JPS61104048A - Sliding member and manufacture thereof - Google Patents

Sliding member and manufacture thereof

Info

Publication number
JPS61104048A
JPS61104048A JP22368584A JP22368584A JPS61104048A JP S61104048 A JPS61104048 A JP S61104048A JP 22368584 A JP22368584 A JP 22368584A JP 22368584 A JP22368584 A JP 22368584A JP S61104048 A JPS61104048 A JP S61104048A
Authority
JP
Japan
Prior art keywords
copper
lead
alloy
infiltrated
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22368584A
Other languages
Japanese (ja)
Inventor
Tetsuya Suganuma
菅沼 徹哉
Akira Manabe
明 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP22368584A priority Critical patent/JPS61104048A/en
Publication of JPS61104048A publication Critical patent/JPS61104048A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a sliding member of sintered alloy having superior wear resistance and strength, by infiltrating lead into the sliding part requiring wear resistance and by infiltrating copper into the matrix part requiring strength, respectively, of a sintered alloy. CONSTITUTION:Lead grains 6 are placed on a graphite tray 7, a ring 4 of sintered body is put upon the lead grains 6 with its sliding part undermost, upon which a copper powder-molded substance 5 is placed. Succeedingly, the above material is heated in an atmosphere of AX gas to infiltrate lead and copper, respectively. In this way, a valve sheet ring which has a sliding surface 1 having a lead-infiltrated part 2 at the sliding part requiring wear resistance and having a copper-infiltrated part 3 at the matrix part requiring strength can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関などに用いられる焼結合金摺動部材及
びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sintered alloy sliding member used in internal combustion engines and the like, and a method for manufacturing the same.

〔従来技術〕[Prior art]

内燃機関のバルブシートのような摺動部材では摺動部位
に耐摩耗性が、また基材部位には高強度が要求されてい
る。一つの材料でこの二つを具えているものは少いこと
から従来は、一般に焼結合金に銅又は鉛を溶浸すること
が行われている。しかして、耐摩耗性のためには潤滑性
のある鉛溶浸材が好ましく、一方、強度的には銅溶浸材
の方が優れている場合が多い。従来潤滑性の良好な部材
を得ようとすると、強度的に劣り、また強度的に優れた
ものを得ようとすると所期の潤滑性能が得られないとい
う欠点があった。そのため一つの部材で優れた耐摩耗性
及び高強度の両要求を満足する摺動部材が求められてい
た。
In sliding members such as valve seats of internal combustion engines, the sliding parts are required to have wear resistance, and the base material parts are required to have high strength. Since there are few materials that have both of these properties, conventionally, sintered alloys have generally been infiltrated with copper or lead. Therefore, lead infiltrated materials with lubricity are preferred for wear resistance, while copper infiltrated materials are often superior in terms of strength. Conventionally, when trying to obtain a member with good lubricity, the strength is inferior, and when trying to obtain a member with excellent strength, the desired lubrication performance cannot be obtained. Therefore, there has been a need for a sliding member that satisfies both requirements for excellent wear resistance and high strength in a single member.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来の要望に応えるだめのもので、摺動
部位に鉛を溶浸することによシ耐摩耗性に優れ、かつ基
材部位に銅を溶浸することによシ強度に優れた複合溶浸
焼結合金摺動部材を提供するとと並びに摺動部材の製造
方法を提供することを目的とする。
The present invention is intended to meet the above-mentioned conventional demands, and has excellent wear resistance by infiltrating the sliding parts with lead, and improved strength by infiltrating the base material part with copper. It is an object of the present invention to provide an excellent composite infiltrated and sintered alloy sliding member, as well as a method for manufacturing the sliding member.

〔発明の構成〕[Structure of the invention]

本発明の複合溶浸した焼結合金摺動部材は母材である焼
結合金の耐摩耗性を必要とする摺動部位に耐摩耗性の優
れた鉛又は鉛合金が溶浸され、かつ高強度全必要とする
基材部位に強度の優れた鋼又は銅合金が溶浸されている
ことを特徴とする。
In the composite infiltrated sintered alloy sliding member of the present invention, lead or lead alloy with excellent wear resistance is infiltrated into the sliding parts of the sintered alloy base material that require wear resistance, and It is characterized by having steel or copper alloy with excellent strength infiltrated into the parts of the base material that require full strength.

