JPS61104413A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS61104413A
JPS61104413A JP22355384A JP22355384A JPS61104413A JP S61104413 A JPS61104413 A JP S61104413A JP 22355384 A JP22355384 A JP 22355384A JP 22355384 A JP22355384 A JP 22355384A JP S61104413 A JPS61104413 A JP S61104413A
Authority
JP
Japan
Prior art keywords
magnetic field
mres
magnetic
mre
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22355384A
Other languages
Japanese (ja)
Inventor
Yuji Nagata
裕二 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22355384A priority Critical patent/JPS61104413A/en
Publication of JPS61104413A publication Critical patent/JPS61104413A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • G11B5/3919Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
    • G11B5/3922Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure
    • G11B5/3925Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure the two parts being thin films
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3945Heads comprising more than one sensitive element
    • G11B5/3948Heads comprising more than one sensitive element the sensitive elements being active read-out elements
    • G11B5/3951Heads comprising more than one sensitive element the sensitive elements being active read-out elements the active elements being arranged on several parallel planes
    • G11B5/3954Heads comprising more than one sensitive element the sensitive elements being active read-out elements the active elements being arranged on several parallel planes the active elements transducing on a single track

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To omit a conductor film for generation of a bias magnetic field by forming two MREs at both upper and lower sides of a yoke via an insulated layer and then connecting those MREs in terms of DC. CONSTITUTION:The 1st and 2nd MREs 13 and 19 are connected in series to each other and the sense currents flowing both MREs are parallel to each other and flow in opposite directions to each other. Therefore the induction field produced by the sense current flowing through the MRE13 functions as a bias magnetic field to the MRE19. While the induction field due to the sense current flowing through the MRE19 function as a bias magnetic field in the same direction as that of the MRE13. In other words, the sense current of each MRE has a function to apply a bias magnetic field of the other side with each other. Furthermore the bias magnetic fields of both MREs function in the same direction. As a result, the reproduction sensitivity is improved by 6dB by connecting those MRE13 and 19 in series to each other.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気記録媒体として磁気テープ、磁気ディスク
を使用した磁気記録装置において高記録密度化、高信頼
性化、低価格化等の要請が強まる中で従来のバルク材料
で作製される磁気ヘッドに代わり、薄膜作製技術、フォ
) IJノグラフィ技術を駆使して、狭ギャップ、狭ト
ラツク、マルチトラック化を実現し、かつ上記要請をも
満足する薄膜磁気ヘッドに関するものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention is applicable to magnetic recording devices that use magnetic tapes or magnetic disks as magnetic recording media, as there is an increasing demand for higher recording density, higher reliability, lower cost, etc. Instead of magnetic heads made from conventional bulk materials, we have developed a thin-film magnetic head that utilizes thin-film manufacturing technology and IJ nography technology to realize narrow gaps, narrow tracks, and multi-tracks, and that also satisfies the above requirements. It is related to the head.

従来の技術 最近、磁気記録装置においてトラック密度の向上に伴う
トラック幅の短縮と磁気テープ走行速度の低速化などか
ら再生ヘッドとして磁気抵抗効果素子(以後MRKと呼
ぶ)を使った磁気抵抗効果型ヘッド(以後MBヘッドと
呼ぶ)が広く使用されつつある。その代表的な構造を第
3図に示す。(例えば[マグネトレジスティプヘッズJ
  (mgnetoreSiitiマ0heads I
ICIEICTrans Vog 17.2884頁)
)第3図において強磁性基板、例えばMn−Zn 、 
Ni−Znなどのフェライト基板1上に5102などの
第1の絶縁層2をル(ツタ法にて積層し、その上にMR
EとしてのNi−Fe膜3を形成し磁気テープ9と接す
る如くフォトリングラフィ技術によってパターン化され
る。
2. Description of the Related Art Recently, magnetoresistive heads that use magnetoresistive elements (hereinafter referred to as MRK) as playback heads have been introduced in magnetic recording devices due to the shortening of track widths and slowing down of magnetic tape running speeds due to improved track densities. (hereinafter referred to as MB heads) are becoming widely used. A typical structure thereof is shown in FIG. (For example, [Magnetresist Tip Heads J
(mgnetoreSiiti Ma0heads I
ICIEICT Trans Vog 17.2884 pages)
) In Fig. 3, a ferromagnetic substrate, for example Mn-Zn,
A first insulating layer 2 such as 5102 is laminated on a ferrite substrate 1 such as Ni-Zn using the vine method, and MR is applied on top of it.
A Ni--Fe film 3 as E is formed and patterned by photolithography so as to be in contact with the magnetic tape 9.

