JPS6110293Y2 - - Google Patents

Info

Publication number
JPS6110293Y2
JPS6110293Y2 JP1979103390U JP10339079U JPS6110293Y2 JP S6110293 Y2 JPS6110293 Y2 JP S6110293Y2 JP 1979103390 U JP1979103390 U JP 1979103390U JP 10339079 U JP10339079 U JP 10339079U JP S6110293 Y2 JPS6110293 Y2 JP S6110293Y2
Authority
JP
Japan
Prior art keywords
fuel cell
relay
power supply
series circuit
switching means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979103390U
Other languages
Japanese (ja)
Other versions
JPS5621368U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1979103390U priority Critical patent/JPS6110293Y2/ja
Publication of JPS5621368U publication Critical patent/JPS5621368U/ja
Application granted granted Critical
Publication of JPS6110293Y2 publication Critical patent/JPS6110293Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Protection Of Static Devices (AREA)
  • Secondary Cells (AREA)

Description

【考案の詳細な説明】 本考案は、酸化剤としてヒドラジン、メタノー
ルなどを用い、還元剤として酸素、空気などを用
いた燃料電池と、この燃料電池の出力電圧を制御
安定化する電圧制御部と、この制御部を介して燃
料電池に並設された、例えば鉛蓄電池、ニツケ
ル・カドミウム蓄電池などの二次電池とによつて
ハイブリツドに構成された燃料電池電源装置に関
するものである。
[Detailed description of the invention] The present invention consists of a fuel cell that uses hydrazine, methanol, etc. as an oxidizing agent and oxygen, air, etc. as a reducing agent, and a voltage controller that controls and stabilizes the output voltage of this fuel cell. The present invention relates to a fuel cell power supply device that is configured in a hybrid manner by a secondary battery such as a lead storage battery or a nickel-cadmium storage battery, which is arranged in parallel with the fuel cell via the control unit.

さらに詳しくは、燃料電池電源装置の燃料電池
本体、電解液あるいは電圧制御部などの温度が通
常の作動温度より異状に上昇した場合、この異状
温度を検出し速やかに、かつ確実に燃料電池電源
装置を停止し、この電源装置や負荷側の損傷を防
止もしくは軽減するための保護機能を備えた燃料
電池電源装置に関するものである。
More specifically, if the temperature of the fuel cell main body, electrolyte, or voltage control part of the fuel cell power supply device rises abnormally above the normal operating temperature, this abnormal temperature is detected and the fuel cell power supply device is quickly and reliably This invention relates to a fuel cell power supply device equipped with a protection function to prevent or reduce damage to the power supply device and the load side.

一般に燃料電池電源装置は、燃料電池の発電反
応によりより熱を発生するが、制御機器により適
度な温度範囲内にコントロールされている。しか
し何らかの原因で熱暴走状態に陥いると、燃料電
池の性能劣化だけでなく爆発や火災を起こす恐れ
があり、また電圧制御部についても異状発熱は制
御素子の劣化や破壊につながり、制御部が制御不
能状態に陥いつて負荷側機器をも損傷するという
危険があつた。
In general, a fuel cell power supply device generates more heat due to the power generation reaction of the fuel cell, but the temperature is controlled within an appropriate temperature range by a control device. However, if thermal runaway occurs for some reason, there is a risk that not only the performance of the fuel cell will deteriorate, but also an explosion or fire. In addition, abnormal heat generation in the voltage control section may lead to deterioration or destruction of the control element, causing the control section to fail. There was a risk that the system would go out of control and damage the load-side equipment.

したがつて、異状な温度上昇は未然に防ぐ必要
があり、また異状に温度が上昇した場合は速やか
に、かつ確実に燃料電池電源装置を停止させて、
大事故に至らぬようにすることが重要であつた。
Therefore, it is necessary to prevent abnormal temperature rises, and if the temperature rises abnormally, the fuel cell power supply device should be stopped promptly and reliably.
It was important to prevent a major accident from occurring.

