JPS61103768A - Polishing and grinding tool - Google Patents

Polishing and grinding tool

Info

Publication number
JPS61103768A
JPS61103768A JP22469984A JP22469984A JPS61103768A JP S61103768 A JPS61103768 A JP S61103768A JP 22469984 A JP22469984 A JP 22469984A JP 22469984 A JP22469984 A JP 22469984A JP S61103768 A JPS61103768 A JP S61103768A
Authority
JP
Japan
Prior art keywords
polishing
tool
gas
abrasion
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22469984A
Other languages
Japanese (ja)
Other versions
JPS649141B2 (en
Inventor
Satoshi Noda
聡 野田
Kazuo Ushiyama
一雄 牛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP22469984A priority Critical patent/JPS61103768A/en
Publication of JPS61103768A publication Critical patent/JPS61103768A/en
Publication of JPS649141B2 publication Critical patent/JPS649141B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • B24D3/32Resins or natural or synthetic macromolecular compounds for porous or cellular structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To permit the work with high precision by permitting the uniform abrasion of grindstone and suppressing the change of the shape of the polishing surface of a tool by using the abrasive material, as polishing and grinding tool, in which regions having the different constitution of the content of gas foams in the abrasive material and said regions are arranged in concentric and annular form around the revolution shaft to the tool. CONSTITUTION:A tool 11 is constituted of the regions 12-14 of the polishing material having the different density of gas foams whose volume is nearly equal, and the regions 12-14 are joined integrally into concentric annular form around the revolution shaft O of the tool, and when the gas-foam density C in each region is 12a-14a, the relation 12a>13a>14a is established. The magnitude of the gas-foam density exerts an influence onto the magnitude of the polishing area of the polishing material, and the abrasion amount of the polishing tool can be controlled. In other words, since the region 12 as the center part of the polishing surface of the tool 11 has the highest gas-foam density C, the degree of abrasion at the upper edge is large, and since the region 14 as the abrasion surface of the peripheral part has the lowest gas-foam density C, the degree of abrasion is little. Therefore, each abrasion amount of the peripheral part and the center part can be made equal by setting the distribution of gas-foam density, and the precision can be improved.

Description

【発明の詳細な説明】 技術分野 本発明は、曲面を有する部材の研摩・研削工具に関し、
光学部材の研摩・研削C二連したものである。
[Detailed description of the invention] Technical field The present invention relates to a polishing/grinding tool for a member having a curved surface.
Polishing and grinding of optical members C is a series of two steps.

従来技術 従来、この種の研摩工具は、その−例を第6図に示すよ
うにして用いられていた。第6図は、上記研摩工具によ
って光学用レンズを研摩するための研摩加工機の要部概
要を示す。図4二おいて符号1は従来の研摩工具であり
、周知のようL:研摩砥材が均一に結合された半球面体
からなり、工具回転軸7の上端部Cニ一体的に支持され
ている。上記工具1によって研摩される凹面レンズ2は
、レンズ保持具3により保持されている。保持具3の上
面に設けられた凹部3aには、かんざし4の下端部に設
けられたかんざし球部4aが嵌入し、かんざし4は、レ
ンズ保持具3に適当な荷重を加えながら、不図示の揺動
機構により矢印の方向(=揺動する。こうして、レンズ
保持具3を介してレンズ2の被研摩面を、回転軸7上で
回転している工具1の研摩面C二押圧摺動させて研摩す
る。このときレンズ2は、工具1の研摩面を揺動しなが
ら工具1の回転I:ならって従属回転し、所定の研摩が
行なわれる。符号5は周知のクーラント(切削油)供給
用パイプを示し、同パイプ(=よってクーラント6が研
摩工具1の露呈した研摩面1;注がれる。
Prior Art Conventionally, this type of polishing tool has been used, an example of which is shown in FIG. FIG. 6 shows an outline of the main parts of a polishing machine for polishing an optical lens using the polishing tool described above. In FIG. 42, reference numeral 1 denotes a conventional polishing tool, and as is well known, L: consists of a hemispherical body in which polishing abrasive material is uniformly combined, and is integrally supported by the upper end C of the tool rotation shaft 7. . The concave lens 2 to be polished by the tool 1 is held by a lens holder 3. A hairpin bulb 4a provided at the lower end of the hairpin 4 fits into a recess 3a provided on the upper surface of the holder 3, and the hairpin 4 is inserted into the lens holder 3 while applying an appropriate load. The swinging mechanism swings in the direction of the arrow (= swinging. In this way, the surface to be polished of the lens 2 is pressed and slid on the polished surface C of the tool 1 rotating on the rotation shaft 7 via the lens holder 3. At this time, the lens 2 rotates according to the rotation I of the tool 1 while swinging on the polishing surface of the tool 1, and a predetermined polishing is performed. Reference numeral 5 indicates a well-known coolant (cutting oil) supply. 1, and the coolant 6 is poured onto the exposed abrasive surface 1 of the abrasive tool 1.