その後8i0.SiO□などの第2の絶縁層4が蒸着。Then 8i0. A second insulating layer 4, such as SiO□, is deposited.

スパッタなどで形成される。この第2の絶縁層4上に強
磁性薄膜例えばNi−Fe膜6を電子ビーム蒸着、スパ
ッタなどで形成した後、S iO、S i 02など、
保護層6を蒸着、スパッタ等で積層する。
It is formed by sputtering or the like. After forming a ferromagnetic thin film such as a Ni-Fe film 6 on the second insulating layer 4 by electron beam evaporation or sputtering, a film of SiO, SiO2, etc.
A protective layer 6 is laminated by vapor deposition, sputtering, or the like.

その後接着剤7などでガラス又はセラミック等の保護基
板8が接着される。以上の工程後ヘッド。
Thereafter, a protective substrate 8 made of glass or ceramic is bonded with an adhesive 7 or the like. Head after the above process.

テープ摺動面がラップされて完成される。しかし第3図
に示す従来構造においては、以下に示す問題点を有して
いた。
The tape sliding surface is wrapped and completed. However, the conventional structure shown in FIG. 3 had the following problems.

(1)MREには再生出力を取シ出すためにセンス電流
を流す必要があゐ。しかし近年高密度記録用の金属蒸着
磁気テープが開発され、この蒸着テープの記録磁性層は
導電性を有しているため、MRHに流すべきセンス電流
がテープ磁性層に流れ込むことになる。この結果はHR
ヘッドとして満足すべき再生出力が得られないばかりか
、マルチトラック構造が本質的に不可能である。
(1) It is necessary to apply a sense current to the MRE in order to extract the playback output. However, in recent years, a metal-deposited magnetic tape for high-density recording has been developed, and since the recording magnetic layer of this metal-deposited tape has conductivity, the sense current that should be passed through the MRH flows into the tape magnetic layer. This result is HR
Not only is it impossible to obtain a satisfactory reproduction output as a head, but a multi-track structure is essentially impossible.

(2)第3図のMRE3の両側には第1の絶縁層2及び
第2の絶縁層4を形成せねばならない。
(2) The first insulating layer 2 and the second insulating layer 4 must be formed on both sides of the MRE 3 in FIG. 3.

このMRヘッドでの磁気ギャップ長は第1の絶縁層2と
第2の絶縁層4との膜厚を等しくすれば、この膜厚が等
価ギャップ長となる。しかし絶縁層2,4の膜厚が異な
ればダブルギャップ的挙動を示す。
For the magnetic gap length in this MR head, if the film thicknesses of the first insulating layer 2 and the second insulating layer 4 are made equal, this film thickness becomes the equivalent gap length. However, if the thicknesses of the insulating layers 2 and 4 are different, a double-gap behavior is exhibited.

(3)第3図のMREsに磁気バイアスをかける手段と
して電流法を適用すると、MREと同幅のバイアス線を
MREの下層又は上層に形成する必要があり、バイアス
線の厚さ分だけギャップ長は広がることになシ、短波長
信号再生時は極めて不都合である。
(3) If the current method is applied as a means of applying a magnetic bias to the MREs shown in Figure 3, it is necessary to form a bias line with the same width as the MRE in a layer below or above the MRE, and the gap length is equal to the thickness of the bias line. This is extremely inconvenient when reproducing short wavelength signals.

(4)M RE sの先端部がヘッド先端部で露出して
いること及び再生時には常時テープ面に接することなど
からMRE3の耐摩耗性、周囲環境条件による耐久性に
問題がある。
(4) Since the tip of the MRE is exposed at the tip of the head and is constantly in contact with the tape surface during playback, there are problems with the wear resistance of the MRE3 and its durability depending on ambient environmental conditions.