従来この種の電源装置は第1図に示すように、
燃料電池1と、電圧制御部2と、燃料電池1にこ
の制御部2を介して並設された二次電池3とによ
つてハイブリツドに構成され、さらに制御部2の
出力側に接続された負荷4および装置始動スイツ
チ8を介して燃料電池1をコントロールするため
に接続した制御機器5と、電源装置を停止させる
出力接点6A,6Bを有する直流大電流開閉用の
停止手段6と、この停止手段6を作動せしめる温
度検出スイツチ7とによつて構成されていた。
Conventionally, this type of power supply device, as shown in Figure 1,
It is configured in a hybrid manner by a fuel cell 1, a voltage control section 2, and a secondary battery 3 installed in parallel with the fuel cell 1 via the control section 2, and further connected to the output side of the control section 2. A control device 5 connected to control the fuel cell 1 via a load 4 and a device start switch 8, a stopping means 6 for switching on and off a large DC current having output contacts 6A and 6B for stopping the power supply device, and The temperature detection switch 7 operates the means 6.

このような構成において、今、前記出力接点6
A,6Bが閉、前記装置始動スイツチ8がオンの
状態で燃料電池電源装置が運転されているとき何
らかの原因で、例えば電解液温度が異状に上昇し
てきた場合、温度検出スイツチ7が働き、非復帰
機能を有する停止手段6をオンにする。したがつ
てこの停止手段6の出力接点6A,6Bは閉から
開となり、燃料電池1および二次電池3の出力を
断つて、制御機器5をオフとして、燃料電池電源
装置を停止させていた。
In such a configuration, now the output contact 6
If for some reason, for example, the electrolyte temperature rises abnormally while the fuel cell power supply device is operating with A and 6B closed and the device start switch 8 turned on, the temperature detection switch 7 is activated and the The stop means 6 having a return function is turned on. Therefore, the output contacts 6A and 6B of this stopping means 6 were changed from closed to open, cutting off the output of the fuel cell 1 and the secondary battery 3, turning off the control device 5, and stopping the fuel cell power supply device.

しかしながら、このような構成では、温度検出
スイツチ7が働き、前記停止手段6の出力接点6
A,6Bが閉から開となつた瞬間、前記停止手段
6はその駆動電力が得られなくなるために、不完
全動作となり易く、出力接点6A,6Bが再び閉
状態に戻つてチヤタリング現象を発生し、燃料電
池電源装置を確実に、かつ速やかに停止すること
が難しかつた。
However, in such a configuration, the temperature detection switch 7 operates and the output contact 6 of the stop means 6
At the moment when A and 6B change from closed to open, the stop means 6 cannot obtain its driving power, so it tends to operate incompletely, and the output contacts 6A and 6B return to the closed state again, causing a chattering phenomenon. However, it was difficult to stop the fuel cell power supply device reliably and quickly.

一般に非復帰型のリレーを用いて停止手段6を
構成した場合、この動作時間は数十ミリ秒から数
百ミリ秒、直流大電力の開閉用のものになると場
合によつては数秒必要であり、したがつてこの動
作時間以上に駆動電力を十分に得ることができな
いと、前記リレーは不完全な作動となり、出力接
点6A,6Bが完全に閉から開へと反転しなかつ
たり、反転したあと直ちにあるいは一定時間後に
もとの状態に復帰したり、さらには開・閉を繰り
返すチヤタリング現象を発生することがわかつ
た。
Generally, when the stop means 6 is constructed using a non-resetting type relay, the operating time is from several tens of milliseconds to several hundred milliseconds, and in some cases, several seconds are required when the relay is used for switching high DC power. , Therefore, if sufficient driving power cannot be obtained for longer than this operating time, the relay will operate incompletely, and the output contacts 6A and 6B may not completely reverse from closed to open, or may fail after being reversed. It was found that the device returned to its original state immediately or after a certain period of time, or that a chattering phenomenon occurred in which the device repeatedly opened and closed.

したがつて、前記停止手段6が確実に動作する
燃料電池電源装置が強く求められていた。特に燃
料電池電源装置では、直流大電流を開閉すること
が多く、直流大電流を開閉することが可能な前記
リレーは動作時間が長く必要であり、このリレー
の駆動電力も大きいために、一般に用いられる方
法、即ちこのリレーに並設したコンデンサによつ
て駆動保持する手段ではコンデンサが非常に大型
大容量化し、価格的にも高価となるなど問題があ
つた。
Therefore, there has been a strong demand for a fuel cell power supply device in which the stopping means 6 operates reliably. In particular, fuel cell power supplies often switch on and off large DC currents, and the relays that can switch on and off large DC currents require a long operating time and require a large amount of driving power, so they are not commonly used. However, in the method of driving and holding the relay using a capacitor installed in parallel with the relay, there were problems in that the capacitor had to be very large and large in capacity, making it expensive.