本発明の上記複合溶浸焼結合金摺動部材は摺動部位に鉛
又は鉛合金を溶浸し、基材部位に銅又は銅合金を溶浸す
ることによシ製造される。
The composite infiltrated and sintered alloy sliding member of the present invention is manufactured by infiltrating the sliding portion with lead or a lead alloy, and infiltrating the base material portion with copper or a copper alloy.

この複合溶浸焼結合金摺動部材は内燃機関の  。This composite infiltrated and sintered alloy sliding member is used in internal combustion engines.

バルブシートリングにも使用できる。Can also be used for valve seat rings.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

スケルトンは金属粉末の成形体、予備焼結体又は焼結体
であってもよく、また、スケルトンが摺動部位と基材部
位ともに同一組成の金属粉末よりなる単層体又は摺動部
位と基材部位とが異なる組成の金属粉末よシなる複層体
であってもよい。スケルトンの摺動部位側を下方に向け
て配置し、該スケルトンの下面に鉛又は鉛合金を接触さ
せ、スケルトンの上面に銅又は銅合金を接触させて加熱
溶浸してもよい。溶浸工程で、銅又は銅合金の融点以上
で、かつ鉛又は鉛合金の融点以上の温度で加熱して摺動
部位に鉛又は鉛合金を溶浸させ、その後鍋又は銅合金の
融点以上の温度で加熱して基材部位に銅又は銅合金を溶
浸してもよい。また、まず銅又は銅合金を基材部位のみ
に選択溶浸し、次に銅又は銅合金の融点以下の温度で鉛
又は鉛合金の融点以上の温度で鉛又は鉛合金を摺動部位
に溶浸してもよい0 さらに詳しく説明すると、本発明は銅溶浸(高強度)と
鉛溶浸(耐摩耗性)の長所を併せ持つ複合溶浸焼結合金
摺動部材であり、基材部位のスケルトンの気孔中に銅を
溶浸することによって複合体の強度レベルは鉛単独溶浸
より十分高いレベルを保ち、しかも摺動部位の気孔中罠
鉛溶浸することによって複合体の耐摩耗特性は鉛が潤滑
剤として作用するので銅単独溶浸よシはるかに優れ、鉛
単独溶浸をもしのぐ優れた特性が得られる。後者の理由
は主として基材部位の銅によシ熱伝導性が鉛単独よりも
改善された結果と考えられる− 鉛をスケルトンの下面に、銅ヲスケルトノの上面に接触
させてスケルトンを配置する理由は鉛の比重が銅より大
きいことを利用して、液相状態で両者を積極的に動偏析
させるためである。
The skeleton may be a molded body, a pre-sintered body, or a sintered body of metal powder, and the skeleton may be a single-layer body made of metal powder with the same composition for both the sliding part and the base part, or It may also be a multi-layered body made of metal powders with different compositions. The sliding part side of the skeleton may be placed facing downward, and lead or a lead alloy may be brought into contact with the lower surface of the skeleton, and copper or a copper alloy may be brought into contact with the upper surface of the skeleton to perform heat infiltration. In the infiltration process, lead or lead alloy is infiltrated into the sliding part by heating at a temperature higher than the melting point of copper or copper alloy and higher than the melting point of lead or lead alloy, and then heated in a pot or at a temperature higher than the melting point of copper alloy. Copper or copper alloy may be infiltrated into the substrate portion by heating at a temperature. In addition, first, copper or copper alloy is selectively infiltrated only into the base material part, and then lead or lead alloy is infiltrated into the sliding part at a temperature below the melting point of copper or copper alloy and above the melting point of lead or lead alloy. 0 To explain in more detail, the present invention is a composite infiltrated sintered alloy sliding member that has both the advantages of copper infiltration (high strength) and lead infiltration (wear resistance). By infiltrating copper into the pores, the strength level of the composite is maintained at a sufficiently higher level than by infiltration of lead alone, and by infiltrating the trapped lead into the pores of the sliding area, the wear resistance properties of the composite are improved. Since it acts as a lubricant, it is far superior to infiltration of copper alone, and provides superior properties that surpass infiltration of lead alone. The latter reason is thought to be mainly due to the improved thermal conductivity of copper in the base material compared to lead alone.The reason for placing the skeleton with lead in contact with the bottom surface of the skeleton and copper in contact with the top surface of the skeleton is This is to take advantage of the fact that the specific gravity of lead is greater than that of copper to actively dynamically segregate both in a liquid phase state.

