JPS61104120A - Intake device of internal-combustion engine - Google Patents

Intake device of internal-combustion engine

Info

Publication number
JPS61104120A
JPS61104120A JP59224961A JP22496184A JPS61104120A JP S61104120 A JPS61104120 A JP S61104120A JP 59224961 A JP59224961 A JP 59224961A JP 22496184 A JP22496184 A JP 22496184A JP S61104120 A JPS61104120 A JP S61104120A
Authority
JP
Japan
Prior art keywords
intake
valve
intake passage
passage
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59224961A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ishida
石田 宜之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59224961A priority Critical patent/JPS61104120A/en
Publication of JPS61104120A publication Critical patent/JPS61104120A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • F02B27/0221Resonance charging combined with oscillating pipe charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0289Intake runners having multiple intake valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0294Actuators or controllers therefor; Diagnosis; Calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10229Fluid connections to the air intake system; their arrangement of pipes, valves or the like the intake system acting as a vacuum or overpressure source for auxiliary devices, e.g. brake systems; Vacuum chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To improve filling efficiency over the whole operating range of an engine by making two intake pipes of the engine having two intake valves for one cylinder different in length, providing a switching valve on the short pipe, and communicating both pipes downstream it via an intake control valve. CONSTITUTION:Two intake valves 6A, 6B are provided on one cylinder, and a long intake pipe 7A and a short intake pipe 7B are connected to the intake valve 6A and the intake valve 6B respectively. The first intake control valve 18 is provided on the intake pipe 7B, and both intake pipes 7A, 7B are communicated via a communicating hole 29 provided with the second intake control valve 30 downstream it. At a high rotating speed of an engine, both valves 18, 30 are opened by a control circuit 47, the inertial intake suitable for a high rotation speed particularly through the short pipe 7B is performed also to the other side via the communicating hole 29. At a medium load, only the valve 18 is closed, and the inertial intake through the long pipe 7A is performed also to the other side via the communicating hole 29. At a low load, the valve 30 is also closed, and the intake is performed only through the valve 6A side, and a reliable swirl is generated.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は内燃機関の吸気装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to an intake system for an internal combustion engine.

(従来の技術) 8!間出力を高くして加速応答性を得ることを目的とし
て燃焼室に常用の第一吸気通路と高主力用の第二吸気通
路とを各別に開口させた、いわゆる多吸気弁式の吸気通
路を用いることは周知であり、かつ前記第二吸気通路に
高出力時に開く出力応動弁(IIl気制御弁)を設ける
ことにより、低中出力域では第二吸気通路を閉じて第一
吸気通路の吸気流速を増し燃焼効率を改善すると共に、
高出力域では第二吸気通路を開いて吸気の充填効率を増
し最大出力を大きくした装置が既に公知となっている。
(Conventional technology) 8! In order to achieve high engine power and acceleration response, the combustion chamber is equipped with a so-called multi-intake valve type intake passage in which the first intake passage for regular use and the second intake passage for high main power use are opened separately. The use of this is well known, and by providing the second intake passage with an output-responsive valve (III control valve) that opens at high output, the second intake passage is closed in the low-to-medium output range and the intake air in the first intake passage is closed. In addition to increasing flow velocity and improving combustion efficiency,
There is already a known device in which the second intake passage is opened in the high output range to increase the intake air filling efficiency and increase the maximum output.

こうした装置の一つに第4図(A)、第4図(B)に示
すようなものがある(例えば特公昭59−5769号、
特開昭59−147867号、特公昭47−31724
号、特開昭58−10130号、特開1召57−110
765号等参照)。
One of these devices is the one shown in Figures 4(A) and 4(B) (for example, Japanese Patent Publication No. 59-5769,
Japanese Patent Publication No. 59-147867, Publication No. 47-31724
No., JP-A-58-10130, JP-A-1-57-110
(See No. 765, etc.)

これを説明すると、図中1は機関本体でシリングブロッ
ク2.シリングへラド3及びピストン4によづて形成さ
れる燃焼室5を有する。fR焼室5を形成するシリング
へラド3には、2個の吸気弁6A、(iF3が設けられ
、一方の第一吸気弁6Aを介して総ての負荷域でイヤ用
する常用の第一吸×通路7Aと、他方の第二吸気弁6B
を介して高出力用の第二吸気通路7Bとが連通されてい
る。8は排気通路で2個の排気弁9A、9Bを介して燃
焼室5から導かれでいる。11は点火栓、12はカム紬
12A、弁ばね12Bなどからなる公知の動弁機構で、
吸気弁G A、6 Bと排気弁9A、9Bとを開閉する
ものである。
To explain this, 1 in the figure is the engine body, and the shilling block 2. It has a combustion chamber 5 formed by a Schilling Rad 3 and a piston 4. The Schilling Radar 3 that forms the fR grilling chamber 5 is provided with two intake valves 6A and (iF3), and a normally used first intake valve that is used in all load ranges is provided through one first intake valve 6A. Intake x passage 7A and the other second intake valve 6B
It communicates with a second intake passage 7B for high output via. 8 is an exhaust passage led from the combustion chamber 5 via two exhaust valves 9A and 9B. 11 is a spark plug, 12 is a known valve mechanism consisting of a cam pongee 12A, a valve spring 12B, etc.
It opens and closes the intake valves GA, 6B and the exhaust valves 9A, 9B.