本考案はこのような問題を解消し、温度異状上
昇時に確実にかつ速やかに停止手段が作動する燃
料電池電源装置を提供するものである。具体的に
は停止手段の作動後、この停止手段へ適宜な期間
電力を供給する手段を備えたものである。
The present invention solves these problems and provides a fuel cell power supply device in which a stop means is operated reliably and promptly when the temperature abnormally increases. Specifically, it is provided with means for supplying power to the stopping means for an appropriate period after the stopping means is activated.

以下本考案の一実施例における構成を第2図
に、またその動作波形を第3図にそれぞれ示して
説明する。燃料電池1と、そのプラス端子に接続
された停止手段6の出力接点6Aとの直列回路A
は電圧制御部2に接続されている。またこの電圧
制御部2の出力端には出力接点6Bと二次電池3
との直列回路Cが接続されていると共に、負荷4
も接続されている。また燃料電池1の運転状態を
コントロールする制御機器5は、装置始動スイツ
チ8を介して電圧制御部2の出力端に接続する。
この制御部2の出力端にはまた前記スイツチ8、
順方向に接続したダイオード9、温度検出スイツ
チ7および動作時間の短い切替手段11との直列
回路Bが接続されている。
The configuration of one embodiment of the present invention will be described below with reference to FIG. 2 and its operating waveforms shown in FIG. 3 and 3, respectively. Series circuit A of the fuel cell 1 and the output contact 6A of the stop means 6 connected to its positive terminal
is connected to the voltage control section 2. Further, at the output end of this voltage control section 2, there is an output contact 6B and a secondary battery 3.
A series circuit C is connected to the load 4.
is also connected. Further, a control device 5 that controls the operating state of the fuel cell 1 is connected to the output terminal of the voltage control section 2 via a device start switch 8.
The output terminal of this control section 2 also includes the switch 8,
A series circuit B is connected with a diode 9 connected in the forward direction, a temperature detection switch 7, and a switching means 11 having a short operating time.

さらに温度検出スイツチ7と切替手段11との
直列回路と並列にコンデンサ10を接続する。
Furthermore, a capacitor 10 is connected in parallel with the series circuit of the temperature detection switch 7 and the switching means 11.

また、この燃料電池電源装置を停止せしめる出
力接点6A,6Bを駆動する直流大電流開閉用の
停止手段6は、前記切替手段11の出力接点11
Aを介して二次電池3のプラス端子に接続する。
Further, the stopping means 6 for switching large DC current that drives the output contacts 6A and 6B that stops the fuel cell power supply device is connected to the output contact 11 of the switching means 11.
Connect to the positive terminal of the secondary battery 3 via A.

本実施例では、出力24V,500Wのヒドラジン
燃料電池1と、これに電圧制御部2を介して接続
した鉛蓄電池3とによりハイブリツト構成とした
電源装置であつて温度検出スイツチ7には、温度
が上昇し一定値に達するとオン(閉)となるバイ
メタルスイツチを、また停止手段6には直流大電
流の開閉を行なう非復帰型の電磁リレー(以下電
磁リレーを単にリレーと呼ぶ)をそれぞれ用い、
さらに切替手段11には動作時間が短かい小容量
の復帰型のリレーを用いて構成した。
In this embodiment, the power supply device has a hybrid configuration consisting of a hydrazine fuel cell 1 with an output of 24 V and 500 W, and a lead acid battery 3 connected to this via a voltage control section 2. A bimetal switch that turns on (closes) when the temperature rises and reaches a certain value is used, and a non-returnable electromagnetic relay (hereinafter electromagnetic relay is simply referred to as a relay) that opens and closes a large DC current is used as the stop means 6.
Furthermore, the switching means 11 is constructed using a small capacity reset type relay with a short operating time.