また、先に摺動部位に鉛又は鉛合金の溶浸を十分に行っ
た後に基材部位に銅合金の溶浸を行うのは、摺動部位の
耐摩耗特性を間違いなく確保するためである。
In addition, the reason why the sliding parts are thoroughly infiltrated with lead or lead alloy and then the base material part is infiltrated with copper alloy is to ensure the wear-resistant properties of the sliding parts. .

選択溶浸によシ複合溶浸する製造方法において、鉄系ス
ケルトンヲ用い、まず、溶浸の第1工程で基材部位のみ
に銅又は銅合金を選択溶浸する必要がらる。その手段と
して、摺動部位への銅又は銅合金の溶浸を避けるために
、摺動部位材に溶浸雰囲気で酸化しやすいクロム等の元
素を含むマトリックス合金を用い、溶浸雰囲気にはクロ
ム等の表面酸化物が還元されないような露点の高いRX
ガス雰囲気等を用い、摺動部位材料の表面及び気孔周辺
に酸化物を形成させ、銅又は銅合金溶浸剤液相とのぬれ
性が悪くなシ、摺動部位の溶浸が防止できる。一方、基
材部位には上記溶浸雰囲気で酸化しやすいクロム等の元
素を含まないため、RXガス雰囲気でもぬれ性を悪くす
る酸化物を形成しないので、銅又は銅合金の溶浸が確実
に行うことができる。
In the manufacturing method of selective infiltration and composite infiltration, it is necessary to use an iron-based skeleton and selectively infiltrate only the base material portion with copper or copper alloy in the first step of infiltration. As a means of achieving this, in order to avoid infiltration of copper or copper alloy into the sliding part, a matrix alloy containing elements such as chromium that is easily oxidized in the infiltration atmosphere is used for the sliding part material, and chromium is used in the infiltration atmosphere. RX with a high dew point such that surface oxides such as
By using a gas atmosphere or the like, oxides are formed on the surface and around the pores of the material of the sliding part, so that the wettability with the liquid phase of the copper or copper alloy infiltrant is poor, and infiltration of the sliding part can be prevented. On the other hand, since the base material does not contain elements such as chromium that are easily oxidized in the above-mentioned infiltration atmosphere, it does not form oxides that impair wettability even in the RX gas atmosphere, so infiltration of copper or copper alloy is ensured. It can be carried out.

次に溶浸の第2工程で、未溶浸部位の摺動部位に鉛又は
鉛合金を溶浸する必要がある。その手段として、ぬれ性
を悪くする摺動部位の表面や気孔周辺に形成されたクロ
ム等の酸化物を還元するよりなH2ガス又はアンモニア
分解ガス(AXガス)等の低露点雰囲気中で鉛又は鉛合
金の溶浸を行うことができ、その際、銅又は銅合金の融
点よシ低いi=で鉛又は鉛合金の溶浸を行うことが好ま
しい。
Next, in the second step of infiltration, it is necessary to infiltrate the uninfiltrated sliding parts with lead or a lead alloy. As a means of achieving this, it is possible to remove lead or Infiltration of lead or lead alloys can be carried out, preferably at i = lower than the melting point of the copper or copper alloy.

〔実 施 例〕〔Example〕

以下、本発明を実施例により説明する。 The present invention will be explained below using examples.