ところで、このような従来のレンズの研摩・研削加工に
おいては、研摩工具1の研摩面が加工すべきレンズ2の
被研摩・研削面に均等に接触しておらず、しかも、かん
ざし4の揺動機構により押圧力が必ずしも均等にならな
い。従って、従来の研摩・研削工具の研摩・研削加工シ
ニよる摩耗量は一様とならず予定の債と異なってくる。
By the way, in such conventional lens polishing/grinding processing, the polished surface of the polishing tool 1 does not come into even contact with the polished/grinded surface of the lens 2 to be processed, and moreover, the swinging of the hairpin 4 The pressing force is not necessarily equal depending on the mechanism. Therefore, the amount of wear due to polishing/grinding of conventional polishing/grinding tools is not uniform and differs from the expected amount.

例えば、第7図に示すように、研摩工具1の研摩面の中
心部1Bの摩耗量をtb1周辺部1aの摩耗量をtaと
とすればtb\t=となる。このように研摩工具1の研
摩面が均等1:塵耗しないで、tb>’t、、またはt
b< t@となるに対応して研摩工具の研摩面の曲率半
径Rは、第8IAC示すように研摩時間tの長さに応じ
て増減し、所定の曲率半径となぁようにレンズ2を研摩
することは困難となる。
For example, as shown in FIG. 7, if the wear amount of the central portion 1B of the polishing surface of the polishing tool 1 is tb1, and the wear amount of the peripheral portion 1a is ta, then tb\t=. In this way, the polished surface of the polishing tool 1 is evenly 1: no dust wear, tb>'t, or t
Corresponding to b<t@, the radius of curvature R of the polishing surface of the polishing tool increases or decreases depending on the length of polishing time t, as shown in No. 8 IAC, and the lens 2 is polished to a predetermined radius of curvature. It becomes difficult to do so.

そのため、従来の研摩量A1の研摩量を均等にするため
に、工具1の回転率動軸1の中心軸A−Xと、直立した
かんざし4の状態(第6図参照)1二あるレンズ2の光
軸B−B’とのなす角度θを適度変更する手段が採られ
ていた。すなわち、例え       jばθを大きく
すればtl>tbとなり、j(ロ)−H−一θを小さく
すればta <tbとなることを利用していたのである。
Therefore, in order to equalize the amount of polishing compared to the conventional amount of polishing A1, the center axis A-X of the rotation rate dynamic axis 1 of the tool 1 and the state of the upright hairpin 4 (see Fig. 6) 1 and the two lenses 2 Means has been taken to moderately change the angle θ between the optical axis B-B' and the optical axis B-B'. In other words, it utilized the fact that, for example, if j θ is increased, tl>tb, and if j(b)-H-1 θ is decreased, ta <tb.

しかし、研摩されるレンズの加工径をり1曲率半径をR
とした場合、レンズ球面を曲率中心から見込む角の半角
(レンズ半角)α、すなわちSin”(D/2R)が9
0″(半球レンズ)に近くなると、研摩工具の表面積や
前記相対角θは幾何学的な制約を受けて、前記工具の表
面積をレンズ表面積に対して大きくすることができず、
工具の摩耗は早くなると共に、上記相対角θを小さくす
ることができないために、t、>tbとなりtaとtb
とを等しくすることが不可能となる。従って88図1=
示すように、例えば凹レンズの場合は研摩時間I:比例
して曲率半径が小さくなる方向I:変化し、凸レンズの
場合は反対1;曲率半径が大きくなる方向に変化する。
However, the processing diameter of the lens to be polished is 1, and the radius of curvature is R.
In this case, the half angle (lens half angle) α of the angle of the lens spherical surface viewed from the center of curvature, that is, Sin” (D/2R) is 9
0'' (hemispherical lens), the surface area of the polishing tool and the relative angle θ are subject to geometrical constraints, and the surface area of the tool cannot be made larger than the lens surface area.
Since the tool wears out quickly and the above relative angle θ cannot be made small, t, > tb, and ta and tb
It becomes impossible to make them equal. Therefore, 88Figure 1=
As shown, for example, in the case of a concave lens, the polishing time I: changes in the direction in which the radius of curvature becomes smaller proportionally, and in the case of a convex lens, the opposite 1 changes in the direction in which the radius of curvature becomes larger.

