperature above the fluidized bed B after combustion was 50~100@F (approximately 1
0 to 38'O).

吸収剤粒子が細分化され保持されることによシ、吸収剤
の表面積が大となり、燃焼室(lυにおいてガスから硫
黄が吸収された。カルシウムと硫黄のモル比を1.8に
したとき98%の硫黄酸化物が抑制された。燃焼室(l
D内の粒子粒径が微細であるため、流動層B内に配設さ
れた管表面にお(する熱伝達係数が増大された。この管
の表面の熱伝達係数は従来の構成では40〜60 BT
U/HR−F’r2− Fであったのに対し、100〜
200 BTU/HR−FT2− Fになった。
By dividing and retaining the absorbent particles, the surface area of the absorbent becomes large, and sulfur is absorbed from the gas in the combustion chamber (lυ).When the molar ratio of calcium to sulfur is 1.8, 98 % of sulfur oxides was suppressed. Combustion chamber (l
Because the particle size in D is fine, the heat transfer coefficient on the surface of the tube disposed in fluidized bed B has been increased.The heat transfer coefficient on the surface of this tube is 40 to 60 BT
U/HR-F'r2- F was 100~
It became 200 BTU/HR-FT2-F.

米国南方ルフオルニアにおける大気汚染規制に合格する
ように窒素酸化物の放出レベルを抑制する°ため、サイ
クロン(21)の上流においてアンモニア(NH3)を
噴射し燃焼ガスと混合し反応させて窒素酸化物(NO)
を窒素と水に変換した。NH3とNoとのモル比を2に
したとき約95%のNoが抑制された。
In order to suppress the emission level of nitrogen oxides in order to pass air pollution regulations in Lufhornia, southern United States, ammonia (NH3) is injected upstream of the cyclone (21), mixed with combustion gas, and reacted to produce nitrogen oxides (NH3). NO)
was converted into nitrogen and water. When the molar ratio of NH3 and No was set to 2, about 95% of No was suppressed.

実験例■と同一の燃焼室αDを用いて同様にユタ州産の
石炭を煤焼した。この石炭の成分および発熱量は以下の
通りである。
Coal from Utah was soot-roasted in the same manner using the same combustion chamber αD as in Experimental Example ①. The components and calorific value of this coal are as follows.

炭素      43 % 窒素      1.3 X; 硫黄      0.6x 他の揮発分   37.1.%” 灰分      8.Oy 水分      10.OX 発熱量     11,500 BTU/LBユタ州並
石炭は炭素の含有量が大巾に少なく揮発分が犬であるの
で石油コークスよシ容易に燃焼された。ユタ州産石炭の
大きさは15/8インチ(4,126)以下であった。
Carbon 43% Nitrogen 1.3X; Sulfur 0.6x Other volatiles 37.1. %” Ash content 8.Oy Moisture 10.OX Calorific value 11,500 BTU/LB Utah state-grade coal has a much lower carbon content and a higher volatile content, so it was easier to burn than petroleum coke.Utah. The size of state coal was less than 15/8 inches (4,126).

硫黄吸収剤は実験例Iと同じドロマイトを使用しその成
分は以下の通シである。
The same dolomite as in Experimental Example I was used as the sulfur absorbent, and its components were as follows.

炭酸力ルシクム  56.6(〜53゜6)重量X炭酸
マグネシウム  45.5(〜43.5 )重量X不活
性成分      0.9 *fmxドロマイトの粒寸
は1,200〜4 、700ミクロンの範囲内にあり流
動層B内において微粒子の形で燃焼された。
Lucicum carbonate 56.6 (~53°6) weight x magnesium carbonate 45.5 (~43.5) weight x inert ingredients 0.9 *fmx Dolomite grain size ranges from 1,200 to 4,700 microns It was burned in the form of fine particles in the fluidized bed B.

この石炭が20Xの過剰の空気と燃焼されたとき燃焼効
率が998xおよび流動層Bの温度が1600’y (
約87ピC)であった。またこの石炭の場合僅かに20
X程度の過剰空気と共に1400°F(約760°a 
)のような低温で燃焼でき且燃焼特性も良好であった。
When this coal is combusted with 20X excess air, the combustion efficiency is 998x and the temperature of fluidized bed B is 1600'y (
It was approximately 87 picoC). Also, in the case of this coal, only 20
1400°F (approximately 760°a
) and had good combustion characteristics.