実施例1 MO10%、Co 5%、01%及び残部Feとなるよ
うiC1Mo粉、Co粉、グラファイト粉及びFe粉を
配合してな為混粉100部(重量二以下同じ)に型潤滑
剤[18部を添加混合してなる摺動部材用粉末と、C1
%及び残部Feとなるようにグラファイト粉及び鉄粉を
配合してなる湿分100部に同じく型潤滑剤α8部を添
加混合してなる基材用粉末を外径3り■、内径20簡、
高さ10mなるバルブシートリング形状に7 ton、
/−で金型2層成形した。これt−AXカス雰囲気中1
150℃で60分間焼結した。
Example 1 IC1Mo powder, Co powder, graphite powder and Fe powder were blended so that MO was 10%, Co was 5%, 01% and the balance was Fe.For this reason, mold lubricant was added to 100 parts of the mixed powder (same weight of 2 or less). A sliding member powder obtained by adding and mixing 18 parts of C1
% and the balance is Fe, a base material powder made by adding and mixing 100 parts of moisture of graphite powder and iron powder with 8 parts of mold lubricant α, an outer diameter of 3 mm, an inner diameter of 20 mm,
7 ton valve seat ring shape with a height of 10 m.
/- was molded in two layers. This is in the t-AX dust atmosphere 1
Sintering was performed at 150°C for 60 minutes.

次に第2図に示すように、上記焼結体リング    、
・が納まるようにくほみを設けた黒鉛トレー(力に鉛粒
(6)2tを敷き、摺動部位を下にして焼結体り/グ(
4)を鉛粒(6)の上に重ね、更にその上に外径50簡
、内径2〇四、高さ5mの形状の銅粉末成形体(5)を
載せ、AXガス雰囲気中で加熱溶浸した。その際、まず
鉛の融点以上、かつ銅の融点以下の1050℃で30分
間保持し、その後鍋の融点以上の1130℃で30分間
保持することによシ、第1図に示すような複合溶浸焼結
体(発明材1−1)を得た。図中、(2)は鉛又は鉛合
金溶浸部位で、(3)は銅又は銅合金溶浸部位である。
Next, as shown in FIG. 2, the sintered ring,
・Place 2 tons of lead grains (6) on a graphite tray with a groove to accommodate the sintered body (with the sliding part facing down).
4) on top of the lead grains (6), and on top of that a copper powder molded body (5) with an outer diameter of 50mm, an inner diameter of 204mm, and a height of 5m, and heated and melted in an AX gas atmosphere. Soaked. At that time, the composite melt as shown in Figure 1 was prepared by first holding the temperature at 1050°C, which is above the melting point of lead and below the melting point of copper, for 30 minutes, and then holding it at 1130°C, above the melting point of the pot, for 30 minutes. A sintered body (invention material 1-1) was obtained. In the figure, (2) is a lead or lead alloy infiltrated area, and (3) is a copper or copper alloy infiltrated area.

以下同様にして表1に示す成分及び組成の複合溶浸焼結
体を得た。なお発明材1−2は被溶浸スケルトンとして
、発明材1−1のような焼結体ではなく、950℃で3
0分間焼結した予備焼結体を用い、銅溶浸は1150℃
で60分間保持して行りた。発明材1−5は被溶浸スケ
ルトンとじて、成形体を用い、溶浸工程で発明材1−2
と同じ経過をたどらせた。また発明材1−4及1−5は
摺動部材料にそれぞれCo基及びNi基を用いた。また
発明材1−1と同様に行って比較材1−1及び1−2を
得た。なお比較材1−1は鉛のみで単独溶浸したもので
あシ、比較材1−2は銅のみで単独溶浸を行ったもので
ある0 これらのテストピースで圧環強さを測定し、ま、た弁座
試験を行い、バルブシート摩耗として当り幅増量を測定
した。
Thereafter, composite infiltrated sintered bodies having the components and compositions shown in Table 1 were obtained in the same manner. Inventive material 1-2 is not a sintered body like inventive material 1-1 as a skeleton to be infiltrated, but is
Using a pre-sintered body sintered for 0 minutes, copper infiltration was performed at 1150°C.
It was held for 60 minutes. Inventive material 1-5 uses a molded body as the skeleton to be infiltrated, and inventive material 1-2 in the infiltration process.
The same process followed. Inventive materials 1-4 and 1-5 used Co-based and Ni-based materials for the sliding parts, respectively. Comparative materials 1-1 and 1-2 were also obtained in the same manner as inventive material 1-1. Comparative material 1-1 was infiltrated with only lead, and comparative material 1-2 was infiltrated with only copper. The radial crushing strength was measured with these test pieces. In addition, a valve seat test was conducted and the increase in contact width was measured as valve seat wear.