このため、従来の工具は曲率半径の変化が一方的となり
、曲率半径の安定した加工が不可能となる欠点を有して
いた。
For this reason, conventional tools have the disadvantage that the radius of curvature changes unilaterally, making it impossible to perform machining with a stable radius of curvature.

発明の目的 本発明は、研摩・研削工具中に、気胞の含有構成の異な
る領域を設けることによって、工具の研摩・研削面の摩
耗量が全面に亘って均一になるようにし、前述した従来
の研摩・研削工具が有する欠点を鵡決することを目的と
する。
Purpose of the Invention The present invention provides a polishing/grinding tool with regions with different air vesicle content compositions, thereby making the amount of wear on the polished/grinding surface of the tool uniform over the entire surface. The purpose is to resolve the shortcomings of polishing and grinding tools.

発明の概要 砥材中の気胞の含有構成が異なる領域を工具回転軸を中
心に同心環状6;配置した砥材を研摩・研削工具として
用いることも;より、砥材と被加工物との接触面積率を
径方向に変化させて摩耗性を径方向I:沿って変化させ
る。
Summary of the Invention The abrasive material in which the abrasive material has different compositions of air cells is arranged in a concentric ring shape 6 around the tool rotation axis; the abrasive material arranged can also be used as a polishing/grinding tool; By changing the area ratio in the radial direction, the abrasion property is changed along the radial direction I:.

前記気胞の含有構成の差異は、砥材中に形成する気胞密
度(単位体積当りの気胞の数)の差異I:より発生でき
る。また、砥材の単位体積中に含まれる気胞の体積また
は形状の差異によっても発生することができる。
The difference in the composition of air spores can be caused by the difference I: in air spore density (number of air spores per unit volume) formed in the abrasive material. It can also occur due to a difference in the volume or shape of air cells contained in a unit volume of the abrasive material.

気胞の含有構成の異なる領域は、気胞密度、気胞の体積
、または形状等の気胞の含有構成が工具回転軸を中心と
して径方向に階段状に変化するような分布、または連続
的C二階らかなWImもしくは曲線状の分布を有する。
A region with a different air vesicle content structure is a distribution in which the air spore content structure, such as air vesicle density, air vesicle volume, or shape, changes stepwise in the radial direction around the tool rotation axis, or a continuous C two-dimensional distribution. WIm or has a curved distribution.

また、特殊な形状の曲面を研摩・研削するため “に!
i’iJ記分布は、単W4に増減するもの以外に1以上
の極値を有する高次関数的に変化するものを採用するこ
ともできる。
Also, for polishing and grinding curved surfaces with special shapes.
For the i'iJ distribution, in addition to the distribution that increases or decreases to a single W4, a distribution that changes in a high-order function having one or more extreme values can also be adopted.

このように前記気胞の含有構成の異なる領域における気
胞の分布は研摩・研削端が均一になるように被加工面の
形状に応じて実験的に求めることができる。
In this way, the distribution of air spores in the regions having different air spore content compositions can be experimentally determined according to the shape of the surface to be processed so that the polished and ground edges are uniform.

実施例 以下、本発明を図示の実施例に基づいて説明する。第1
図囚、 (Blは本発明の第一実施例を示す所載工具1
1の縦断面及び横断面をそれぞれ示す。
EXAMPLES The present invention will be explained below based on illustrated examples. 1st
Figure 1 (Bl is tool 1 showing the first embodiment of the present invention)
A vertical section and a transverse section of 1 are shown, respectively.

この研摩工具11は、外観の形状文びその素材は従来の
ものと変わらないが、内部に気胞(図中の小さな丸)を
含有している。その1個の気胞の体積はほぼ同一であり
、単位体積当たりの気胞の数で表わされる気胞密度が異
なる研摩砥材の領域12゜13及び14によって工具1
1が構成されている。
This polishing tool 11 has the same external shape and material as the conventional polishing tool, but contains air cells (small circles in the figure) inside. The areas 12, 13 and 14 of the abrasive material have approximately the same volume and different vesicle densities expressed in terms of the number of vesicles per unit volume.
1 is configured.