(5)  (1)の問題の解決策としてMRE3をヘッ
ド先端から奥まったところに配置する構成のものがある
が、この方式はMRヘッドがMRE3のリセス量だけ磁
気テープ9との開にスペーシングを発生したことと等価
であり、短波長再生出力に大きな減衰原因となる。また
以上に示された欠点を改良するヘッドとして、従来、第
4図に示されているように磁気記録媒体からの信号磁界
をMREに導くだめのヨークを有する磁気ヘッド(以後
YMRHと呼ぶ)が知られている。(例えば、「マグネ
トレジスティプヘツズJ (MaEnetoresig
tiveHeads IE[Trans Ma(17,
2884頁))第4図において、強磁性基板41上に5
in2あるいはム120.などの第1の絶縁層42f、
スノくツタなどにより形成し、次いで、その上にMRK
にバイアス磁界を印加するだめの第1の導体薄膜43が
形成される。材料としてOr下地のムU、あるいはAl
などを使用しフォトリングラフィ技術によって所定の形
状にパターン化される。その後、SiO,SiO□など
の第2絶縁層44が蒸着、スノくツタなどで形成される
。この第2の絶縁層44上にMRE45としてのNi−
Fe薄膜を電子ビーム蒸着、スパッタなどで形成した後
、このNi−Fe薄膜はフォトリングラフィ技術によっ
てノくターン化される。次に、MRE46にセンス電流
を流すための第2の導体薄膜(図示せず)が形成され、
パターン化される。これらの上に第3の絶縁層46が形
成された後、磁気記録媒体からの信号磁界をMRHに導
くための強磁性薄膜、例えばNi −Fe膜あるいはF
e −A11.−8i膜、アモルファス軟磁性膜が形成
され、フォトリングラフィ技術によって、前部ヨーク部
48a、後部ヨーク部48bが構成される。この時、前
部ヨーク部48aおよび後部ヨーク部48bはM RE
 45と一部オーノ(−ラ、ノブしており、磁気記録媒
体からの信号磁界が、MREに導ひかれやすいように構
成される。次いでSin、5in2などのパッシベーシ
ョン膜49が形成され、その後、接着剤などによってガ
ラス、セラミック等の保護基板6oが接着される。
(5) As a solution to the problem in (1), there is a configuration in which the MRE 3 is placed deep from the tip of the head, but in this system, the MR head is spaced apart from the magnetic tape 9 by the recess amount of the MRE 3. This is equivalent to causing a large amount of attenuation in the short wavelength reproduction output. Furthermore, as a head to improve the above-mentioned drawbacks, a conventional magnetic head (hereinafter referred to as YMRH) having a yoke for guiding the signal magnetic field from the magnetic recording medium to the MRE, as shown in FIG. Are known. (For example, "Magnetoresist Tip Heads J (MaEnetoresig
tiveHeads IE [Trans Ma(17,
(page 2884)) In FIG.
in2 or mu120. A first insulating layer 42f, such as
Formed with snow ivy etc., then MRK on top of it.
A first conductive thin film 43 for applying a bias magnetic field is formed. As a material, Or base material or Al
It is patterned into a predetermined shape using photolithography technology. Thereafter, a second insulating layer 44 of SiO, SiO□, etc. is formed by vapor deposition, vine vine, or the like. On this second insulating layer 44, Ni-
After forming the Fe thin film by electron beam evaporation, sputtering, etc., this Ni--Fe thin film is turned into patterns by photolithography. Next, a second conductive thin film (not shown) is formed for flowing a sense current to the MRE 46,
patterned. After a third insulating layer 46 is formed on these, a ferromagnetic thin film, such as a Ni-Fe film or F
e-A11. A -8i film and an amorphous soft magnetic film are formed, and a front yoke portion 48a and a rear yoke portion 48b are constructed by photolithography technology. At this time, the front yoke part 48a and the rear yoke part 48b are M RE
45 and a part of it are arranged so that the signal magnetic field from the magnetic recording medium is easily guided to the MRE. Next, a passivation film 49 such as Sin or 5in2 is formed, and then an adhesive film is formed. A protective substrate 6o made of glass, ceramic, or the like is bonded with an adhesive or the like.