なお、本発明中、パーセント“は重量基準によるO 結果を表1に示す。表1の結果かられかるように本発明
材1−1ないし1−5はいずれも圧環強さ100 Kf
fl−以上で鉛単独溶浸の比較材1−1の7.5 Kf
fl−よシ優れ、また弁座試験シート当シ幅増量が12
5m以下で銅単独溶浸の比較材1−2の1.17 mよ
りはるかに浸れ、しかも鉛単独溶浸の比較材1−1よシ
も優れていた。
In the present invention, "percentage" is O based on weight. The results are shown in Table 1. As can be seen from the results in Table 1, the present invention materials 1-1 to 1-5 all have a radial crushing strength of 100 Kf.
7.5 Kf of comparative material 1-1 infiltrated with lead alone at fl- or more
fl- width is excellent, and the width of the valve seat test seat is increased by 12
It was far more immersible than Comparative Material 1-2, which was infiltrated only with copper, at 1.17 m at 5 m or less, and was also superior to Comparative Material 1-1, which was infiltrated with only lead.

実施例2 Mo 5 %、Cr3%及び残部Feからなる合金粉末
100部にグラファイト粉末(L5部及び潤滑剤0.8
部を添加混合してなる摺動部材用粉末と、Ni2%、G
r[15%及び残部Feからなる粉末100部に型潤滑
剤α8部を添加混合してなる基材用粉末を外径30問、
内径20可、高さ10101なるバルブシートリング形
状に7 ton/dで金型2層成形した。これをAXガ
ス雰囲気中1150℃で60分間焼結した。
Example 2 Graphite powder (L5 parts and lubricant 0.8
Powder for sliding members made by adding and mixing 2% Ni, 2% G
A base material powder prepared by adding and mixing 8 parts of a mold lubricant to 100 parts of a powder consisting of 15% r[15% and the balance Fe, with an outer diameter of 30 parts,
A valve seat ring having an inner diameter of 20mm and a height of 101mm was molded in two layers with a mold at 7 ton/d. This was sintered at 1150° C. for 60 minutes in an AX gas atmosphere.

次に黒鉛トレー上に摺動部位を下にして焼結体をセット
し、その上に外径60簡、内径20m+。
Next, set the sintered body on a graphite tray with the sliding part facing down, and place the sintered body on top of it with an outer diameter of 60 mm and an inner diameter of 20 m+.

高さ5嘘の形状の銅粉末成形体を載せ、PXガス雰囲気
中1120℃で30分間溶浸した。次に黒鉛トレー上に
鉛粒をセットし、その上に摺動部位を下にして上記溶浸
体を載せ、H,ガス雰囲気中1050℃で50分間溶浸
して、第1図に示すような複合溶浸体(発明材2−1)
を得た。
A copper powder molded body having a height of 5 degrees was placed on it, and infiltration was carried out at 1120° C. for 30 minutes in a PX gas atmosphere. Next, lead particles were set on a graphite tray, and the above-mentioned infiltrated body was placed on top of it with the sliding part facing down, and infiltrated for 50 minutes at 1050°C in an H gas atmosphere to form a shape as shown in Figure 1. Composite infiltrated body (invention material 2-1)
I got it.

以下、同様にして、発明材2−2の複合溶浸焼結体を得
た。なお、摺部材にはMo 1チ、Cr 3チ及び残部
Feからなる合金粉末100部にNi粉2部、Gr粉α
5部及び型潤滑剤α8部を添加混合してなる粉末、及び
基材にはCu粉3%、Ni粉、Cr粉(18%及び残部
Fe粉からなる粉末100部に型潤滑剤(18部を添加
混合してなる粉末を用いたつまた、鉛溶浸剤としてはP
b −1チSn1  銅溶浸剤としてはCu−(L5C
o−α3 Feを用いた。また、同様にして比較剤2−
1及び2−2ft得た。なお、比較剤2−1は発明材2
−1の焼結体にH2雰囲気中で鉛のみt溶浸した。また
比較材2−2は発明材2−1の焼結体にH2雰囲気中で
銅のみを溶浸した。
Thereafter, a composite infiltrated sintered body of invention material 2-2 was obtained in the same manner. In addition, for the sliding member, 100 parts of alloy powder consisting of 1 piece of Mo, 3 pieces of Cr, and the balance Fe, 2 parts of Ni powder, and α of Gr powder were added.
5 parts and mold lubricant α8 parts were added and mixed, and the base material was 100 parts of powder consisting of 3% Cu powder, Ni powder, Cr powder (18% and the balance Fe powder) and mold lubricant (18 parts). P is used as a lead infiltrant.
b -1chiSn1 As a copper infiltrant, Cu-(L5C
o-α3Fe was used. Also, in the same manner, comparative agent 2-
Obtained 1 and 2-2ft. Note that comparative material 2-1 is the invention material 2.
The sintered body of No.-1 was infiltrated with only lead in an H2 atmosphere. Comparative material 2-2 was obtained by infiltrating only copper into the sintered body of invention material 2-1 in an H2 atmosphere.