領域12 、13及び14は工具回転軸0を中心として
同心環状に一体i:結合されており、各領域の気胞密度
Cをそれぞれ+2a 、 13m及び14aとするとき
12a > 13m > 14aなる関係を有する。気
泡密度の大小は砥材の研j11面積(波糾摩面との接触
面積)の大小に影響を及ぼし、研摩工具の摩耗量を制御
することができる。すなわち研摩工具11の研摩面の中
心部を構成する9AFi!t、 12は気胞密1i(が
最高(12a)になっているのでその上端の摩耗の度合
は大きく、周辺部の研摩面となる領域14は気胞密度C
が最小(14a)になっているので摩耗の度合は小さく
なっている。従って、従来の工具では研摩が1伯錐であ
ったレンズの半角αが90°に近いレンズでも、前記気
胞密度12a〜14mの分布を実験によって設定するこ
とにより、研摩工具11の周辺部の摩Kjttaと工具
の中心部の摩耗量tbを等しくする        メ
ことができる。第1図(C1はAil紀気抱密度Cの分
布を示し、気胞密度Cを縦側に%研摩工具11の工具 
・第2図体)、 (B)i1本発明の第二実施例を示す
研購工其の縦断面及び横1班面をボ丁。この場合も、工
具を構成する砥材中に気胞tt言有している点では第−
実施例のものと同株であるが、不英施例では気胞冨有栴
欣の走f4ン、各気胞の体積または形状の差異によって
発生せしめ℃いる。研1MLi1E材中の気1+己の大
ざさが異なる積置15. 16及び17により研屋工具
が構成されており、填域15.  lb及びイアは工具
回転軸σを中心として同心環状に一体に粘合されている
。饋城15.16及び1を申に含南される牢−の気胞の
体積σをそれぞれ1コa、 1tia及び17aとする
とき15a > 16a > 17aなる関係にある。
Regions 12, 13, and 14 are integrally connected in a concentric ring shape around the tool rotation axis 0, and have the relationship 12a > 13m > 14a when the air cell density C of each region is +2a, 13m, and 14a, respectively. . The size of the bubble density affects the size of the polishing area (contact area with the corrugated polishing surface) of the abrasive material, and the amount of wear of the polishing tool can be controlled. That is, 9AFi! which constitutes the center of the polishing surface of the polishing tool 11! At t, 12, the air cell density 1i (is the highest (12a)), so the degree of wear at the upper end is large, and the area 14, which is the polished surface at the periphery, has an air cell density C.
is the minimum (14a), so the degree of wear is small. Therefore, even if the half-angle α of the lens is close to 90°, whereas polishing is a single pyramidal shape with conventional tools, by setting the distribution of the air bubble densities 12a to 14m through experiments, it is possible to polish the peripheral part of the polishing tool 11. It is possible to make Kjtta equal to the amount of wear tb at the center of the tool. Fig. 1 (C1 shows the distribution of the Ailian air encapsulation density C, and the air vesicle density C is expressed as % on the vertical side of the tool of the polishing tool 11.
・Second figure), (B) i1 The vertical cross section and the first horizontal cross section of the research tool showing the second embodiment of the present invention are shown. In this case as well, the fact that there are air cells in the abrasive material that makes up the tool is second to none.
Although the strain is the same as that of the example, in the case of the example, it is caused by the difference in the movement of the air follicles and the volume or shape of each air follicle. 15. Ki 1 + own size in Ken 1 M Li 1 E material differs in size. 16 and 17 constitute a polisher tool, and a filling area 15. lb and ear are integrally attached in a concentric ring shape with the tool rotation axis σ as the center. When the volumes σ of the air cells in the prisons south of 15, 16 and 1 are respectively 1 core a, 1 tia, and 17 a, there is a relationship of 15 a > 16 a > 17 a.