前記第一吸気通路7Aと第二吸気通路7Bとは、燃焼室
5からシリングへラド3.吸気分岐管14及ゾスロット
ルチャンバ15を通して一連に形成されるが、更に吸気
通路7 A、7 Bは吸気分岐管14の集合部14Aか
ら独立して分岐され、かつ第一吸気通路7Aの長さが第
二吸気通路7Bに比して長く形成されると共にシリンダ
へラド3内においで連通孔13により互いに連通してい
る。スロットルチャンバ15には人為的に操作され、機
関出力を制御する絞り弁16が設けられている。
The first intake passage 7A and the second intake passage 7B are connected to each other from the combustion chamber 5 to the Schilling Rad 3. Although they are formed in series through the intake branch pipe 14 and the throttle chamber 15, the intake passages 7A and 7B are further branched independently from the gathering part 14A of the intake branch pipe 14, and have the length of the first intake passage 7A. are formed longer than the second intake passage 7B, and communicate with each other through a communication hole 13 inside the cylinder rad 3. The throttle chamber 15 is provided with a throttle valve 16 that is manually operated to control the engine output.

なおスロットルチャンバ15の上流端はエアクリーナを
介して大気に通じている。また前記吸気分岐W14の分
岐部14Bの下流端近傍に位置して、第二吸気通路7B
には機関の低出力時に閉じる第一吸気制御弁18が設置
されてい4゜ 第一吸気制御弁18の弁軸は7−ム19を固設    
゛し、7−ム19はロッド20を介してグイヤ7ラム装
置21に連結されている。グイヤ7ラム装置21はケー
ス21A内をグイヤ7ラム21Bによって大気室22と
負圧室23とに区画され、前記グイヤ7ラム21Bに口
7ド20の他端を接続すると共に、これをばね24によ
って大気室22側へ弾圧している。
Note that the upstream end of the throttle chamber 15 communicates with the atmosphere via an air cleaner. Further, a second intake passage 7B is located near the downstream end of the branch portion 14B of the intake branch W14.
A first intake control valve 18 that closes when the engine output is low is installed in the 4° valve stem of the first intake control valve 18.
However, the 7-arm 19 is connected to a guy 7 ram device 21 via a rod 20. The Gouya 7 ram device 21 has a case 21A partitioned into an atmospheric chamber 22 and a negative pressure chamber 23 by the Gouya 7 ram 21B. The pressure is applied to the atmospheric chamber 22 side.

大気室22は常時大気中に解放されており、負圧室23
は負圧通路によって負圧タンク(図示せず)に通じてい
る。グイヤ7ラム装rr121の負圧制御は例えば負圧
通路に三方向弁を介装し、低中出力域のときにこの三方
向弁を介して作動負圧を負圧室23に導くと共に、高出
力域のときにこの負圧室23を大気に解放するようにさ
れる。
The atmospheric chamber 22 is always open to the atmosphere, and the negative pressure chamber 23
communicates with a vacuum tank (not shown) by a vacuum passage. Negative pressure control of the Guya 7 ram installation RR121 is achieved by, for example, interposing a three-way valve in the negative pressure passage, and in the low and medium output range, operating negative pressure is guided to the negative pressure chamber 23 through this three-way valve, and at the same time, the This negative pressure chamber 23 is opened to the atmosphere in the output range.

例えば低出力域では三方向弁の切り替えにより負圧室2
3に作動負圧が導入され、第一吸気制御弁18がmじ吸
気は第一吸気通路7Aのみを通して流れるので吸気の流
速が増し、その動圧と、低中速域に適合する長さを有す
る第一吸気通路7A内に生じる気柱振動の効果によって
第一吸気弁6Aの開弁直前における第一吸気弁6A付近
の吸気圧力が比較的高く保たれる。このため燃焼室5内
からの吹き返しが抑制され、吸気が能率良く燃焼室5内
へ流入されるので比較的高いトルクが得られる。
For example, in the low output range, the negative pressure chamber 2 is switched by switching the three-way valve.
3, the working negative pressure is introduced into the first intake control valve 18. Since the intake air flows only through the first intake passage 7A, the flow velocity of the intake air increases. Due to the effect of the air column vibration generated in the first intake passage 7A, the intake pressure near the first intake valve 6A immediately before the first intake valve 6A opens is kept relatively high. Therefore, blowback from inside the combustion chamber 5 is suppressed, and intake air flows into the combustion chamber 5 efficiently, so that a relatively high torque can be obtained.

第一吸気通路7A内の吸yc流速が所定値以上の高速に
なると、第一吸気弁6Aの開口部付近に気流のjlil
WL@、象を生じて吸気抵抗が急増する。しかしn+f
記連通孔13によって吸気の一部が第二吸気通路7Bへ
流れ、第一吸気弁6Aをバイパスするので第一吸気通路
7Aの吸気流量を減じることなく前記縮流現象を回避し
て第一吸気通路7Aと第二吸気通路7Bとを有する機関
に固有の中負荷域における吸気流の頭打ち現象を防止す
ることができる。
When the intake air flow rate in the first intake passage 7A becomes higher than a predetermined value, the air flow near the opening of the first intake valve 6A increases.
WL @ causes an elephant and the inspiratory resistance increases rapidly. But n+f
A part of the intake air flows to the second intake passage 7B through the communication hole 13 and bypasses the first intake valve 6A, so that the air contraction phenomenon is avoided without reducing the intake flow rate of the first intake passage 7A. It is possible to prevent the phenomenon of the intake air flow reaching a plateau in the medium load range, which is unique to an engine having the passage 7A and the second intake passage 7B.

この状態から吸気流量が増すと三方向弁の切り杯えに上
り負圧室23内に大気が導入され、グイャ7ラム21B
ばばね24の弾力によってロッド20を押圧して吸気制
御弁18を負荷に応じた開度に開弁する。このように吸
気制御弁18が全開すれば、吸気は第一吸気通路7Aと
第二吸気通路7Bとの両方から燃焼室5に流入するので
、その流入空気量が大きくなり、多吸気弁式成関固有の
高出力が得られる。
When the intake flow rate increases from this state, the three-way valve reaches its full capacity and atmospheric air is introduced into the negative pressure chamber 23, causing
The elasticity of the spring 24 presses the rod 20 to open the intake control valve 18 to an opening degree corresponding to the load. When the intake control valve 18 is fully opened in this way, the intake air flows into the combustion chamber 5 from both the first intake passage 7A and the second intake passage 7B, so the amount of inflow air becomes large, and the multi-intake valve type configuration is achieved. High output power is obtained.