石油コークスの場合は過剰空気を60%まで増加するこ
とによってのみ所望の燃焼特性が1450°F(約78
8’O)の温度をもって維持できた。
For petroleum coke, the desired combustion characteristics can be achieved at 1450°F (approximately 78°F) only by increasing the excess air to 60%.
The temperature could be maintained at 8'O).

燃料が石炭で流動層B温度が1600″F(約871″
C)の場合、流動層B上部におけるあと燃えは10〜2
0°F(約−12〜−6,7”O)まで低下された。本
実験例においても石油コークスの場合と同様硫黄酸化物
および窒素酸化物が抑制された。
The fuel is coal and the fluidized bed B temperature is 1600″F (approximately 871″
In the case of C), the afterburning in the upper part of the fluidized bed B is 10 to 2
The temperature was reduced to 0°F (approximately -12 to -6.7"O). In this experimental example as well, sulfur oxides and nitrogen oxides were suppressed as in the case of petroleum coke.

(発明の効果) 上述のように構成された本発明によれば、構成の簡潔化
を充分に図った上、特に揮発成分の低い石油コークスを
も窒素酸化物の発生を顕著に抑制し、高い燃焼効率をも
って完全燃焼を実現できる等々の有効な効果を達成する
(Effects of the Invention) According to the present invention configured as described above, the configuration is sufficiently simplified, and even in petroleum coke with particularly low volatile components, the generation of nitrogen oxides is significantly suppressed, and the To achieve effective effects such as achieving complete combustion with high combustion efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明による燃焼装置を備えた燃焼機構の簡略説
明図である。
The drawing is a simplified explanatory diagram of a combustion mechanism equipped with a combustion device according to the present invention.

Claims (11)