このようt気胞の体積C′の分布によっても研摩面の中
心部である領域15の上端面が取も摩耗の置台か犬ざく
なり、周辺部となる鎖酸の上端面が最も摩れの匪曾いが
小さくでざる。従って、この第三実施例による餅屋工具
によっても、し/ズの半角αが90”近いレンズに対し
て気泡の体積σの分布を適切に選択することC二より研
摩が可能となる。
Due to the distribution of the volume C' of the t-vesicles, the upper end surface of the area 15, which is the central part of the polished surface, becomes the most abrasive base, and the upper end surface of the chain acid, which is the peripheral part, is the most abrasive. The size is small. Therefore, with the rice cake shop tool according to the third embodiment as well, it is possible to polish a lens whose half angle α of h/z is close to 90” by appropriately selecting the distribution of the bubble volume σ.

前記第一、及び第二実施例においては、気胞密度Cまた
は気胞の体積C′が工法回転軸を中心として径方向に階
段状に変化するものであったが、気胞密度Cまたは体積
σをi%続的に滑らかに変化させても良い。第3回置、
 (Fl) 、 (C)は気胞密2cを連続的に変化さ
せた例を示し、それぞれ工具の縦断面、横断面、及び工
具回転軸σを中心とする気胞密度Cの分布を示す(第三
実施例)。この場合、分布が連続しているのでより精密
な加工が可能となる。
In the first and second embodiments, the air vesicle density C or the air spore volume C' changes stepwise in the radial direction around the construction method rotation axis, but the air spore density C or volume σ is It may be changed continuously and smoothly. 3rd place,
(Fl) and (C) show an example in which the air pore density 2c is continuously changed, and show the distribution of the air pore density C centered on the longitudinal section, cross section, and tool rotation axis σ of the tool, respectively. Example). In this case, since the distribution is continuous, more precise processing is possible.

以上の実施例においては、研摩対集として半球に近いレ
ンズを研摩するために、第4図(5)、(B)に示すよ
うe二工具の中心部(工具回転軸)の気胞密度Cまたは
気胞の体積C′を大きくしたが、レンズの半角がσに近
い、いわゆる浅部レンズを研摩する場合は、気泡密度C
または気胞の体fi C’ (気胞の含有構成)が第4
図(C1、(Diに示すように径方向に階段状または連
続的に増大するような分布が用いられる(第四実施例)
In the above embodiment, in order to polish a nearly hemispherical lens as a polishing pair, as shown in FIG. 4 (5) and (B), the air cell density C or Although the volume C' of the bubble is increased, when polishing a so-called shallow lens where the half angle of the lens is close to σ, the bubble density C
Or the body of the air sac fi C' (containing composition of the air sac) is the fourth
As shown in Figures (C1 and (Di), a distribution that increases stepwise or continuously in the radial direction is used (fourth embodiment)
.

これまでの実施例では、気胞の含有構成が径方向に沿っ
て単調に変化するものであったが、機械的条件などの加
工条件・の制約によって径方向にNRクセにュートンリ
ングの不規則)が生じる場合には、気胞の含有構成(C
またはc′)が径方向ζ二重って第5図囚、CB+に示
すよう(:1以上の極値を有する高次関数状に、NRク
セに応じた分布を設定することができろ(第五実施例)
In the previous examples, the composition of the air vesicles changed monotonically along the radial direction, but due to the constraints of processing conditions such as mechanical conditions, the irregularity of the Newton's ring (NR habit) changed in the radial direction. If it occurs, the composition of the air spores (C
Or c') is radial direction ζ double, as shown in Figure 5, CB+ (: It is possible to set a distribution according to the NR habit in the form of a high-order function with an extreme value of 1 or more ( Fifth Example)
.

また、これまで説明した気泡の含有構成が異なる領域を
、ポリフレタンシートやピッチ皿などの遊甜砥粒による
風船ポリシャーに応用し、同様の効果を得ることができ
る(@六実施例)。
In addition, similar effects can be obtained by applying the regions with different bubble content structures described above to a balloon polisher using free abrasive grains such as a polyurethane sheet or a pitch plate (@6 Example).

以上の実施例においては、研摩を目的としていたが、レ
ンズなどの研削工種(カーブジェネレート工程)におい
て、ダイヤモンドカップ砥石に応用し、レンズの半角の
大きい半球に近いレンズについても容易に球面を創成す
ることができる(第七実施例)。
In the above example, the purpose was polishing, but it can also be applied to a diamond cup grinding wheel in the grinding process of lenses etc. (curve generation process), and it can easily create a spherical surface even for a lens with a large half-angle that is close to a hemisphere. (Seventh Example)

また、メタルダイヤモンド砥石やレジノイド砥石などの
研削工具に応用すると、精研削工程においても、研摩工
程と同守の効果を得ることができる。
Furthermore, when applied to grinding tools such as metal diamond grindstones and resinoid grindstones, the same effects as in the polishing process can be obtained even in the precision grinding process.