これらのテストピースで圧環強さ全測定し、また弁座試
験片形状に加工して2l−4N/<ルプと組み合わせて
、500℃で10時間の弁座試験を行い、バルブシート
摩耗として当シ幅増量を測定した。
These test pieces were used to measure the total radial crushing strength, and after being processed into the shape of a valve seat test piece and combined with a 2l-4N/< loop, a valve seat test was conducted at 500°C for 10 hours. Width gain was measured.

結果を表2に示す。表2から分かるように圧環強さがそ
れぞれ115 Kgf/wj 、  120 Kqf/
dで鉛単独溶浸の比較材2−1より優れ、強度の優れた
銅単独溶浸の比較材2−2の120 Kff/Hとはぼ
同等であった。また弁座試験バルブシート摩耗当り幅増
量が[143mm以下で、銅単独溶浸の比較材?−1よ
シはるかに優れ、耐摩耗性の良好な鉛単独溶浸の比較材
2−1よシも優れていた。
The results are shown in Table 2. As can be seen from Table 2, the radial crushing strength is 115 Kgf/wj and 120 Kqf/, respectively.
It was superior to Comparative Material 2-1 infiltrated with lead alone in terms of d, and was almost equivalent to 120 Kff/H of Comparative Material 2-2 infiltrated with copper alone, which had excellent strength. Also, in the valve seat test, the width increase per valve seat wear was 143 mm or less, compared to the comparison material with copper infiltration alone? It was far superior to Comparative Material 2-1, which was infiltrated with lead alone, and had good abrasion resistance.

表2 〔発明の効果〕 本発明は耐摩耗性を必要とする摺動部位に鉛又は鉛合金
を溶浸し、強度を必要とする基材部位に銅又は銅合金を
溶浸する複合溶浸をするこ  4とによシ、従来鉛又は
銅の単独溶浸では得られなかった鉛溶浸の長所でおる耐
摩耗性と銅溶浸の長所である強度の優れ丸性質の両者を
併せ持つ焼結合金摺動部材を得ることができる。
Table 2 [Effects of the invention] The present invention employs composite infiltration in which lead or lead alloy is infiltrated into the sliding parts that require wear resistance, and copper or copper alloy is infiltrated into the base material parts which require strength. 4. A sintered bond that combines both the wear resistance, which is an advantage of lead infiltration, and the excellent strength and roundness, which is an advantage of copper infiltration, which could not be obtained by conventional infiltration of lead or copper alone. A gold sliding member can be obtained.