【特許請求の範囲】[Claims] (1)固形燃料を流動層式燃焼装置内へ供給する工程と
、平均粒径が100〜800ミクロンの範囲内にある不
活性粒子、灰粒子および部分燃焼した燃料粒子を含む流
動層を形成する工程と、表面流速が0.5〜7フィート
/秒(約15〜210cm/秒)で流動層を働かし流動
層から相当量の微粒子を放出する工程と、燃焼装置から
の排気ガスに含まれる粒子を再循環サイクロンで捕捉し
流動層の重量の1〜5倍の時間当りの戻し流量をもつて
流動層に戻す工程と、流動層内に配設された管並びにサ
イクロンの下流の排気ガス流から熱を回収する工程と、
冷却された排気ガス流から粉塵を集める工程とを包有し
てなることを特徴とする、流動層式燃焼方法。
(1) Supplying solid fuel into a fluidized bed combustion device and forming a fluidized bed containing inert particles, ash particles, and partially burned fuel particles with an average particle size within the range of 100 to 800 microns. a step in which a fluidized bed is operated at a surface velocity of 0.5 to 7 ft/sec (approximately 15 to 210 cm/sec) to release a significant amount of particulates from the fluidized bed, and the particles contained in the exhaust gas from a combustion device. is captured in a recirculation cyclone and returned to the fluidized bed at a return flow rate of 1 to 5 times the weight of the fluidized bed per hour, and from the pipes arranged in the fluidized bed and the exhaust gas stream downstream of the cyclone. a process of recovering heat;
Collecting dust from a cooled exhaust gas stream.
(2)硫黄酸化物用の吸収剤を燃料と同時に燃焼装置内
へ供給する工程と、平均粒径が100〜800ミクロン
の範囲内にある不活性粒子、灰粒子、部分燃焼した燃料
粒子および部分反応した硫黄酸化物用の吸収剤粒子を含
む流動層を生成する工程とを包有してなる特許請求の範
囲第1項記載の流動層式燃焼方法。
(2) Supplying an absorbent for sulfur oxides into the combustion device at the same time as the fuel, and inert particles, ash particles, partially burned fuel particles and portions having an average particle size within the range of 100 to 800 microns. A fluidized bed combustion method according to claim 1, comprising the step of forming a fluidized bed containing absorbent particles for reacted sulfur oxides.
(3)再循環サイクロンの直上流の燃焼熱ガス流内にア
ンモニアを導入する工程を包有してなる特許請求の範囲
第1項記載の流動層式燃焼方法。
(3) A fluidized bed combustion method according to claim 1, comprising the step of introducing ammonia into the combustion hot gas stream immediately upstream of the recirculation cyclone.
(4)再循環サイクロンの直上流の燃焼熱ガス流内にア
ンモニアを導入する工程を包有してなる特許請求の範囲
第2項記載の流動層式燃焼方法。
(4) The fluidized bed combustion method according to claim 2, comprising the step of introducing ammonia into the combustion hot gas stream immediately upstream of the recirculation cyclone.
(5)燃焼装置を1400〜1500°F(約760〜
816℃)で働かし、炭粒子を作成し流動層並びに再循
環路内の熱灰粒子により窒素酸化物を抑制する工程を包
有してなる特許請求の範囲第1項記載の流動層式燃焼方
法。
(5) Set the combustion device to 1400-1500°F (approximately 760°F
816° C.) to produce charcoal particles and suppress nitrogen oxides with hot ash particles in the fluidized bed and recirculation path. .
(6)流動層の粒径分布を維持し流動層内の熱伝達を1
00〜200BTU/FT2−HR−Fまで上昇する工
程を包有してなる特許請求の範囲第1項記載の流動層式
燃焼方法。
(6) Maintain the particle size distribution of the fluidized bed and reduce heat transfer within the fluidized bed by 1
2. The fluidized bed combustion method according to claim 1, which includes a step of increasing the fuel consumption to 00 to 200 BTU/FT2-HR-F.
(7)燃焼装置と、燃料を燃焼装置内へ供給する装置と
、平均粒径が100〜800ミクロンの範囲内にある不
活性粒子、灰粒子、および部分燃焼した燃料粒子を含む
流動層を燃焼装置内に生成する装置と、燃焼装置内に0
.5〜7フィート/秒(約15〜210cm/秒)の範
囲内の表面流速を与え流動層から相当量の微粒子を放出
させる装置と、燃焼装置からの排気ガスに含まれる粒子
を捕捉し流動層の重量の2〜5倍に等しい時間当りの戻
し流量で流動層へ戻す装置と、流動層並びに排気ガス流
から熱を回収する装置と、冷却された排気ガス流から粉
塵を集める装置とを備えてなる流動層式燃焼機構。
(7) a combustion device, a device for supplying fuel into the combustion device, and combustion of a fluidized bed containing inert particles, ash particles, and partially burned fuel particles with an average particle size in the range of 100 to 800 microns; The device that generates in the device and the 0 in the combustion device
.. A device that provides a surface flow velocity in the range of 5 to 7 feet/second (approximately 15 to 210 cm/second) and releases a significant amount of particulates from the fluidized bed, and a device that captures particles contained in the exhaust gas from the combustion device and creates a fluidized bed. equipment for returning heat to the fluidized bed at a return flow rate per hour equal to 2 to 5 times the weight of the fluidized bed, equipment for recovering heat from the fluidized bed as well as the exhaust gas stream, and equipment for collecting dust from the cooled exhaust gas stream. Fluidized bed combustion mechanism.
(8)硫黄酸化物用の吸収剤を燃料と同時に燃焼装置内
へ供給する装置と、平均粒径が100〜800ミクロン
の範囲内にある不活性粒子、灰粒子、部分燃焼した燃料
粒子、部分および完全に反応した硫黄酸化物用の吸収剤
粒子を含む流動層を生成する装置とを包有してなる特許
請求の範囲第7項記載の流動層式燃焼機構。
(8) A device for supplying an absorbent for sulfur oxides into the combustion device at the same time as fuel, and inert particles, ash particles, partially burned fuel particles, and particles with an average particle size within the range of 100 to 800 microns. and a device for producing a fluidized bed containing completely reacted absorbent particles for sulfur oxides.
(9)再循環サイクロンの直上流の燃焼熱ガス流内にア
ンモニアを導入する装置を包有してなる特許請求の範囲
第7項記載の流動層式燃焼機構。
(9) A fluidized bed combustion mechanism according to claim 7, comprising a device for introducing ammonia into the combustion hot gas stream immediately upstream of the recirculation cyclone.
(10)再循環サイクロンの直上流の燃焼ガス流内にア
ンモニアを導入する装置を包有してなる特許請求の範囲
第8項記載の流動層式燃焼機構。
(10) A fluidized bed combustion mechanism according to claim 8, comprising a device for introducing ammonia into the combustion gas stream immediately upstream of the recirculation cyclone.
(11)燃焼装置を1400〜1500°F(約760
〜816℃)で働かせ、炭粒子を作成し流動層並びに再
循環路内の熱灰粒子により窒素酸化物を抑制する装置を
包有してなる特許請求の範囲第7項記載の流動層式燃焼
機構。
(11) Set the combustion device to 1400-1500°F (approximately 760°F)
Fluidized bed combustion according to claim 7, comprising a device for producing charcoal particles and suppressing nitrogen oxides by hot ash particles in the fluidized bed and recirculation path. mechanism.
JP60201971A 1984-09-24 1985-09-13 Fluidized bed combustion method and fluidized bed combustion apparatus Expired - Lifetime JPH0799250B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US65430284A 1984-09-24 1984-09-24
US654302 1984-09-24