(発明が解決しようとする問題点) このような装置では吸気制御弁18が閉弁している低出
力域でもアイドリングあるいはそれに近い低負荷域では
もともと燃焼状態が悪いことから燃焼室内に強い渦流を
生起し、この渦流を引き続いて行なわれる圧縮行程にお
いて激しい乱流に変化させて燃焼状態の改善を図ること
が効果的である。しかし燃料が噴射1」(給されると大
部分の燃料は第一吸気通路7A内の吸気流により第一吸
気弁6Aから燃焼室5に供給されるのであるが、連通孔
13の位置が吸気弁flA、6Bの開弁する2つの吸気
ポー)10A、lO[3に近いため、連通孔13を介し
て第二吸気通路7Bからも混合気が吸入されてしまう、
このため、両ボート10A、10Bからの吸気が燃焼室
内で衝突して燃焼室内での渦流の形成が十分でなく、連
通孔13を設けず独立に形成した吸気通路に比べてアイ
ドリングやそれに近い低負荷時の燃冑及び低速運転時の
全開トルクに劣るという問題がある。
(Problems to be Solved by the Invention) In such a device, even in the low power range where the intake control valve 18 is closed, the combustion state is inherently poor in idling or low load ranges close to it, so a strong vortex is generated in the combustion chamber. It is effective to improve the combustion state by converting this vortex into a violent turbulent flow during the subsequent compression stroke. However, when fuel is injected 1'' (supplied), most of the fuel is supplied from the first intake valve 6A to the combustion chamber 5 by the intake flow in the first intake passage 7A, but the position of the communication hole 13 is Since the two intake ports where the valves flA and 6B are open) 10A and IO[3 are close to each other, the air-fuel mixture is also drawn from the second intake passage 7B via the communication hole 13.
For this reason, the intake air from both boats 10A and 10B collides in the combustion chamber, and the formation of a vortex in the combustion chamber is not sufficient, resulting in low idling or similar low airflow compared to an intake passage formed independently without the communication hole 13. There are problems in that fuel efficiency under load and full-throttle torque during low-speed operation are inferior.

この発明はこのような従来の問題点に着目してなされた
もので、待にアイドリングやそれに近い低負荷運転時に
おいて燃焼室内での強い渦流を確保すると共に、低中速
運転域に適合して慣性過給効果を発揮する長さを第一吸
気通路に持たせて充填効率の向上を図る吸気装置を提供
することを目的とする。
This invention was made by focusing on these conventional problems, and it not only ensures a strong vortex flow in the combustion chamber during idling or low-load operation similar to that, but also provides a system that is suitable for low- to medium-speed operation. It is an object of the present invention to provide an intake device that improves charging efficiency by providing a first intake passage with a length that exhibits an inertial supercharging effect.

(問題点を解決するための手段) この発明は吸気絞り弁下流の吸気通路を独立した第一吸
気通路と第二吸気通路に分岐して燃焼室に連通ずると共
に該第二吸気通路に磯閏高出力運転時に開く第一吸気制
御弁を備える内燃機関の吸気装置を前提とする。こうし
た装置において、前記第一吸気通路の長さを第二吸気通
路に比して氏く形成し、かつ前記第一吸気制御弁の下流
において前記第一吸気通路と第二吸気通路とを互いに連
通する連通孔を設け、該連通孔にアイドリングあるいは
それに近い1氏負荷′4帖時に閉じる第二吸気制御弁を
設ける。
(Means for Solving the Problems) The present invention branches the intake passage downstream of the intake throttle valve into an independent first intake passage and a second intake passage, which communicate with the combustion chamber, and also includes an isobar in the second intake passage. The present invention is based on an intake system for an internal combustion engine that includes a first intake control valve that opens during high-output operation. In such a device, the length of the first intake passage is longer than that of the second intake passage, and the first intake passage and the second intake passage are communicated with each other downstream of the first intake control valve. A second intake control valve is provided in the communication hole that closes when the engine is idling or at a load of 1°C near that level.

(作用) このように構成すれば、アイドリングやそれに近い低負
荷運転時には第二吸気制御弁が閉弁するので第一吸気通
路と第二吸気通路とが完全に独立の通路となる。この結
果、連通孔を介して第二吸気通路から燃焼室内に流入す
る吸気が燃焼室内において第一吸気通路から@焼室内に
流入する吸気′に衝突してその吸気流速を減少させると
いうことがなくなり、燃焼室内には強い渦流が形成され
燃焼の安定を得ることになる6また、低速域においでは
第一吸気通路がこの運転域に適合して慣性過給効果を発
揮する長さを有するので、第一吸気通路に連通ずる吸気
ボート(低速ボート)からの吸気の充填効率を向上させ
低速全開トルクの向上を図        ダする。
(Function) With this configuration, the second intake control valve closes during idling or similar low-load operation, so the first intake passage and the second intake passage become completely independent passages. As a result, the intake air flowing into the combustion chamber from the second intake passage through the communication hole does not collide with the intake air flowing into the combustion chamber from the first intake passage into the combustion chamber, thereby reducing the intake flow velocity. , a strong vortex is formed in the combustion chamber, resulting in stable combustion.6 Also, in the low speed range, the first intake passage has a length that suits this operating range and exerts an inertial supercharging effect. It aims to improve the filling efficiency of intake air from the intake boat (low-speed boat) that communicates with the first intake passage, and improve low-speed full-throttle torque.