以上の工程後、ヘッドテープ摺動面がラップされて完成
される。第4図における51は磁気テープでろfiBは
テープ走行方向である。
After the above steps, the head tape sliding surface is wrapped and completed. In FIG. 4, numeral 51 is a magnetic tape and fiB is the tape running direction.

以下に、このYMRHの動作について述べる。The operation of this YMRH will be described below.

M RE 4 tsにおける抵抗変化ΔRは、電流の向
きとMRE45の磁化の向きとがなす角度をθ。
The resistance change ΔR in MRE 4 ts is the angle between the direction of current and the direction of magnetization of MRE 45.

最大抵抗変化をΔRmazとした時 ΔR=ΔRmaICO32θ   ・・・・・・・・・
・・・・・・・・・(1)′また、MRE45内の信号
磁束密度Bs4cr9MRE45の飽和磁束密度をB8
とした時、近似的に 51g 5irl>□ ・・・・・・・・・ −・・・・・・・
・・・・・・・・・ ・・・(2)が成立し第(1) 
、 (2)式より が導かれる。即ち、MREは磁界変化に対して第5図の
ような抵抗変化を示す。
When the maximum resistance change is ΔRmaz, ΔR=ΔRmaICO32θ ・・・・・・・・・
・・・・・・・・・(1)′ Also, the signal magnetic flux density in MRE45 is Bs4cr9, and the saturation magnetic flux density of MRE45 is B8
Then, approximately 51g 5irl>□ ・・・・・・・・・ −・・・・・・・
・・・・・・・・・(2) holds and (1)
, (2) is derived from equation (2). That is, the MRE exhibits resistance changes as shown in FIG. 5 in response to magnetic field changes.

このため、MREには、バイアス磁界が印加され、第5
図に示したYMRHでは、導体薄膜に電流を通じ、これ
による誘導磁界をバイアス磁界として利用する。そして
、磁気平衡点を第6図のE点の位置にすることにより高
感度変化および線形応答するようにして用いられる。そ
して、YMRHは閉磁路構造をなしており、磁気テープ
61の磁気記録媒体からの信号磁束は前部ヨーク部48
aからMRE45に流入し、MRE45から後部ヨーク
部48b、強磁性基板41へと流れ、磁気記録媒体へ還
流する。
Therefore, a bias magnetic field is applied to the MRE, and the fifth
In the YMRH shown in the figure, a current is passed through a conductive thin film, and the induced magnetic field thereby is used as a bias magnetic field. By setting the magnetic equilibrium point at point E in FIG. 6, it is used to achieve high sensitivity change and linear response. The YMRH has a closed magnetic path structure, and the signal magnetic flux from the magnetic recording medium of the magnetic tape 61 is transmitted to the front yoke portion 48.
a flows into the MRE 45, flows from the MRE 45 to the rear yoke portion 48b, the ferromagnetic substrate 41, and returns to the magnetic recording medium.

発明が解決しようとする問題点 しかしながら上記のように構成された従来の薄膜磁気ヘ
ッドは、磁気記録媒体からの信号磁束が、まず、前部ヨ
ーク部48aから、MRE45に流入するため、前部ヨ
ーク部48aで、強磁性基板41へ漏洩し、減衰後、M
RE45に到達する。
Problems to be Solved by the Invention However, in the conventional thin film magnetic head configured as described above, the signal magnetic flux from the magnetic recording medium first flows into the MRE 45 from the front yoke portion 48a. After leaking to the ferromagnetic substrate 41 at the part 48a and attenuating, M
Reach RE45.

このような理由でYMRHの再生感度は低く、特に短波
長領域でS/Nが悪化する欠点があった。
For these reasons, the reproduction sensitivity of YMRH is low, and the S/N ratio deteriorates particularly in the short wavelength region.

問題点を解決するだめの手段 上記問題点を解決するために本発明の技術的な手段は、
ヨークの上部および下部の両側に、絶縁層を介して2つ
のMREを形成し2つのMREに直流的に接続する構成
を備えだものである。
Means for solving the problems In order to solve the above problems, the technical means of the present invention are as follows:
Two MREs are formed on both sides of the upper and lower parts of the yoke via an insulating layer and are connected to the two MREs in a DC manner.