併せて、本発明では、母材となる焼結合金の空孔率及び
溶浸すべき鉛と銅のそれぞれの溶浸量を適当にすること
によって広い範囲で店動部材の特性を容易に変えること
ができるなど多くの優れた効果を有するつ また、本発明の鋼と袷の化皮の差及び融点の差を利用し
た複合gtによる裏遣方法は同一工程で鉛溶浸と銅溶浸
を4玩的に行うことができ、さらに基材部に′At選択
的に浴浸し、その侵鉛を溶浸する腹合溶浸による。B遣
方法によっても容易に製造でさる。
In addition, in the present invention, the characteristics of the movable member can be easily changed over a wide range by appropriately adjusting the porosity of the sintered alloy serving as the base material and the respective infiltration amounts of lead and copper to be infiltrated. In addition, the composite GT lining method of the present invention, which takes advantage of the difference in skin and melting point between the steel and the lining, has many excellent effects such as the ability to perform lead infiltration and copper infiltration in the same process. This can be carried out in a simple manner, and furthermore, the base material portion is selectively immersed in 'At' bath, and the lead is infiltrated by infiltration. It can also be easily manufactured using the B method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の榎せ浴浸、尭ト占バルブシートリング
の構造を示す断面図、             。 第2図は溶浸工程における焼結体り/グのセット方法を
示す断面図でめる。 1図中。 1・・・パルプとの摺動面 2・・・鉛又は鉛合金溶浸部位 3・・・銅又は銅合金溶浸部位 4・・・焼結体リング 5・・・銅又は鋼合金溶浸剤(成形体)6・・・鉛又は
鉛合金溶浸剤(粒) 7・・・黒鉛トレー 特許出願人 トヨタ自動車株式会社 第1図 第2 叉
FIG. 1 is a sectional view showing the structure of the valve seat ring of the present invention. FIG. 2 is a cross-sectional view showing how to set the sintered body in the infiltration process. In figure 1. 1... Sliding surface with pulp 2... Lead or lead alloy infiltration area 3... Copper or copper alloy infiltration area 4... Sintered body ring 5... Copper or steel alloy infiltrant (Molded object) 6... Lead or lead alloy infiltrant (granules) 7... Graphite tray patent applicant Toyota Motor Corporation Fig. 1 Fig. 2

Claims (8)

【特許請求の範囲】[Claims] (1)母材である焼結合金の耐摩耗性を必要とする摺動
部位に鉛又は鉛合金が溶浸され、かつ強度を必要とする
基材部位に銅又は銅合金が溶浸されていることを特徴と
する複合溶浸焼結合金摺動部材。
(1) Lead or lead alloy is infiltrated into the sliding parts of the base material sintered alloy that require wear resistance, and copper or copper alloy is infiltrated into the base material parts that require strength. A composite infiltrated and sintered alloy sliding member characterized by:
(2)内焼機関のバルブシートリングである特許請求の
範囲第1項記載の複合溶浸焼結合金摺動部材。
(2) The composite infiltrated and sintered alloy sliding member according to claim 1, which is a valve seat ring for an internal combustion engine.
(3)スケルトンとして金属粉末成形体、予備焼結体又
は焼結体を用い、該スケルトンの摺動部位に鉛又は鉛合
金を溶浸し、基材部位に銅又は銅合金を溶浸することを
特徴とする複合溶浸焼結合金摺動部材の製造方法。
(3) Using a metal powder compact, pre-sintered body, or sintered body as a skeleton, infiltrating the sliding parts of the skeleton with lead or a lead alloy, and infiltrating the base material part with copper or a copper alloy. A method for manufacturing a composite infiltrated and sintered alloy sliding member.
(4)スケルトンが摺動部位と基材部位ともに同じ組成
の金属粉末よりなる単層体であることを特徴とする特許
請求の範囲第3項記載の製造方法。
(4) The manufacturing method according to claim 3, wherein the skeleton is a single layer body made of metal powder having the same composition in both the sliding portion and the base material portion.
(5)スケルトンが摺動部位と基材部位とが異なる組成
の金属粉末よりなる複層体であることを特徴とする特許
請求の範囲第3項記載の製造方法。
(5) The manufacturing method according to claim 3, wherein the skeleton is a multi-layered body in which the sliding portion and the base material portion are made of metal powders having different compositions.
(6)スケルトンの摺動部位側を下方に向けて配置し、
該スケルトンの下面に鉛又は鉛合金を接触させ、スケル
トンの上面に銅又は銅合金を接触させて加熱することを
特徴とする特許請求の範囲第3項記載の製造方法。
(6) Place the skeleton with the sliding part side facing downward,
4. The manufacturing method according to claim 3, wherein the lower surface of the skeleton is brought into contact with lead or a lead alloy, and the upper surface of the skeleton is brought into contact with copper or a copper alloy for heating.
(7)銅又は銅合金の融点以下で、かつ鉛又は鉛合金の
融点以上の温度で加熱して摺動部位に鉛又は鉛合金を溶
浸させ、その後銅又は銅合金の融点以上の温度で加熱し
て基材部位に銅又は銅合金を溶浸することからなる特許
請求の範囲第3項記載の製造方法。
(7) Infiltrate the sliding parts with lead or lead alloy by heating at a temperature below the melting point of copper or copper alloy and above the melting point of lead or lead alloy, and then at a temperature above the melting point of copper or copper alloy. 4. The manufacturing method according to claim 3, which comprises infiltrating copper or copper alloy into the base material portion by heating.
(8)銅又は銅合金を基材部位のみに選択溶浸し、その
後銅又は銅合金の融点以下の温度で鉛又は鉛合金を摺動
部位に溶浸することを特徴とする特許請求の範囲第3項
記載の製造方法。
(8) Copper or copper alloy is selectively infiltrated only into the base material portion, and then lead or lead alloy is infiltrated into the sliding portion at a temperature below the melting point of the copper or copper alloy. The manufacturing method described in Section 3.
JP22368584A 1984-10-24 1984-10-24 Sliding member and manufacture thereof Pending JPS61104048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22368584A JPS61104048A (en) 1984-10-24 1984-10-24 Sliding member and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22368584A JPS61104048A (en) 1984-10-24 1984-10-24 Sliding member and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61104048A true JPS61104048A (en) 1986-05-22