このように構成された燃料電池電源装置におい
て、いま停止手段を構成する非復帰型リレー(自
己保持型リレー)6がリセツト状態で、このリレ
ー6の出力接点6Aおよび6Bが閉の状態の時、
第3図bの動作波形で示されるように装置始動ス
イツチ8が時刻t1の時点で投入されると、燃料電
池1は発電を開始し、発電反応により燃料電池1
本体、燃料電池1の出力を制御安定化する、(例
えば定電圧安定化回路などの電圧制御部2あるい
は第3図aに示される電解液などの温度が徐々に
上昇したのち、これらの温度は適度な温度範囲内
に制御機器5によつて制御される。この時、コン
デンサ10は第3図cに示されるようにダイオー
ド9を介して電圧制御部2の出力電圧VpuTまで
充電されてエネルギーを蓄積し、制御部2の出力
は第3図eに示されるように負荷4に供給され
る。
In the fuel cell power supply device configured as described above, when the non-resettable relay (self-holding relay) 6 constituting the stop means is in the reset state and the output contacts 6A and 6B of this relay 6 are in the closed state,
When the device start switch 8 is turned on at time t1 , as shown by the operating waveform in FIG. 3b, the fuel cell 1 starts generating electricity, and the fuel cell 1
After the temperature of the main body, the voltage control unit 2 such as a constant voltage stabilizing circuit, or the electrolyte shown in FIG. The temperature is controlled within an appropriate temperature range by the control device 5. At this time, the capacitor 10 is charged to the output voltage V puT of the voltage controller 2 through the diode 9 as shown in FIG. The output of the control section 2 is supplied to the load 4 as shown in FIG. 3e.

つぎに何らかの原因で熱暴走状態が発生し、異
状に温度が上昇して来て、例えば第3図aに示さ
れるように電解液温度Taが時刻t2において温度
検出スイツチ7の動作温度に達すると、バイメタ
ルスイツチの如き感温スイツチで構成されたスイ
ツチ7は、オフからオンへと反転し、前記復帰型
リレーよりなる切替手段11に駆動電力を供給す
る。この切替手段11はその駆動電力が供給され
ると、第3図dの如くその出力接点11Aを開か
ら閉へと反転せしめ、停止手段6をオン駆動す
る。停止手段である非復帰型リレー6のオン駆動
により、このリレー6の出力接点6A,6Bはセ
ツト状態(開)となり、燃料電池1および鉛蓄電
池3の出力をオフにし、燃料電池電源装置の出力
を第3図eに示されるように停止させて負荷4へ
の電力供給を停止させる。この時、即ち前記出力
接点6A,6Bが閉から開へと反転した時、切替
手段11である動作時間の短い小型小容量の復帰
型リレーの駆動電力は出力接点6A,6Bが開と
なるため燃料電池1あるいは鉛蓄電池3のいずれ
からも供給されなくなるが、前記リレーに対し温
度検出スイツチ7を介して並設されたコンデンサ
10に蓄積されたエネルギーによつて前記切替手
段11のリレーは第3図dに示されるように適宜
な期間駆動保持される。コンデンサ10に蓄積さ
れた電荷は、ダイオード9によつて制御機器5、
あるいは装置始動スイツチ8を介して負荷4に供
給されることはなく、前記リレー11のみに供給
され、切替手段11のリレーの動作時間を十分に
保つことができ、コンデンサ10の電荷が放電
し、前記リレーのオフ電圧(開放電圧ともいう)
以下になると、前記リレーはオフとなる。
Next, a thermal runaway state occurs for some reason, and the temperature rises abnormally. For example, as shown in FIG. 3a, the electrolyte temperature Ta reaches the operating temperature of the temperature detection switch 7 at time t2 . Then, the switch 7, which is a temperature-sensitive switch such as a bimetal switch, is reversed from off to on, and supplies driving power to the switching means 11, which is the reset type relay. When this switching means 11 is supplied with driving power, it reverses its output contact 11A from open to closed, as shown in FIG. 3d, and turns on the stop means 6. By turning on the non-resettable relay 6, which is the stopping means, the output contacts 6A and 6B of this relay 6 are set (open), and the outputs of the fuel cell 1 and lead acid battery 3 are turned off, and the output of the fuel cell power supply device is turned off. is stopped as shown in FIG. 3e, and the power supply to the load 4 is stopped. At this time, that is, when the output contacts 6A and 6B are reversed from closed to open, the drive power of the small and small capacity reset type relay, which is the switching means 11, has a short operating time, so that the output contacts 6A and 6B are opened. Although no longer supplied from either the fuel cell 1 or the lead-acid battery 3, the relay of the switching means 11 is switched to the third relay by the energy stored in the capacitor 10 arranged in parallel to the relay via the temperature detection switch 7. As shown in FIG. d, the drive is maintained for an appropriate period. The charge accumulated in the capacitor 10 is transferred to the control device 5 by the diode 9.
Alternatively, it is not supplied to the load 4 via the device start switch 8, but is supplied only to the relay 11, so that the operating time of the relay of the switching means 11 can be maintained sufficiently, and the charge in the capacitor 10 is discharged. Off-voltage (also called open-circuit voltage) of the relay
Below that, the relay is turned off.