作用 本発明は上記の構成によシ、再生出力電圧が向上すると
ともに、特に、2つのMREに通じるセンス電流の方向
を互いに平行かつ反対とすることによシ、センス電流に
よって生じる誘導磁界を他方のMREのバイアス磁界と
して利用することにより、バイアス磁界発生用の導体薄
膜が不必要になる。
Effect of the Invention The present invention improves the reproduced output voltage with the above configuration, and in particular, by making the directions of the sense currents leading to the two MREs parallel and opposite to each other, the induced magnetic field generated by the sense current is suppressed from the other side. By using this as a bias magnetic field for MRE, a conductor thin film for generating a bias magnetic field becomes unnecessary.

実施例 以下本発明の一実施例の薄膜磁気ヘッドについて図面に
もとづき説明する。第2図は本発明の一実施例における
薄膜磁気ヘッドの平面図で、第1図はそのx−x’断面
図で同一個所には同一番号を付しである。
EMBODIMENT A thin film magnetic head according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a plan view of a thin film magnetic head according to an embodiment of the present invention, and FIG. 1 is a sectional view taken along the line xx', in which the same parts are given the same numbers.

第1図、第2図において、Mn−Zn単結晶フェライト
などの強磁性基板10は、まずGC砥石あるいはダイヤ
モンドペーストなどで光学研磨される。そして第1の絶
縁層11を例えばSiO2膜がスパッタ法などによって
、強磁性基板1o):lc全面形成される。この膜厚に
よってフロントギャップ部12のギャップ長はコントロ
ールされる。この第1の絶縁層11上に磁気抵抗効果を
有する第1のMRElaが蒸着及びホトリソフグラフィ
技術によって形成される。この時、MREとしてのNi
−Fe膜は、磁界中蒸着などにより、トラック幅方向に
磁化容易軸が設定される。次に、MREにセンス電流を
通すための一方のリード線14が形成される。リード線
材料としては、Cx下地のAuなどが使用される。次い
で、MREを絶縁するためのSin、あるいは8102
などの第2の絶縁の強磁性薄膜がMRElaの両側に、
かつ一部第2の絶縁層15に重なるように前部ヨーク1
6゜後部ヨーク17として形成される。
In FIGS. 1 and 2, a ferromagnetic substrate 10 such as Mn--Zn single crystal ferrite is first optically polished using a GC grindstone or diamond paste. Then, as the first insulating layer 11, for example, a SiO2 film is formed on the entire surface of the ferromagnetic substrate 1o):lc by sputtering or the like. The gap length of the front gap portion 12 is controlled by this film thickness. A first MREla having a magnetoresistive effect is formed on the first insulating layer 11 by vapor deposition and photolithography techniques. At this time, Ni as MRE
The axis of easy magnetization of the -Fe film is set in the track width direction by evaporation in a magnetic field or the like. Next, one lead wire 14 for passing a sense current through the MRE is formed. As the lead wire material, Au with a Cx base or the like is used. Then Sin or 8102 to insulate the MRE.
A second insulating ferromagnetic thin film such as
and the front yoke 1 so as to partially overlap the second insulating layer 15.
It is formed as a 6° rear yoke 17.

次に、これらの上に、第3の絶縁層18が形成される。Next, a third insulating layer 18 is formed over these.

この時、第1のMRElaのリード線接続部の反対側の
部分18a/fi、エツチングによって絶縁層が取シ除
かれる。この後、第2のMREleがフォトリングラフ
ィ技術によって所定のパターンに形成されるが、この時
、第2のMRE19は第1のMRElaと接続部18a
で電気的忙接続される。次いで、第2のリード線20が
形成された後、Sin、5i02などのパッシベーショ
ン膜21が形成される。そして、保護基板22、たとえ
ばガラス、セラミックなどが接着され、テープ摺動面が
ラッピングされて磁気ヘッドが完成される。
At this time, the insulating layer of the portion 18a/fi on the opposite side of the lead wire connection portion of the first MREla is removed by etching. Thereafter, the second MREle is formed into a predetermined pattern by photolithography technology, but at this time, the second MRE19 connects to the first MREla and the connecting portion 18a.
electrically connected. Next, after the second lead wire 20 is formed, a passivation film 21 of Sin, 5i02, etc. is formed. Then, a protective substrate 22, such as glass or ceramic, is bonded, and the tape sliding surface is lapped to complete the magnetic head.