Family

ID=16802039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22368584A Pending JPS61104048A (en) 1984-10-24 1984-10-24 Sliding member and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61104048A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100206A (en) * 1986-10-15 1988-05-02 Mazda Motor Corp Engine valve seat
JPH08270499A (en) * 1995-03-31 1996-10-15 Yamaha Motor Co Ltd Junction valve seat
JP2018128019A (en) * 2017-02-09 2018-08-16 マン・ディーゼル・アンド・ターボ・エスイー Valve seat ring for gas exchange valve, gas exchange valve, and method for manufacturing valve seat ring

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100206A (en) * 1986-10-15 1988-05-02 Mazda Motor Corp Engine valve seat
JPH08270499A (en) * 1995-03-31 1996-10-15 Yamaha Motor Co Ltd Junction valve seat
JP2018128019A (en) * 2017-02-09 2018-08-16 マン・ディーゼル・アンド・ターボ・エスイー Valve seat ring for gas exchange valve, gas exchange valve, and method for manufacturing valve seat ring

Similar Documents

Publication Publication Date Title
EP0167034A1 (en) Valve-seat insert for internal combustion engines and its production
JPH08232029A (en) Nickel-base grain dispersed type sintered copper alloy and its production
GB2216545A (en) Sintered alloy for oil-retaining bearing and method for manufacturing the sintered alloy
JPH0210311B2 (en)
JP2005505688A (en) Bearings that do not contain lead
CA1278200C (en) Wear-resistant, sintered iron alloy and process for producing the same
US3790352A (en) Sintered alloy having wear resistance at high temperature
JPS61104048A (en) Sliding member and manufacture thereof
JPH07166278A (en) Coppery sliding material and production thereof
JP3340908B2 (en) Sintered sliding member and manufacturing method thereof
US20130093131A1 (en) Sintered composite sliding part and production method therefor
JPS5852547B2 (en) Multi-layer sliding member
KR100205795B1 (en) Valve lifter and its mamufacturing method of internal combustion engine
JP2001131660A (en) Alloy powder for copper series high strength sintered parts
JP2643680B2 (en) Valve seat made of metal-filled sintered alloy for internal combustion engine
JP3658465B2 (en) Iron-based sintered sliding member and manufacturing method thereof
JPH0235125B2 (en) FEKEISHOKETSUZAIRYOSEI2SOBARUBUSHIITONOSEIZOHO
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JPH01100207A (en) Production of infiltrated valve seat ring
JPS62202044A (en) Manufacture of sintered alloy superior in high temperature wear resistance
GB2088414A (en) Sintering Stainless Steel Powder
JP3332393B2 (en) Sintered sliding member and manufacturing method thereof
JPH02258946A (en) Composite sintered alloy, heat-resistant member and steel material supporting member in heating furnace
JPH11286755A (en) Sintered piston ring and its production
JPS61291946A (en) Manufacture of wear resistance sintered alloy