前記切替手段11を構成する復帰型リレーの出
力接点11Aは、前記リレーのオンにより、開か
ら閉へと反転し、停止手段6を構成する直流大電
流開閉用の非復帰型リレーをオン駆動(セツト状
態)し、その出力接点である6A,6Bを閉から
開へと反転したのち、前述したようにコンデンサ
10によつて適宜な期間オン駆動された後再びオ
フとなる。
The output contact 11A of the reset type relay constituting the switching means 11 is reversed from open to closed when the relay is turned on, and turns on the non-reset type relay for DC large current switching that constitutes the stopping means 6 ( After the output contacts 6A and 6B are reversed from closed to open, they are turned on for an appropriate period by the capacitor 10 as described above, and then turned off again.

したがつて停止手段6である非復帰型リレーも
前記コンデンサ10によつて定まる適宜な期間オ
ンとなるに十分な駆動電力を鉛蓄電池3より直接
得て駆動されたのち、接点11Aの開によつて駆
動電力の供給が停止される。しかし、前記リレー
の接点6A,6Bは非復帰型で構成しているため
にリレー6への駆動電力停止後も開状態を維持
し、燃料電池電源装置の停止状態を維持する。
Therefore, the non-resettable relay, which is the stopping means 6, is also driven by directly obtaining driving power sufficient to be turned on for an appropriate period determined by the capacitor 10 from the lead-acid battery 3, and then is turned on by opening the contact 11A. Then, the supply of driving power is stopped. However, since the contacts 6A and 6B of the relay are configured to be non-returnable, they remain open even after the drive power to the relay 6 is stopped, and the fuel cell power supply device remains in the stopped state.

一般にリレー、ソレノイドなどの電磁装置は、
定格電圧の85%以上でオン駆動するが、逆にオフ
電圧(開放電圧)は定格電圧の30〜40%近くまで
低下してもオン状態を保持する特性を有している
ために、第3図cに示されるように、コンデンサ
10のエネルギーが動作時間の短い小型小容量の
前記リレー11に供給され徐々にコンデンサ電圧
Vcが低下してきても、前記リレー11のオン状
態は保持され、十分な動作時間を得ることがで
き、コンデンサ10も小型小容量のもので良い。
Generally, electromagnetic devices such as relays and solenoids are
It turns on at 85% or more of the rated voltage, but conversely, it has the characteristic of maintaining the on state even if the off voltage (open circuit voltage) drops to nearly 30 to 40% of the rated voltage. As shown in Figure c, the energy of the capacitor 10 is supplied to the small and small capacity relay 11 with a short operating time, and the capacitor voltage gradually increases.
Even if Vc decreases, the relay 11 is maintained in the on state, and sufficient operating time can be obtained, and the capacitor 10 may also be small and small in capacity.

なお、停止手段6である非復帰型リレーのリセ
ツトは、図示していないが、電気的もしくは機械
的手段によつて行なうことができ、リセツト状態
とすると、その接点6A,6Bはリセツト状態
(閉状態)となる。
Although not shown, the non-resettable relay that is the stopping means 6 can be reset by electrical or mechanical means, and when it is in the reset state, its contacts 6A and 6B are in the reset state (closed). state).

したがつてこのような構成による本考案を用い
れば、異状な温度上昇に際し、敏速かつ確実に装
置を停止に至らしめる燃料電池電源装置を提供す
ることができる。
Therefore, by using the present invention having such a configuration, it is possible to provide a fuel cell power supply device that can quickly and reliably stop the device in the event of an abnormal temperature rise.

また本考案によれば、停止手段6の不確実な動
作によるチヤタリング現象や誤動作を起こす恐れ
がなく、温度の異状上昇による負荷あるいは燃料
電池電源装置自体の火災や損傷を防止もしくは著
しく軽減することができる。
Furthermore, according to the present invention, there is no possibility of chattering or malfunction caused by the uncertain operation of the stop means 6, and it is possible to prevent or significantly reduce the risk of fire or damage to the load or the fuel cell power supply itself due to an abnormal rise in temperature. can.