第1図において、矢印Cは磁気テープ23の走行方向を
示す。また矢印iはセンス電流の流れを示す。
In FIG. 1, arrow C indicates the direction in which the magnetic tape 23 runs. Further, arrow i indicates the flow of sense current.

以上のように、第1.第2のMREは、直列接続されて
おシ、しかも、MREに流れるセンス電流は互いに平行
でかつ反対方向に流れるようになっている。このため、
一方のMRE1a中を流れる電流によって生じる誘導磁
界は、MRElsに対するバイアス磁界として働く。逆
に、MRE19を流れるセンス電流による誘導磁界はM
HI、13のバイアス磁界として、前記バイアス磁界と
同方向に働くことになる。即ち、各々のMREのセンス
電流は他方のバイアス磁界を印加する作用をもつ。
As mentioned above, the first. The second MREs are connected in series, and the sense currents flowing through the MREs are parallel to each other and flow in opposite directions. For this reason,
The induced magnetic field generated by the current flowing through one MRE1a acts as a bias magnetic field for the MREls. Conversely, the magnetic field induced by the sense current flowing through MRE19 is M
The bias magnetic field of HI, 13 acts in the same direction as the bias magnetic field. That is, the sense current of each MRE has the effect of applying the bias magnetic field of the other.

しかも、2つのMRHに作用するバイアス磁界は同方向
であるため、第1.第2のMRE13,19を直列接続
することによって再生感度を6dB向上させることが可
能である。
Moreover, since the bias magnetic fields acting on the two MRHs are in the same direction, the first. By connecting the second MREs 13 and 19 in series, it is possible to improve the reproduction sensitivity by 6 dB.

即ち、再生出力Δvdセンス電流を1.抵抗変化をΔR
とすると ΔV=JR@i   ・・・・・・・・・・・・・・・
・・・・・・・・・・・(4)で表わせる。
That is, the reproduction output Δvd sense current is set to 1. The resistance change is ΔR
Then ΔV=JR@i ・・・・・・・・・・・・・・・
・・・・・・・・・・・・It can be expressed as (4).

また、よく知られているように、この時の比抵抗変化を
Δρ、MREの長さぁ、断面積を8とした時、 ΔR=Δρヱ ・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・償が成立する。
Also, as is well known, when the specific resistance change at this time is Δρ, the length of the MRE, and the cross-sectional area are 8, ΔR=Δρヱ ・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・Atonement is achieved.

即ち、第(→、(5)式よりMRHの長さが長い方が抵
抗変化が太き(MREの再生出力が増大することになる
。実施例においては、ヨークの上、下側側に2つのMR
Eを設は直列接続することによシ、MRHの長さを約2
倍にしているため、抵抗変化は約2倍となシ、センス電
流を一定とした時、第(4)式よシ再生出力は約edB
向上することになる。
In other words, from formula (→, (5)), the longer the length of the MRH, the greater the resistance change (the reproduction output of the MRE increases. In the embodiment, two Two MRs
By connecting E in series, the length of MRH can be reduced by approximately 2
Since it is doubled, the resistance change is about twice as much.When the sense current is constant, the reproduction output is about edB according to equation (4).
It will improve.

また、使用されるMREの膜厚は300A〜500八と
非常に薄く、一般に、MRE部分の磁気抵抗は大きく、
磁気ヘッドの再生効率に大きく影響する。
In addition, the film thickness of the MRE used is very thin, ranging from 300A to 500A, and the magnetic resistance of the MRE portion is generally large.
This greatly affects the reproduction efficiency of the magnetic head.

本実施例においては、前部ヨーク16から流入した信号
磁束は、上部および下部のMREを通過するため、この
部分の磁気抵抗は低下し、この分再生効率を高める効果
をも有するものである。
In this embodiment, since the signal magnetic flux flowing in from the front yoke 16 passes through the upper and lower MREs, the magnetic resistance in these parts is reduced, which also has the effect of increasing the reproduction efficiency.