また、中速域においては第一吸気通路が同じくこの運転
域に適合して慣性過給効果を発揮し吸気の充填効率を向
上させるが、この運転域では第二吸気制御弁が開弁じ、
連通孔を介して第二吸気通路に連通ずる吸気ボート(高
速ボート)からも吸気が流入するので、Mj記慣性過給
効果がこの高速ボートから流入する吸気にも及ぶことに
なり、充填効率を更に高めて中速全開トルクを向上する
ことができる。
In addition, in the medium speed range, the first intake passage also adapts to this operating range and exerts an inertial supercharging effect to improve the intake air filling efficiency, but in this operating range, the second intake control valve opens,
Since intake air also flows from the intake boat (high-speed boat) that communicates with the second intake passage through the communication hole, the inertial supercharging effect described in Mj also extends to the intake air flowing from this high-speed boat, which improves charging efficiency. It is possible to further increase the torque at full throttle at medium speeds.

さらに、高速域においては第一吸気制御弁が開弁じて吸
気の流入面積を大きくすると共に、第二吸気通路がこの
運V:域に適合して慣性過給効果を発揮し、高速ボート
からの吸気の充填効率を向上させるが、この運転域でも
第二吸気通路の吸気が前記連通孔を介して第一吸気通路
に入り低速ボートからも流入するので、慣性過給効果が
この低速ボートから流入する吸気にも及ぶことになり、
充填効率を一段と高めて高速全開トルクを向上すること
ができる。
Furthermore, in the high-speed range, the first intake control valve opens to increase the inflow area of intake air, and the second intake passage adapts to this range and exerts an inertial supercharging effect, thereby reducing the flow of air from high-speed boats. This improves the filling efficiency of the intake air, but even in this operating range, the intake air in the second intake passage enters the first intake passage through the communication hole and also flows in from the low-speed boat, so the inertial supercharging effect prevents the inflow from the low-speed boat. This also extends to the intake of air,
It is possible to further increase charging efficiency and improve high-speed full-open torque.

(実施例) 第1図(A)はこの発明の一実施例の概略構成図、第1
図(B)は吸気系の要部の縦断面UjJである。図中1
は機関本体でシリングブロック2.シリングヘッド3及
びビス)ン4によって形成される燃焼室5を有する。燃
焼室5を形成するシリングへノド3には、2個の吸気弁
6A、6Bが設けられ、第一吸気弁6Aを介して総ての
負荷域で作用する常用の第一吸気通路7Aと、他方の第
二吸気弁6Bを介して高出力用の第二吸気通路7Bとが
連通されている。8は排気通路で2個の排気弁9A。
(Embodiment) FIG. 1(A) is a schematic configuration diagram of an embodiment of the present invention.
Figure (B) is a longitudinal section UjJ of the main part of the intake system. 1 in the diagram
is the shilling block 2 in the engine body. It has a combustion chamber 5 formed by a sill head 3 and a cylinder 4. Two intake valves 6A and 6B are provided in the cylinder throat 3 forming the combustion chamber 5, and a first intake passage 7A for regular use operates in all load ranges via the first intake valve 6A; It communicates with a second intake passage 7B for high output via the other second intake valve 6B. 8 is an exhaust passage with two exhaust valves 9A.

9Bを介して燃Q室5から導かれている。11は点火栓
、12はカム紬12A、弁ばね11Bなどからなる公知
の動弁磯viで、@気弁6 A、6 nと排気弁9 A
、9 Bとを1111閉するものである。
It is led from the combustion chamber 5 via 9B. 11 is a spark plug, 12 is a known valve train VI consisting of a cam pongee 12A, a valve spring 11B, etc. @ air valves 6 A, 6 n and an exhaust valve 9 A
, 9 B and 1111 are closed.

前記第一@、気通路7Aと第二吸気通路7Bとは、燃焼
室5からシリングヘッド3.吸気分岐?F14及びスロ
ットルチャンバ15を通して一連に形成されるが、更に
吸気通路7A、7Bは吸気分岐管14の集合部14Aか
ら独tして分岐され、かつ第一吸気通路7Aの長さが第
二吸気通路7B+こ比して艮く形11r、されると共に
シリングへラド3内において連通孔29により互いに連
通している。なお、第一吸気通路7A、第二吸気通路7
Bの長さはそれぞれ低中速運軟域、高速運松域において
慣性過給効果を発揮することのできる長さに設定される
。スロットルチャンバ15には人為的に操作され、−聞
出力を制御する紋り弁16が設けられている。なおスロ
ットルチャンバ15の上流端はエアクリーナを介して大
気に通じている。
The first air passage 7A and the second intake passage 7B are connected from the combustion chamber 5 to the shilling head 3. Intake branch? Although the intake passages 7A and 7B are formed in series through F14 and the throttle chamber 15, the intake passages 7A and 7B are independently branched from the gathering part 14A of the intake branch pipe 14, and the length of the first intake passage 7A is the same as that of the second intake passage. 7B+ has a shape 11r in comparison with that, and communicates with each other through a communication hole 29 in the sill ring rad 3. Note that the first intake passage 7A and the second intake passage 7
The length of B is set to such a length that the inertial supercharging effect can be exerted in the low-medium speed driving range and the high-speed driving range, respectively. A throttle valve 16 is provided in the throttle chamber 15 and is manually operated to control the engine output. Note that the upstream end of the throttle chamber 15 communicates with the atmosphere via an air cleaner.

また28は第一吸気通路7Aに配置される燃料噴射弁で
、噴射燃料の大部分が第一吸気通路7A内に供給され、
残りの少量の噴射燃料が連通孔29を介して第二吸気通
路7B内に供給されるように配置されろ。
Further, 28 is a fuel injection valve arranged in the first intake passage 7A, and most of the injected fuel is supplied into the first intake passage 7A.
The arrangement is such that the remaining small amount of injected fuel is supplied into the second intake passage 7B through the communication hole 29.

前記吸気分岐管14の分岐部14Bの下流端近傍に位置
して、第二吸気通路7Bには機関の低出力時に閉じる第
一吸気制御弁18が設置され、低速ボー)10A、高速
ボー)10Bの近傍に位置する連通孔2つにはこの連通
孔29を遮断する第二吸気制御弁30が設置される。
A first intake control valve 18 is installed in the second intake passage 7B, which is located near the downstream end of the branch portion 14B of the intake branch pipe 14 and closes when the engine output is low. A second intake control valve 30 that blocks the communication hole 29 is installed in two communication holes located near the communication hole 29 .