Publications (2)

Publication Number Publication Date
JPS61105007A true JPS61105007A (en) 1986-05-23
JPH0799250B2 JPH0799250B2 (en) 1995-10-25

Family

ID=24624292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60201971A Expired - Lifetime JPH0799250B2 (en) 1984-09-24 1985-09-13 Fluidized bed combustion method and fluidized bed combustion apparatus

Country Status (6)

Country Link
EP (1) EP0176293B1 (en)
JP (1) JPH0799250B2 (en)
CA (1) CA1271945A (en)
DE (1) DE3582385D1 (en)
DK (1) DK429885A (en)
NO (1) NO853713L (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332650A (en) * 1994-06-13 1995-12-22 Foster Wheeler Energy Corp Equipment and method of reducing discharge of nox from fluidized bed reactor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756890A (en) * 1986-05-09 1988-07-12 Pyropower Corporation Reduction of NOx in flue gas
GR1000870B (en) * 1988-06-24 1993-03-16 Ahlstroem Oy Combustion of fuel containing alkalines background and summary of the invention
US5133950A (en) * 1990-04-17 1992-07-28 A. Ahlstrom Corporation Reducing N2 O emissions when burning nitrogen-containing fuels in fluidized bed reactors
US5395596A (en) * 1993-05-11 1995-03-07 Foster Wheeler Energy Corporation Fluidized bed reactor and method utilizing refuse derived fuel
US5362462A (en) * 1993-05-26 1994-11-08 Air Products And Chemicals, Inc. Process for nitrogen oxides reduction
US5538704A (en) * 1993-05-26 1996-07-23 Air Products And Chemicals, Inc. Reduction of ammonia slip in nitrogen oxides reduction process
US5465690A (en) * 1994-04-12 1995-11-14 A. Ahlstrom Corporation Method of purifying gases containing nitrogen oxides and an apparatus for purifying gases in a steam generation boiler
SE9601392L (en) 1996-04-12 1997-10-13 Abb Carbon Ab Procedure for combustion and combustion plant
SE9601393L (en) 1996-04-12 1997-10-13 Abb Carbon Ab Procedure for combustion and combustion plant
US5820838A (en) * 1996-09-27 1998-10-13 Foster Wheeler Energia Oy Method and an apparatus for injection of NOx reducing agent
CN100436941C (en) * 2005-07-05 2008-11-26 中国石油大学(北京) Coal-tar powder combustion method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423225A (en) * 1977-07-20 1979-02-21 Hitachi Zosen Corp Exhaust gas denitration type fluid bed combustion device
JPS55165402A (en) * 1979-06-12 1980-12-23 Babcock Hitachi Kk Fluidized bed boiler apparatus
JPS6029847A (en) * 1983-07-28 1985-02-15 Fujitsu Ltd Processing method of task