したがつて本考案は、従来装置の問題を解消し
迅速、かつ確実で信頼性の高い温度過昇保護機能
を備えた燃料電池電源装置を提供できるものであ
る。
Therefore, the present invention can solve the problems of conventional devices and provide a fuel cell power supply device having a rapid, reliable and reliable overtemperature protection function.

なお、前記本考案の実施例においては、燃料電
池1に出力24V,500Wのヒドラジン燃料電池、
制御部2にトランジスタ式定電圧回路、3の二次
電池に鉛蓄電池、5には電解液供給ポンプ、温度
制御機器、ヒドラジン燃料濃度制御機器などから
なる制御機器、7には温度が上昇し一定の値に達
すると閉回路を形成するバイメタルスイツチをそ
れぞれ用い、さらに6のリレーには直流大電流開
閉用の非復帰型リレー(キープリレー)直流
24V、動作時間250msecのものを使用し、切替手
段11には動作時間の短い小型の復帰型リレーを
用い、コンデンサ10には耐圧50V、容量100μ
Fを使用して、燃料電池電源装置を構成した。こ
の電源装置は、すでに運転後3年を経過している
が、温度異状上昇時の停止動作は速やかで、信頼
性が高く、火災、爆発などの発生は1件もなく、
さらに継続運転が可能である。
In the embodiment of the present invention, the fuel cell 1 includes a hydrazine fuel cell with an output of 24 V and 500 W;
The control unit 2 is a transistor type constant voltage circuit, the secondary battery 3 is a lead-acid battery, 5 is a control device including an electrolyte supply pump, a temperature control device, a hydrazine fuel concentration control device, etc., and 7 is a control device in which the temperature rises and remains constant. Each uses a bimetal switch that forms a closed circuit when the value of
A 24V, operating time of 250msec is used, a small reset type relay with a short operating time is used as the switching means 11, and a capacitor 10 has a withstand voltage of 50V and a capacity of 100μ.
A fuel cell power supply device was constructed using F. Although this power supply has been in operation for three years now, it shuts down quickly and is highly reliable when the temperature rises abnormally, and there have been no incidents of fire or explosion.
Furthermore, continuous operation is possible.