これら2つの@気制御弁+8.30に対する各駆動手段
は同様に構成され、いずれも制御回路47にて制御され
る。即ち第一吸気側[r、18の弁軸はアーム19を固
設し、7−ム19はロッド20を介してグイヤ7ラム装
g121に連結されている。ダイヤプラム装置21はケ
ース21A内をダイヤ7ラム21Bによって大気室22
と負11室23とに区画され、前記ダイヤ7ラム21B
にロッド20の他端を接続すると共に、これをばね24
によって大気室22IlIIlへ弾圧している。同様に
第二吸気制御弁30の弁軸はアーム31をIi!iI股
し、7−ム31はロフト32を介してダイヤプラム装置
i33に連結さ紅ている。ダイヤプラム装置33はケー
ス33A内をダイヤ7ラム33r3によって大気室34
と負圧室35とに区画され、前記ダイヤ7ラム33Bに
ロッド32の他端を接続すると共に、これをばね36に
よって大気室34側へ弾圧している。
Each drive means for these two @ki control valves +8.30 is constructed in the same way, and both are controlled by a control circuit 47. That is, the valve shaft of the first intake side [r, 18 has an arm 19 fixed thereto, and the arm 19 is connected via a rod 20 to a guyar 7 ram arrangement g121. The diaphragm device 21 connects the inside of the case 21A to the atmospheric chamber 22 by the diaphragm 21B.
and a negative 11 chamber 23, and the diamond 7 ram 21B
Connect the other end of the rod 20 to the spring 24
It is suppressing atmospheric chamber 22IlIIIl. Similarly, the valve shaft of the second intake control valve 30 has the arm 31 Ii! On the other hand, the 7-m 31 is connected to the diaphragm device i33 via the loft 32. The diaphragm device 33 connects the inside of the case 33A to an atmospheric chamber 34 using a diaphragm 33r3.
The other end of the rod 32 is connected to the diamond 7 ram 33B, and is urged toward the atmospheric chamber 34 by a spring 36.

大気室22.34は常時大気中に解放されてお    
   dす、負圧室23,35は三方向弁40.41を
有する負圧通路42.43によって負圧タンク44に通
している。負圧タンク44内は通路45によって集合部
14A内に通じており、通路45には集合部方向への気
流のみを許容する逆止弁46が設けられている。
Atmospheric chamber 22.34 is open to the atmosphere at all times.
d) The negative pressure chambers 23, 35 are connected to a negative pressure tank 44 by a negative pressure passage 42.43 having a three-way valve 40.41. The inside of the negative pressure tank 44 communicates with the collecting part 14A through a passage 45, and the passage 45 is provided with a check valve 46 that allows airflow only in the direction of the collecting part.

三方向弁40.41は制御回路47によって切り替え制
御されるもので、三方向弁40は低中速運転域(所定の
機関回転数N2まで)に通tONとされ、それ以上の高
速運転域(回転数N2以上)では通電OFFにさ社る。
The three-way valves 40 and 41 are switched and controlled by the control circuit 47, and the three-way valve 40 is turned ON in the low-medium speed operating range (up to a predetermined engine speed N2), and is turned ON in the higher-speed operating range (up to a predetermined engine speed N2). When the rotation speed is N2 or higher), the power is turned off.

これに対し、三方向弁41はアイドリングやそれに近い
低速運転域(回転数N1まで、ただしNl<N2)に通
@ONとされ、それ以上の運転域(回忙数N1以上)で
は通電OFFとされる。なお、三方向弁40.41はそ
れぞれ通電ONでツレ/イド40B、41Bの電磁力に
よりばね40C,41Cに抗して弁40A。
On the other hand, the three-way valve 41 is energized @ON during idling and a low-speed operating range close to it (up to the rotation speed N1, however, Nl<N2), and is energized OFF in the operating range beyond that (busy number N1 or more). be done. In addition, when the three-way valves 40 and 41 are energized, the valve 40A resists the springs 40C and 41C due to the electromagnetic force of the slides 40B and 41B.

41Aを図中右方に引き付けることにより、負圧室23
.35に連なるボート aと負圧タンク44に連なるボ
ート bとを連通し、通電OFFでばね40C,41C
が弁40A、41Aを図中左方に付勢することにより、
ボート &とエアフィルタを発して大気に開口するボー
ト cとを連通する。また48はバッテリである。
41A to the right in the figure, the negative pressure chamber 23
.. Boat a connected to 35 is connected to boat b connected to negative pressure tank 44, and springs 40C and 41C are connected when the power is turned off.
By urging the valves 40A and 41A to the left in the figure,
Boat & is connected to boat c which emits an air filter and opens to the atmosphere. Further, 48 is a battery.