発明の効果 以上述べたように、本発明によれば、バイアス磁界発生
用の導体薄膜が不必要になるばかりでなく、再生感度が
向上し、特に短波長領域でのS/Nが向上し、実用的に
きわめて有用なものである。
Effects of the Invention As described above, according to the present invention, not only does a conductor thin film for generating a bias magnetic field become unnecessary, but also the reproduction sensitivity is improved, and the S/N ratio is improved particularly in the short wavelength region. It is extremely useful in practical terms.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における薄膜磁気ヘッドの断
面図、第2図は同平面図、第3図、第4図は従来の薄膜
磁気ヘッドを示す断面図、第5図はMREの磁界変化に
よる抵抗変化を示す特性図である。 10・・・・・・強磁性基板、13・・・・・・下部M
RE、16・・・・・前部ヨーク、17・・・・・・後
部ヨーク、18・・・・・・MRE接続部、19・・・
・・・上部MREっ代理人の氏名 弁理士 中 尾 敏
 男 ほか1名第1図 W・・・滋謙性羞級 /6・・・Ii?1部ヨーク 第2図 第3図 第4図 第5図 IfEEに仰カロす、6遇匝辱のS倣ざ手続補正書(方
式) %式% 2発明の名称 薄膜磁気ヘッド 3補正をする者 事件との関係      特  許  出  願  人
住 所  大阪府門真市大字門真1006番地名 称 
(582)松下電器産業株式会社代表者    山  
下  俊  彦 4代理人 〒571 住 所  大阪府門真市大字門真1006番地松下電器
産業株式会社内
FIG. 1 is a sectional view of a thin film magnetic head according to an embodiment of the present invention, FIG. 2 is a plan view thereof, FIGS. 3 and 4 are sectional views of a conventional thin film magnetic head, and FIG. 5 is a cross sectional view of a conventional thin film magnetic head. FIG. 3 is a characteristic diagram showing resistance changes due to magnetic field changes. 10...Ferromagnetic substrate, 13...Lower M
RE, 16... Front yoke, 17... Rear yoke, 18... MRE connection part, 19...
... Name of the upper MRE agent Patent attorney Toshi Nakao and one other person Figure 1 W... Shige Kensei Grade/6... Ii? Part 1 Yoke Figure 2 Figure 3 Figure 4 Figure 5 IfEE is aghast, 6 Shameful S imitation procedure correction form (method) % formula % 2 Name of invention Thin film magnetic head 3 Person who corrects Relationship to the incident Patent application Address 1006 Kadoma, Kadoma City, Osaka Name Name
(582) Matsushita Electric Industrial Co., Ltd. Representative Yama
Toshihiko Shimo 4 Agent 571 Address 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)強磁性基板上に、第1の絶縁層を介して設けられ
た強磁性金属材料の磁気抵抗素子と、前記磁気抵抗素子
にセンス電流を流す一対の電極と、磁気記録媒体から信
号磁束を前記磁気抵抗素子へ導くための強磁性金属材料
のヨークを備え、前記磁気抵抗素子は、前記ヨークに絶
縁層を介して上部および下部の両側に形成されているこ
とを特徴とする薄膜磁気ヘッド。
(1) A magnetoresistive element made of a ferromagnetic metal material provided on a ferromagnetic substrate via a first insulating layer, a pair of electrodes for passing a sense current through the magnetoresistive element, and a signal magnetic flux from a magnetic recording medium. A thin film magnetic head comprising a yoke made of a ferromagnetic metal material for guiding the magnetic field to the magnetoresistive element, and the magnetoresistive element is formed on both upper and lower sides of the yoke with an insulating layer interposed therebetween. .
(2)磁気抵抗素子に流すセンス電流を互いに平行かつ
反対方向に流すことを特徴とする特許請求の範囲第1項
記載の薄膜磁気ヘッド。
(2) The thin film magnetic head according to claim 1, wherein the sense currents flowing through the magnetoresistive elements are caused to flow in parallel and opposite directions.
JP22355384A 1984-10-24 1984-10-24 Thin film magnetic head Pending JPS61104413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22355384A JPS61104413A (en) 1984-10-24 1984-10-24 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22355384A JPS61104413A (en) 1984-10-24 1984-10-24 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS61104413A true JPS61104413A (en) 1986-05-22