発明の効果 加工条件が被加工物の形状など1:より制約を受けて一
般的な砥石では、1躾に一様な摩耗が生じないような場
合でも、砥石中の気胞の含有構成を適切に分布せしめる
ことにより砥石の摩耗を均一にすることができるので工
具の研摩部の形状が時間的に変化せず、極めて精度の高
い、安定した加工を行うことができる。
Effects of the invention 1: Even when processing conditions are more restricted such as the shape of the workpiece and general grinding wheels do not wear uniformly in one stroke, it is possible to appropriately adjust the composition of air cells in the grinding wheel. By distributing the grinding wheel, the wear of the grindstone can be made uniform, so that the shape of the polished part of the tool does not change over time, and stable machining with extremely high precision can be performed.

また、被加工物の形状に応じて、適正な気胞の含有構造
(CまたはC′)の分布を備えた研摩・研削工具を加工
する形状毎に予め用意しておけば、従来加工が困岨であ
った形状の部材に対しても。
In addition, if a polishing/grinding tool with an appropriate distribution of air vesicle-containing structure (C or C') is prepared in advance for each shape to be machined according to the shape of the workpiece, conventional machining would be difficult. Also for members with shapes that were.

機械的加工条件を複雑に操作することなく、工具を交換
するだけで短時間に効率良く加工することが可能となる
。                      J
Machining can be performed efficiently in a short period of time simply by changing tools without complicated manipulation of mechanical processing conditions. J

【図面の簡単な説明】[Brief explanation of the drawing]

第11g(ん、 CB+は本発明の第一実施例の研摩工
具の構成を示す縦断面図及び横断面図、第1図(C)は
第1図(At 、 (B)im示す研摩工具の径方向?
=沿った気胞密ICを示す分布図、第2回込)、旧)は
本発明の第五実施例の研摩工具の構成を示す縦断面図及
び横断面図、s3図(Al 、 (B) 、 tc)は
本発明の第三実施例の研摩工具の構成を示す縦断面図、
横断面図及び気胞帯電の分布図、第4図々)、田1 、
 fc) 、 (Dlは本発明の第四実施例の研摩工具
の径方向に沿った気泡の含有構造(Cまたはσ)の分布
図、第5同図。 CB+は本発明の第五実施例の研摩工具の気胞の含有構
a(Cまたはσ)の分布図を示す。 また第6図は、従来の研摩工具を適用した研摩加工機の
一例を示す要部構成図、第7図は従来の研摩工具の研摩
態様を示す右半部の断面図、第8図は従来の研摩工具の
研摩時間による工具曲率半径の変化を示す特性図である
。 図における符号と主要部の名称との対応は以下の通りで
ある。 1.11・・・・・・研摩エル 2・・・・・・凹面レンズ 3・・・・・・レンズ保持真 4・・・・・・かんざし 7・・・・・・工具回転軸 12.13,14,15,16.17・・・川領域11
ン″314 第3図 1、。 (B) (C) 第4図 第7図 Δ 第8図 vr孝1手間I 手続補正書く自発) 昭和60年lθ月9日 昭和59年特許願第224699号 2、発明の名称 研摩・研削工具 3、補正をする者 事件との関係  特許出願人 住 所  東京都渋谷区幡ケ谷2丁目43番2号名 称
   (037)  オリンパス光学工業株式会社取締
役社長 下 山 敏 部 4、代理人 6、補正の対象                  
      。 7、油止の内容 (1)明細書第4頁か8行目に記載する「部16ヨを1
部1bヨと補正する。 (2〕  明細書第4頁第11“行目から同頁第13行
目までの記載を削除し、下記の記載を補充する。 「る領域を、台皿にピッチまたはポリウレタンシートな
どをはりつけて作ったみがき皿または風船ポリジャーな
とにも応用し、遊離砥粒を用いても同様の効果を得るこ
とかできる(第六実施例)。ヨ (32明細書第12頁第3行目に記載するする。ヨを「
る(第八実施例)。ヨと浦1「する。
11g(n, CB+ is a longitudinal cross-sectional view and a cross-sectional view showing the structure of the abrasive tool of the first embodiment of the present invention, FIG. 1(C) is the abrasive tool shown in FIG. 1(At, (B)im) Radial direction?
= distribution diagram showing the air cell density IC along the 2nd round), old) is a longitudinal cross-sectional view and a cross-sectional view showing the configuration of the polishing tool of the fifth embodiment of the present invention, s3 diagram (Al, (B) , tc) is a longitudinal sectional view showing the configuration of a polishing tool according to a third embodiment of the present invention,
Cross-sectional view and distribution map of air cell charge, Figure 4), T1,
fc), (Dl is a distribution diagram of the bubble-containing structure (C or σ) along the radial direction of the polishing tool of the fourth embodiment of the present invention, and CB+ is the distribution diagram of the bubble-containing structure (C or σ) along the radial direction of the polishing tool of the fourth embodiment of the present invention. A distribution diagram of the air vesicle content structure a (C or σ) of an abrasive tool is shown. In addition, Fig. 6 is a main part configuration diagram showing an example of an abrasive processing machine to which a conventional abrasive tool is applied, and Fig. 7 is a diagram of a conventional abrasive tool. A sectional view of the right half of the polishing tool showing the polishing mode, and FIG. 8 is a characteristic diagram showing the change in tool curvature radius depending on the polishing time of a conventional polishing tool. The details are as follows: 1.11...Grinding L2...Concave lens 3...Lens holding stem 4...Kanzashi 7...・Tool rotation axis 12.13, 14, 15, 16.17... River area 11
314 Fig. 3 1. (B) (C) Fig. 4 Fig. 7 ∆ Fig. 8 vr Koichi effort I Procedural amendment voluntarily) 1985 lθ Month 9, 1988 Patent Application No. 224699 2. Name of the invention Polishing/grinding tool 3. Relationship with the amended person case Patent applicant address 2-43-2 Hatagaya, Shibuya-ku, Tokyo Name (037) Satoshi Shimoyama, President and Director of Olympus Optical Industries Co., Ltd. Part 4, Agent 6, Subject of amendment
. 7. Contents of oil stopper (1) “Part 16 yo” written on page 4 or line 8 of the specification
Part 1b is corrected. (2) The statement from page 4, line 11 of the specification to line 13 of the same page is deleted, and the following statement is added. The same effect can be obtained by applying it to a prepared polishing plate or a balloon polisher, and using free abrasive grains (Sixth Example). Do it.
(Eighth Example). Yo and Ura 1: “I will.