二のような構成による作用及び効果を第2図に基づき述
べると、機関が所定回転数N2以上となる高速運転域で
は三方向弁40.41は共$二通電OFFであり負圧室
23,35は大気に連通しているので、ばね24.36
に付勢されて吸気制御弁18.30はいずれも全開して
いる。このため吸気は第一吸気通路7Aと第二吸気通路
7Bの両方から燃焼室5内に流入するので、その流入空
気量が大きくなり充填効率を高めて多吸気弁式機関固有
の高トルクが得られるが、この実施例では第二吸気通路
7Bがこの運転域に適合して慣性過給効果を発揮する長
さを有するので、高負荷時には高速ボート10Bからの
吸気の充填効率を向上させ全開トルクを更に向上するこ
とができる。更に、この運虻域では第二吸気通路7Bの
g&気が連通孔2つを介して第一吸気通路7Aに入り低
速ボート10Aからも流入するので、前記慣性過給効果
が二の低速ボート10Aから流入する吸気にも及ぶこと
になり、充填効率を一段と高めた高速全開トルク(図中
TI)を得ることができる。なおm3図中破#IT4は
第一吸気制御弁18を全開、第二吸気制御弁30を全閉
とした場合の輸トルクを比較のため示すが、第二吸気通
路7Bによる慣性過給効果が連通孔2つを介して及ぶこ
とが明らかとなっている。
The operation and effect of the second configuration will be described based on FIG. 2. In the high-speed operation range where the engine speed exceeds the predetermined rotation speed N2, both the three-way valves 40 and 41 are energized OFF, and the negative pressure chamber 23, Since 35 is connected to the atmosphere, the spring 24.36
The intake control valves 18 and 30 are both fully open. Therefore, the intake air flows into the combustion chamber 5 from both the first intake passage 7A and the second intake passage 7B, so the amount of intake air increases, the filling efficiency is increased, and the high torque unique to a multi-intake valve type engine is achieved. However, in this embodiment, the second intake passage 7B has a length that is suitable for this operating range and exhibits an inertial supercharging effect, so that at high loads, the filling efficiency of the intake air from the high-speed boat 10B is improved and the full opening torque is increased. can be further improved. Furthermore, in this movement region, the g&air of the second intake passage 7B enters the first intake passage 7A through the two communication holes and also flows from the low-speed boat 10A, so that the inertial supercharging effect is This also applies to the intake air flowing in from the fuel tank, making it possible to obtain high-speed full-open torque (TI in the figure) that further improves charging efficiency. In addition, m3 diagram partially broken #IT4 shows the transfer torque when the first intake control valve 18 is fully open and the second intake control valve 30 is fully closed, but the inertial supercharging effect due to the second intake passage 7B is shown for comparison. It has become clear that it extends through two communicating holes.

機関回(敗がN1からN2の間にある中速運転域では三
方向弁40のみが通電ONとなり負圧室23に作動負圧
が導かれ、これにより第一吸気制御弁18が全開となる
。なお、三方向弁41は通電OFF’を継続するため第
二吸気制御弁30は開弁じている。このため、第一吸気
通路7Aでの吸気の流速が大きくなるのであるが、この
実施例では第一吸気通路7Aがこの運転域に適合して慣
性過給効果を発揮する長さを有するので、高負荷時には
低速ボー)10Aからの吸気の充填効率を向上させる。
In the medium speed operating range where the engine speed is between N1 and N2, only the three-way valve 40 is energized and the operating negative pressure is guided to the negative pressure chamber 23, which causes the first intake control valve 18 to fully open. Note that the second intake control valve 30 is open because the three-way valve 41 continues to be energized OFF'.For this reason, the flow velocity of intake air in the first intake passage 7A increases. Since the first intake passage 7A has a length suitable for this operating range and exhibits an inertial supercharging effect, the filling efficiency of the intake air from the low-speed bow 10A is improved at high loads.

更に、第一吸気通路7Aの吸気は連通孔29を介して高
速ボー)10Bからも流入するので、慣性過給効果がこ
の高速ボー)10Bから流入する吸気にも及ぶことにな
り、充填効率を更に高めて高い中速全開トルク(図中7
2)が得られ、=しにより優れた加速応答性を得ること
ができる。
Furthermore, since the intake air in the first intake passage 7A also flows from the high-speed bow 10B through the communication hole 29, the inertial supercharging effect also extends to the intake air flowing from the high-speed bow 10B, which improves the charging efficiency. Furthermore, high mid-speed full-open torque (7 in the figure)
2) is obtained, and better acceleration response can be obtained.

なお、この運転域では第一吸気通路?A#−流れる吸気
が多くなると前述した縮流現象によって制限されるので
あるが、吸気の一部は連通孔2つを経て第二吸気通路7
Bから燃“焼室5に流れるので第一吸気通路7Aと第一
吸気通路7Bとを有する機関に固有の中速域における吸
気流の頭打ち現象は防止されている。
In addition, in this operating range, is the first intake passage? A# - When the amount of intake air flowing increases, it is restricted by the contraction phenomenon described above, but a portion of the intake air passes through the two communication holes and flows into the second intake passage 7.
Since the air flows from B to the combustion chamber 5, the phenomenon of peaking out of the intake air flow in the medium speed range, which is unique to an engine having the first intake passage 7A and the first intake passage 7B, is prevented.

Iffff転回転数1より小さい低速運転域になると、
三方向弁41がさらに通fiONとなって吸気制御弁1
8.30は両方とも全閉する。このため、第一吸気通路
7Aと第二、吸気通路7Bとが完全に独立の通路となる
。この運転域では第一吸気通路7Aがこの運転域に適合
して慣性過給効果を発揮する長さを有するので、高負荷
時には低速コート10Aからの吸気の充填効率を向上さ
せる。この       −結果、連通孔29が閉じら
れない従来例(第二吸気制御弁30が全開しているとき
に対応する)に比べて高い低速全開トルク(図中73)
を得ることができる。
When the Iffff rotation speed becomes lower than 1,
The three-way valve 41 is further turned on and the intake control valve 1 is turned on.
At 8.30, both will be fully closed. Therefore, the first intake passage 7A and the second intake passage 7B become completely independent passages. In this operating range, the first intake passage 7A has a length that is suitable for this operating range and exhibits an inertial supercharging effect, so that the filling efficiency of intake air from the low-speed coat 10A is improved during high loads. As a result, the low-speed full-open torque (73 in the figure) is higher than the conventional example in which the communication hole 29 is not closed (corresponds to when the second intake control valve 30 is fully open).
can be obtained.