また本考案は、動作時間の短い小電流開閉用の
復帰型リレーを用いた切替手段と、この切替手段
を適宜な期間駆動保持するダイオードと小容量で
小型のコンデンサとによつて形成される手段と、
直流大電流を開閉する動作時間の比較的長い非復
帰型リレーからなる停止手段によつて温度過昇保
護機能の信頼性を高めると共に、装置を小型、軽
量化あるいは低廉化をすることができ、その利点
は大なるものである。
In addition, the present invention includes a switching means using a reset type relay for switching small currents with a short operating time, a diode that keeps the switching means driven for an appropriate period, and a small capacitor with a small capacity. and,
The reliability of the overtemperature protection function is improved by using a stop means consisting of a non-resettable relay that opens and closes a large DC current for a relatively long operation time, and the device can be made smaller, lighter, and less expensive. The benefits are huge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例における電源装置の説明図、第
2図は本考案における実施例の電源装置の説明図
第3図はその動作波形を示す。 1……燃料電池、2……制御部、3……二次電
池、4……負荷、5……制御機器、6……停止手
段、6A,B……停止手段6の出力接点、7……
温度検出スイツチ手段、8……装置始動スイツ
チ、9……ダイオード、10……コンデンサ、1
1……切替手段、11A……切替手段11の出力
接点。
FIG. 1 is an explanatory diagram of a conventional power supply device, FIG. 2 is an explanatory diagram of a power supply device according to an embodiment of the present invention, and FIG. 3 shows its operating waveforms. DESCRIPTION OF SYMBOLS 1... Fuel cell, 2... Control unit, 3... Secondary battery, 4... Load, 5... Control equipment, 6... Stopping means, 6A, B... Output contact of stopping means 6, 7... …
Temperature detection switch means, 8... device start switch, 9... diode, 10... capacitor, 1
1...Switching means, 11A... Output contact of switching means 11.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 燃料電池1と非復帰型リレーよりなる停止手段
6の第1の接点6Aとの直列回路Aと、装置始動
スイツチ8、ダイオード9、温度検出スイツチ7
及び復帰型リレーよりなる切替手段11との直列
回路Bと、前記停止手段6の第2の接点6Bと二
次電池3との直列回路Cとを有し、この回路B,
Cの並列回路を電圧制御部2を介して前記直列回
路Aに並列接続し、前記二次電池3と並列に前記
切替手段11の接点11Aと前記停止手段6との
直列回路を接続するとともに、前記回路Bの温度
検出スイツチと切替手段との直列回路と並列に前
記接点11Aの自己保持用コンデンサ10を接続
し、前記装置の温度が所定値以上に達した際、前
記温度検出スイツチ7をオフからオンとして切替
手段11の前記接点11Aを閉動作させ、停止手
段6のオン駆動によりその接点6A,6Bを開動
作させるよう構成してなる燃料電池電源装置。
A series circuit A between the fuel cell 1 and the first contact 6A of the stop means 6 consisting of a non-resettable relay, the device start switch 8, the diode 9, and the temperature detection switch 7.
and a series circuit B with the switching means 11 consisting of a reset type relay, and a series circuit C with the second contact 6B of the stopping means 6 and the secondary battery 3, and this circuit B,
A parallel circuit of C is connected in parallel to the series circuit A via the voltage control unit 2, and a series circuit of the contact 11A of the switching means 11 and the stop means 6 is connected in parallel with the secondary battery 3, The self-holding capacitor 10 of the contact 11A is connected in parallel with the series circuit of the temperature detection switch and the switching means of the circuit B, and when the temperature of the device reaches a predetermined value or more, the temperature detection switch 7 is turned off. The fuel cell power supply device is configured such that the contact 11A of the switching means 11 is closed when turned on, and the contacts 6A and 6B are opened when the stop means 6 is turned on.
JP1979103390U 1979-07-26 1979-07-26 Expired JPS6110293Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979103390U JPS6110293Y2 (en) 1979-07-26 1979-07-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979103390U JPS6110293Y2 (en) 1979-07-26 1979-07-26

Publications (2)

Publication Number Publication Date
JPS5621368U JPS5621368U (en) 1981-02-25
JPS6110293Y2 true JPS6110293Y2 (en) 1986-04-02

Family

ID=29336105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979103390U Expired JPS6110293Y2 (en) 1979-07-26 1979-07-26

Country Status (1)

Country Link
JP (1) JPS6110293Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859032U (en) * 1981-10-19 1983-04-21 コニカ株式会社 X-ray imaging device
FI85775C (en) * 1990-11-22 1992-05-25 Planmed Oy Method and apparatus for X-ray technology

Also Published As

Publication number Publication date
JPS5621368U (en) 1981-02-25

Similar Documents

Publication Publication Date Title
EP3492302B1 (en) Vehicle system
US5156928A (en) Protective apparatus and method for a fuel cell
US4741978A (en) Fuel cell generator control system
EP1143595B1 (en) Emergency power system
US6025083A (en) Fuel cell generator energy dissipator
US7839018B2 (en) Method and system of hybrid power management
KR19990063342A (en) Power storage protector
EP3726699A1 (en) Starting power supply device and method for mobile charging vehicle
JPS6110293Y2 (en)
JP5284126B2 (en) Fuel cell vehicle
JP4758196B2 (en) Power storage device
JP4168581B2 (en) High voltage battery load starter
CN115635874A (en) Energy storage fills electric pile safety scram device
JP2004206894A (en) Battery pack with built-in protection circuit
JPS6398710A (en) Voltage control circuit for fuel cell
US10981453B2 (en) Power supply circuit protection device
CN114915007A (en) Power supply system, control method of power supply system, and readable storage medium
JP2017135773A (en) Power supply switching device
JPH07107859B2 (en) Fuel cell discharge control circuit
JPS6185775A (en) Fuel battery power generating system
JPH06284591A (en) Charging apparatus
CN114312492B (en) Hydrogen fuel cell forklift and power-on and power-off control system thereof
CN214590692U (en) Power supply system and electronic equipment
CN210309939U (en) Power-off control device and electric automobile with same
WO2021039482A1 (en) Protective device, electricity storage device, and method for reducing contact resistance of relay