Claims (6)

【特許請求の範囲】[Claims] (1)砥材中の気胞の含有構成が異なる領域を備え、該
領域を工具回転軸を中心として同心環状に配置した部材
を用いたことを特徴とする研摩・研削工具。
(1) A polishing/grinding tool characterized by using a member that includes regions with different gas vesicle content compositions in the abrasive material and arranges the regions in a concentric ring shape around the tool rotation axis.
(2)前記気胞の含有構成の差異を、砥材中に形成する
気胞密度の差異によって発生せしめたことを特徴とする
特許請求の範囲第1項記載の研摩・研削工具。
(2) The polishing/grinding tool according to claim 1, wherein the difference in the composition of the gas vesicles is caused by a difference in the density of the gas sacs formed in the abrasive material.
(3)前記気胞の含有構成の差異を、砥材中に形成する
気胞の体積または形状の差異によって発生せしめたこと
を特徴とする特許請求の範囲第1項記載の研摩・研削工
具。
(3) The polishing/grinding tool according to claim 1, wherein the difference in the composition of the gas vesicles is caused by a difference in the volume or shape of the gas sacs formed in the abrasive material.
(4)前記気胞の含有構成が異なる領域は、工具回転軸
を中心として径方向に気胞の含有構成が階段状に変化す
る分布を有することを特徴とする特許請求の範囲第1、
第2、または第3項記載の研摩・研削工具。
(4) The region having a different gas vesicle content structure has a distribution in which the gas vesicle content structure changes stepwise in the radial direction around the tool rotation axis.
The polishing/grinding tool according to item 2 or 3.
(5)前記気胞の含有構成が異なる領域は、工具回転軸
を中心として径方向に気胞の含有構成が連続的に変化す
る分布を有することを特徴とする特許請求の範囲第1、
第2、または第3項記載の研摩・研削工具。
(5) The region having a different gas vesicle content structure has a distribution in which the gas vesicle content structure changes continuously in a radial direction centering on the tool rotation axis.
The polishing/grinding tool according to item 2 or 3.
(6)前記気胞の含有構成は単調に変化するのではなく
、1以上の極値を有する分布に従って変化することを特
徴とする特許請求の範囲第5項の研摩・研削工具。
(6) The abrasive/grinding tool according to claim 5, wherein the composition of the gas vesicles does not change monotonically, but changes according to a distribution having one or more extreme values.
JP22469984A 1984-10-25 1984-10-25 Polishing and grinding tool Granted JPS61103768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22469984A JPS61103768A (en) 1984-10-25 1984-10-25 Polishing and grinding tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22469984A JPS61103768A (en) 1984-10-25 1984-10-25 Polishing and grinding tool