また、アイドリングやそれに近い低速運転域では吸気は
第一吸気通路7Aのみを介して燃焼室5内に供給される
ため連通孔29を介して高速ボート10Bから燃焼室5
内に分流して流入する吸気が燃焼室5内において低速ボ
ー)10Aから燃焼室5内に流入する主流の吸気1巳衝
突してその吸気流速を減少させるということがなくなる
。この結果、第一吸気通路7Aの吸気は高速の気流とな
り、燃料噴射弁28から噴射される燃料を伴って第一吸
気弁6Aの開弁時に燃焼室5内に流入すると、燃焼室5
内に強い渦流が生起される。このため点火栓11により
混合気に点火され火焔が生成されると、それは燃焼室5
内へ高速かつ安定に伝播し失火や不完全燃焼が減少する
。第3図はアイドリングやそれに近い低負荷運転域にお
ける燃TR特性につきこの実施例(実#l)と従来例(
破i>とを比較して示したものである。前述のように連
通孔29を閉弁し燃焼室5内に強い渦流を生起せしめて
燃焼室5内の燃焼を改善しているので、従来例に比して
燃費が一段と向上している。
In addition, during idling or a low-speed operating range close to idling, the intake air is supplied into the combustion chamber 5 only through the first intake passage 7A, and therefore from the high-speed boat 10B to the combustion chamber 5 through the communication hole 29.
This eliminates the possibility that the intake air that flows into the combustion chamber 5 in a divided manner collides with the mainstream intake air that flows into the combustion chamber 5 from the low-speed bow 10A, thereby reducing the intake flow velocity. As a result, the intake air in the first intake passage 7A becomes a high-speed airflow, and when it flows into the combustion chamber 5 when the first intake valve 6A opens, accompanied by the fuel injected from the fuel injection valve 28, the intake air flows into the combustion chamber 5.
A strong vortex is generated inside. Therefore, when the air-fuel mixture is ignited by the spark plug 11 and a flame is generated, the flame is generated in the combustion chamber 5.
The fuel propagates quickly and stably into the interior, reducing misfires and incomplete combustion. Figure 3 shows the fuel TR characteristics of this embodiment (actual #l) and the conventional example (actual #1) in idling and low-load operating ranges close to idling.
This figure shows a comparison between the two. As mentioned above, since the communication hole 29 is closed to generate a strong vortex flow in the combustion chamber 5 to improve combustion in the combustion chamber 5, fuel efficiency is further improved compared to the conventional example.

なお、この実施例では、排気弁を複数設けるものを示し
たが、その個数については2個に限るものではなく杢■
の趣旨に照らして幾つでも構わな−1゜ (発明の効果) この発明では吸気絞り弁下流の吸気通路を独立した第一
吸気通路と第二吸気通路に分岐して燃焼室に連通すると
共に該第二吸気通路に機関高出力運転時に開く第一吸気
制御弁を備える内燃Ff!ll5ITの吸気装置におい
て、前記第一吸気通路の長さを第二吸気通路に比して艮
く形成し、かつ前記第一吸気制御弁の下流において11
1f記第一吸気通路と第二吸気通路とを互いに連通する
連通孔を設け、該連通孔にアイドリングあるいはそれに
近い低負荷運転時に閉じる第二吸気制御弁を設けたので
、アイドリングやそれに近い紙工1荷時には2つの吸気
通路が完全に独立し、低速ボートからのみ吸気が流大し
て燃焼室内に強力な渦流を生起させることがでさると同
時に、低速運転域に適合して+FI性過給効果を発揮す
る第一吸気通路により充填効率を向上することができる
にの結果、高速運転域での出力を低下させることなく、
アイドリングやそれに近い低負荷運転域の燃費を向上す
ると同時に、低速全開トルクを向上することができる。
Although this embodiment shows a case where a plurality of exhaust valves are provided, the number is not limited to two and may vary.
In light of the purpose of the above, any number of intake passages may be used. (Effect of the invention) In this invention, the intake passage downstream of the intake throttle valve is branched into an independent first intake passage and a second intake passage, which communicate with the combustion chamber. Internal combustion Ff with a first intake control valve in the second intake passage that opens during high engine output operation! In the intake device of 115IT, the length of the first intake passage is much greater than that of the second intake passage, and the length of the first intake passage is greater than that of the second intake passage, and the length of the first intake passage is 11.
1f A communication hole is provided to communicate the first intake passage and the second intake passage with each other, and a second intake control valve is provided in the communication hole to close during idling or low-load operation close to idling. When loaded, the two intake passages are completely independent, and the intake air flows only from the low-speed boat, creating a strong vortex in the combustion chamber. At the same time, it is suitable for low-speed operating ranges and exhibits a +FI supercharging effect. As a result, the filling efficiency can be improved by the first intake passage, without reducing the output in high-speed operation range.
It improves fuel efficiency in idling and low-load driving ranges, and at the same time improves low-speed full-throttle torque.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)はこの発明の一実施例の概略構成図、第1
図(B)は同じく吸気系の要部の縦断面図である。第2
図はこの発明による機関回転数と紬トルクの関係を示す
特性図、第3図はアイドリングやそれに近い低負荷運転
域における燃費特性−二つきこの実施例と従来例とを比
較して示した特性図である。 第4図(A)は従来例の概略構成図、第4図CB)は同
じく吸気系の要部の縦断面図である。 1・・・機関本体、3・・・シリングヘッド、4・・・
ピストン、5・・・燃焼室、6A・・・第一吸気弁、6
B・・・第二吸気弁、7A・・・第一吸気通路、7B・
・・第二吸気通路、9八+9B・・・排気弁、+OA、
TO+3・・・吸気ボート、12・・・動弁機構、14
・・・吸気分岐管、14A・・・集合部、14B・・・
分岐部、16・・・絞り弁、18・・・第一吸気制御弁
、1つ・・・アーム、2()・・ロッド、21・・・ダ
イヤ7ラム装置、21B・・ダイヤ7ラム、22・・・
大気室、23・・・負圧室、24・・ばね、29・・・
連通孔、30・・・第二吸気制御弁、31・・・アーム
、32・・・ロッド、33・・・ダイヤ7ラム装置、3
3B・・・ダイヤ7ラム、34・・・大気室、35・・
・負圧室、36・・・ばね、411.41・・・三方向
弁、42゜43・・・負圧通路、44・・負圧タンク、
45・・・通路、46・・・逆止弁、47・・・制御回
路。 特許出願人    11産自動車株式会社ぇ     
第2図 !!、犬進角 第4図(八)
FIG. 1(A) is a schematic configuration diagram of an embodiment of the present invention.
Figure (B) is also a longitudinal cross-sectional view of the main parts of the intake system. Second
The figure is a characteristic diagram showing the relationship between engine speed and Tsumugi torque according to this invention, and Figure 3 is a comparison of fuel efficiency characteristics in idling and low-load operating ranges close to idling - characteristics shown in comparison between this embodiment and the conventional example. It is a diagram. FIG. 4(A) is a schematic configuration diagram of a conventional example, and FIG. 4(CB) is a longitudinal sectional view of the main part of the intake system. 1... Engine body, 3... Schilling head, 4...
Piston, 5... Combustion chamber, 6A... First intake valve, 6
B...Second intake valve, 7A...First intake passage, 7B...
...Second intake passage, 98+9B...Exhaust valve, +OA,
TO+3...Intake boat, 12...Valve mechanism, 14
...Intake branch pipe, 14A...Collection part, 14B...
Branch part, 16... Throttle valve, 18... First intake control valve, one... Arm, 2 ()... Rod, 21... Diamond 7 ram device, 21B... Diamond 7 ram, 22...
Atmospheric chamber, 23... Negative pressure chamber, 24... Spring, 29...
Communication hole, 30...Second intake control valve, 31...Arm, 32...Rod, 33...Diamond 7 ram device, 3
3B...Diamond 7 ram, 34...Atmospheric chamber, 35...
・Negative pressure chamber, 36... Spring, 411.41... Three-way valve, 42° 43... Negative pressure passage, 44... Negative pressure tank,
45... Passage, 46... Check valve, 47... Control circuit. Patent applicant: 11 San Jidosha Co., Ltd.
Figure 2! ! , dog advance angle figure 4 (8)