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900554A (en) * 1973-03-16 1975-08-19 Exxon Research Engineering Co Method for the reduction of the concentration of no in combustion effluents using ammonia
US4021184A (en) * 1975-10-02 1977-05-03 Dorr-Oliver Incorporated Dilute phase waste incinerator
DE2624302A1 (en) * 1976-05-31 1977-12-22 Metallgesellschaft Ag PROCEDURE FOR CARRYING OUT EXOTHERMAL PROCESSES
CH662639A5 (en) * 1981-12-10 1987-10-15 Sulzer Ag HEAT EXCHANGER WITH FLUID BED FIRING.
FR2537701A1 (en) * 1982-12-08 1984-06-15 Creusot Loire METHOD AND INSTALLATION FOR RECYCLING SOLID ENDS IN A FLUIDIZED BED
DE3307848A1 (en) * 1983-03-05 1984-09-06 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR REBURNING AND PURIFYING PROCESS EXHAUST GAS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423225A (en) * 1977-07-20 1979-02-21 Hitachi Zosen Corp Exhaust gas denitration type fluid bed combustion device
JPS55165402A (en) * 1979-06-12 1980-12-23 Babcock Hitachi Kk Fluidized bed boiler apparatus
JPS6029847A (en) * 1983-07-28 1985-02-15 Fujitsu Ltd Processing method of task

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332650A (en) * 1994-06-13 1995-12-22 Foster Wheeler Energy Corp Equipment and method of reducing discharge of nox from fluidized bed reactor

Also Published As

Publication number Publication date
DK429885D0 (en) 1985-09-23
JPH0799250B2 (en) 1995-10-25
NO853713L (en) 1986-03-25
CA1271945A (en) 1990-07-24
DK429885A (en) 1986-03-25
EP0176293A2 (en) 1986-04-02
DE3582385D1 (en) 1991-05-08
EP0176293A3 (en) 1987-04-22
EP0176293B1 (en) 1991-04-03

Similar Documents

Publication Publication Date Title
JP2710267B2 (en) Apparatus for separating carbon dioxide from carbon dioxide-containing gas and combustion apparatus having carbon dioxide separation function
US4783325A (en) Process and apparatus for removing oxides of nitrogen and sulfur from combustion gases
KR930003212B1 (en) Dry-type treating method for exhaust gas
US4843981A (en) Fines recirculating fluid bed combustor method and apparatus
CN103620304B (en) Steam generating system and the dry waste gas with multiple combustor purify
US5562884A (en) Reducing N2 O emissions when burning nitrogen-containing fuels in fluidized bed reactors
JPH069975A (en) Method for decreasing amount of product generated during burning nitrogen-containing fuel
JPS61105007A (en) Fluidized bed type combustion method and combustion mechanism
JPH0341729B2 (en)
CN1784483A (en) Compositon for preventing scaling,excluding of soot,clinker and sludge,and controlling flame in combustion apparatus
TW201248086A (en) Oxycombustion in transport oxy-combustor
RU2093755C1 (en) Method of reduction of evolution of contained in flue gases formed in combustion of nitrogen-containing fuels in fluidized bed reactors
JPH03500420A (en) Purification of raw material gas
JP3317496B2 (en) Reduction of N2O emissions
CN1167506A (en) Sponge iron production process and plant
KR100221714B1 (en) Heat generating method and apparatus including deposit desulfuration step using fine granule absorbent in fludized bed
JPS62501230A (en) Method and apparatus for generating steam without producing nitrogen oxides using fossil fuels
CN210602852U (en) Low-nitrogen combustion equipment for aluminum kiln
JPH07506179A (en) Method for maintaining the nominal operating temperature of flue gas in a PFBC power plant
KR100387732B1 (en) Circulation Fluidized Bed Boiler System Mounted with Pelletizer for Anthracite
KR100686441B1 (en) Temperature Control apparatus and Control method at the combustor exit in a circulating fluidized bed combustion system
RU2015158C1 (en) Method for purification of contaminated gas fuel
FI86767B (en) Procedure for combustion of fuel in a fluidized bed, and fluidized bed arrangement for carrying out the procedure
JPS6334407A (en) Method and device for burning solid fuel such as oil cokes
CN202576353U (en) Fire coal gasification furnace capable of liquid slag drainage and reducing emission of SO2, NO and CO2