Family

ID=16799959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22355384A Pending JPS61104413A (en) 1984-10-24 1984-10-24 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS61104413A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369016A (en) * 1986-09-10 1988-03-29 Matsushita Electric Ind Co Ltd Thin film magnetic head
JPH01103009U (en) * 1987-12-24 1989-07-12
EP0348027A2 (en) * 1988-06-21 1989-12-27 Hewlett-Packard Company Magneto-resistive sensor with opposing currents for reading perpendicularly recorded media
JPH0254413A (en) * 1988-08-18 1990-02-23 Nec Kansai Ltd Thin film magnetic head
US5508868A (en) * 1993-01-25 1996-04-16 Read-Rite Corporation Dual element magnetoresistive sensing head having in-gap flux guide and flux closure piece with particular connection of magnetoresistive sensing elements to differential amplifier
EP0777213A1 (en) * 1995-11-29 1997-06-04 Eastman Kodak Company Flux-guided paired magnetoresistive head
US5875078A (en) * 1993-02-26 1999-02-23 Sony Corporation Magnetoresistance thin film magnetic head having reduced terminal count; and bias characteristics measuring method
JP2016223825A (en) * 2015-05-28 2016-12-28 アルプス電気株式会社 Magnetic field detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369016A (en) * 1986-09-10 1988-03-29 Matsushita Electric Ind Co Ltd Thin film magnetic head
JPH01103009U (en) * 1987-12-24 1989-07-12
EP0348027A2 (en) * 1988-06-21 1989-12-27 Hewlett-Packard Company Magneto-resistive sensor with opposing currents for reading perpendicularly recorded media
JPH0254413A (en) * 1988-08-18 1990-02-23 Nec Kansai Ltd Thin film magnetic head
US5508868A (en) * 1993-01-25 1996-04-16 Read-Rite Corporation Dual element magnetoresistive sensing head having in-gap flux guide and flux closure piece with particular connection of magnetoresistive sensing elements to differential amplifier
US5875078A (en) * 1993-02-26 1999-02-23 Sony Corporation Magnetoresistance thin film magnetic head having reduced terminal count; and bias characteristics measuring method
EP0777213A1 (en) * 1995-11-29 1997-06-04 Eastman Kodak Company Flux-guided paired magnetoresistive head
JP2016223825A (en) * 2015-05-28 2016-12-28 アルプス電気株式会社 Magnetic field detector

Similar Documents

Publication Publication Date Title
US5218497A (en) Magnetic recording-reproducing apparatus and magnetoresistive head having two or more magnetoresistive films for use therewith
US4110804A (en) Read/write and tunnel erase magnetic head assembly
JPH0916925A (en) Induction and mr type hybrid magnetic head and its manufacture
JPH04351706A (en) Composite type thin-film magnetic head
US5312644A (en) Method of making a magnetoresistive head with integrated bias and magnetic shield layer
JPS61104413A (en) Thin film magnetic head
JPS61120318A (en) Unified thin film magnetic head
JPH03205610A (en) Magneto-resistance type head and production thereof
JPS6275924A (en) Unified thin film magnetic head
JPS61134913A (en) Magnetoresistance type thin film head
JP2718242B2 (en) Magnetoresistive head
JPS6141044B2 (en)
JPS6173220A (en) Magneto-resistance type head
JPS60150222A (en) Thin film magnetic head
JPS58220240A (en) Magneto-resistance effect type magnetic head
JPH0441415B2 (en)
JPS6177115A (en) Thin-film magnetic head
JPS61134912A (en) Thin film type magnetic head
JPH0115927B2 (en)
JPS6057520A (en) Magnetic head
JPH05242433A (en) Magnetic head
JPH08138215A (en) Magneto-resistive head and magnetic recording and reproducing head using the same
JPS6363117A (en) Thin film magnetic head
JPH05159242A (en) Magneto-resistance effect type head and production thereof
JPS63271708A (en) Magneto-resistance effect type magnetic head