Claims (1)

【特許請求の範囲】[Claims] 吸気絞り弁下流の吸気通路を独立した第一吸気通路と第
二吸気通路に分岐して燃焼室に連通すると共に該第二吸
気通路に機関高出力運転時に開く第一吸気制御弁を備え
る内燃機関の吸気装置において、前記第一吸気通路の長
さを第二吸気通路に比して長く形成し、かつ前記第一吸
気制御弁の下流において前記第一吸気通路と第二吸気通
路とを互いに連通する連通孔を設け、該連通孔にアイド
リングあるいはそれに近い低負荷運転時に閉じる第二吸
気制御弁を設けたことを特徴とする内燃機関の吸気装置
An internal combustion engine in which an intake passage downstream of an intake throttle valve is branched into an independent first intake passage and a second intake passage to communicate with a combustion chamber, and the second intake passage is provided with a first intake control valve that opens during high engine output operation. In the intake device, the length of the first intake passage is longer than that of the second intake passage, and the first intake passage and the second intake passage communicate with each other downstream of the first intake control valve. 1. An intake device for an internal combustion engine, characterized in that the communication hole is provided with a second intake control valve that closes during idling or low-load operation close to idling.
JP59224961A 1984-10-25 1984-10-25 Intake device of internal-combustion engine Pending JPS61104120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59224961A JPS61104120A (en) 1984-10-25 1984-10-25 Intake device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59224961A JPS61104120A (en) 1984-10-25 1984-10-25 Intake device of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61104120A true JPS61104120A (en) 1986-05-22

Family

ID=16821912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59224961A Pending JPS61104120A (en) 1984-10-25 1984-10-25 Intake device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61104120A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6386184B1 (en) 1997-11-24 2002-05-14 Ab Volvo Internal combustion engine comprising at least one cylinder and individual intake passages
EP1916395A3 (en) * 2006-10-25 2012-05-16 Nissan Motor Co., Ltd. Variable air intake control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6386184B1 (en) 1997-11-24 2002-05-14 Ab Volvo Internal combustion engine comprising at least one cylinder and individual intake passages
EP1916395A3 (en) * 2006-10-25 2012-05-16 Nissan Motor Co., Ltd. Variable air intake control system

Similar Documents

Publication Publication Date Title
JPS6060010B2 (en) Intake system for multi-cylinder internal combustion engine
JPS6081458A (en) Intake-air device in engine
JPS62210218A (en) Intake device of multi-cylinder internal combustion engine
JPS6263127A (en) Suction device for engine
JPS6125916A (en) Intake-air device in engine
JPS61104120A (en) Intake device of internal-combustion engine
JPH0374521A (en) Intake device for multiple valve type engine
JPH065022B2 (en) Exhaust turbocharged engine
JPS59136515A (en) Three-valve type internal-combustion engine
JPS6053616A (en) Suction passage device for internal-combustion engine
JPS5813086Y2 (en) Crank chamber compression type 2-stroke engine
KR940003538B1 (en) Engine intake
JPS5918530B2 (en) Internal combustion engine intake system
JPS60125723A (en) Intake apparatus for internal combustion engine
JPS61200328A (en) Suction device for internal-combustion engine
JPH0415945Y2 (en)
JPS5951647B2 (en) engine
JPH04194318A (en) Suction device for engine
KR900006871B1 (en) Intabe means of internal combustion engine
JPH0148379B2 (en)
JPS62288318A (en) Suction device for 4-stroke engine
JPS61258921A (en) One-sided passage resting device of double suction passage for internal-combustion engine
JPH0737768B2 (en) Intake device for 4-cycle multi-cylinder engine
JPS61218720A (en) Intake device of engine with supercharger
JPS61218721A (en) Intake device of engine