Publications (2)

Publication Number Publication Date
JPS61103768A true JPS61103768A (en) 1986-05-22
JPS649141B2 JPS649141B2 (en) 1989-02-16

Family

ID=16817853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22469984A Granted JPS61103768A (en) 1984-10-25 1984-10-25 Polishing and grinding tool

Country Status (1)

Country Link
JP (1) JPS61103768A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177975A (en) * 1987-12-29 1989-07-14 Kawada Eng:Kk Self-cavity generating grinding stone made in resinoid bonding system
WO2005068133A1 (en) * 2004-01-15 2005-07-28 Carl Zeiss Vision Gmbh Device and method for polishing an optical surface, optical component, and method for the production of a polishing tool
JP2014061553A (en) * 2012-09-19 2014-04-10 Olympus Corp Grinding wheel and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100358A (en) * 1984-10-23 1986-05-19 Canon Inc Abrasive pad

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100358A (en) * 1984-10-23 1986-05-19 Canon Inc Abrasive pad

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177975A (en) * 1987-12-29 1989-07-14 Kawada Eng:Kk Self-cavity generating grinding stone made in resinoid bonding system
WO2005068133A1 (en) * 2004-01-15 2005-07-28 Carl Zeiss Vision Gmbh Device and method for polishing an optical surface, optical component, and method for the production of a polishing tool
DE102004003131A1 (en) * 2004-01-15 2005-08-11 Carl Zeiss Apparatus and method for polishing an optical surface, optical component, and method of manufacturing a polishing tool
US7503834B2 (en) 2004-01-15 2009-03-17 Carl Zeiss Vision Gmbh Apparatus and a method of polishing an optical surface; an optical component; and a method of manufacturing a polishing tool
AU2005205040B2 (en) * 2004-01-15 2010-01-07 Carl Zeiss Vision Gmbh Device and method for polishing an optical surface, optical component, and method for the production of a polishing tool
JP2014061553A (en) * 2012-09-19 2014-04-10 Olympus Corp Grinding wheel and method of manufacturing the same

Also Published As

Publication number Publication date
JPS649141B2 (en) 1989-02-16

Similar Documents

Publication Publication Date Title
CN105834859A (en) Cold-machining technology for high-precision optical lenses
JPS61103768A (en) Polishing and grinding tool
Van Ligten et al. Diamond grinding of aspheric surfaces on a CNC 4-axis machining centre
Venkatesh et al. Ductile streaks in precision grinding of hard and brittle materials
JPH0549428B2 (en)
JPS61100358A (en) Abrasive pad
US3739534A (en) Method of producing toric lens elements with aspheric surfaces
CN110682223A (en) Grinding disc and grinding disc set
US1383863A (en) Method of making bifocal lenses
JPS58143316A (en) Production of bifocal contact lens
GB2196886A (en) Lens tool
JP2001038506A (en) Single crystal diamond tool and manufacture thereof
JPH08257895A (en) Lap structure for lapping tool
JPS6317608Y2 (en)
JPH0329546B2 (en)
JPH0624860U (en) Electroplated whetstone
SE9703721L (en) Method for round grinding of balls of ceramic or other hard materials, and apparatus for carrying out the method
JPH07266211A (en) Grinding and polishing wheel
JPH0569309A (en) Super finishing method
Fukazawa et al. Mirror grinding of silicon wafer with silica EPD pellets
JPS6225333Y2 (en)
JPH04300165A (en) Grinding wheel
JP2721642B2 (en) Inclined lapping method
JPS6284977A (en) Grinding pellet
JPS583646Y2 (en) grinding wheel