JPH07107859B2 - Fuel cell discharge control circuit - Google Patents

Fuel cell discharge control circuit

Info

Publication number
JPH07107859B2
JPH07107859B2 JP63129869A JP12986988A JPH07107859B2 JP H07107859 B2 JPH07107859 B2 JP H07107859B2 JP 63129869 A JP63129869 A JP 63129869A JP 12986988 A JP12986988 A JP 12986988A JP H07107859 B2 JPH07107859 B2 JP H07107859B2
Authority
JP
Japan
Prior art keywords
fuel cell
discharge
relay
discharge control
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63129869A
Other languages
Japanese (ja)
Other versions
JPH01298649A (en
Inventor
善文 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63129869A priority Critical patent/JPH07107859B2/en
Publication of JPH01298649A publication Critical patent/JPH01298649A/en
Publication of JPH07107859B2 publication Critical patent/JPH07107859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04626Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04686Failure or abnormal function of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04949Electric variables other electric variables, e.g. resistance or impedance
    • H01M8/04953Electric variables other electric variables, e.g. resistance or impedance of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料電池発電装置の制御電源が喪失した緊急
停止時に、燃料電池本体の残エネルギーを電気エネルギ
ーとして放電抵抗に放電消費させる放電制御回路に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a discharge control for causing a discharge resistor to discharge and consume the residual energy of a fuel cell main body as electric energy at the time of an emergency stop when the control power source of a fuel cell power generator is lost. Regarding the circuit.

〔従来の技術〕[Conventional technology]

燃料電池発電装置の運転を停止する場合には、燃料電池
本体の高温,高電位によるセル特性の劣化を防ぐため
に、運転停止時点で電池本体内部に残存している燃料の
保有エネルギーの速やかに除去してセル電位を下げるこ
とが必要であり、かつこの残エネルギーの除去方法とし
て、運転停止と同時に燃料電池の出力端子間に放電高を
投入接続し、残エネルギーを電気エネルギーとして放電
抵抗へ放電させて消費する方式が従来より実施されてい
る。
When stopping the operation of the fuel cell power generator, in order to prevent the deterioration of the cell characteristics due to the high temperature and high potential of the fuel cell body, the energy retained by the fuel remaining inside the cell body at the time of the operation stop is promptly removed. It is necessary to lower the cell potential, and as a method of removing this residual energy, at the same time as the operation is stopped, a discharge height is connected between the output terminals of the fuel cell, and the residual energy is discharged as electrical energy to the discharge resistor. The method of consuming as a whole has been implemented conventionally.

次に従来における燃料電池の放電制御回路を第2図によ
り説明すると、図において1は多数個の単セルを積層し
てセルスタックを構成した燃料電池本体、1a,1bはその
出力端子であり、該出力端子に図示されていないインベ
ータを介して負荷への給電を行っている。一方、出力端
子1a,1bの間には放電抵抗2,および該放電抵抗2と直列
に放電制御リレー3のa接点3aが接続されており、かつ
放電制御リレー3は放電制御器4を介して燃料電池発電
装置の制御電源5に接続されている。
Next, a conventional discharge control circuit for a fuel cell will be described with reference to FIG. 2. In the figure, 1 is a fuel cell body in which a plurality of single cells are stacked to form a cell stack, and 1a and 1b are output terminals thereof. Electric power is supplied to the load via an inveta (not shown) at the output terminal. On the other hand, a discharge resistor 2 and an a contact 3a of a discharge control relay 3 are connected in series between the output terminals 1a and 1b, and the discharge control relay 3 is connected via a discharge controller 4. It is connected to the control power supply 5 of the fuel cell power generator.

かかる構成で燃料電池の停止の際には、負荷を遮断し、
かつ燃料電池本体1への反応ガス供給を停止すると同時
に放電制御器4に指令を与えてその接点を閉じる。した
がって放電制御リレー3が作動してそのリレー接点3aが
閉じ、放電抵抗2が燃料電池本体1の出力端子間に投入
接続される。これにより燃料電池本体の残エネルギーは
電気エネルギーとして放電抵抗2を通じて放電,消費さ
れる。なお、放電抵抗2の抵抗値,投入時間等は燃料電
池が過放電となることのないように適宜に選定される。
過放電になると、積層された複数の単セルの放電が均一
でないために一部の単電池に逆電池がはたらいて燐酸を
電気分解してしまい、電池が損傷に至るからである。
With such a configuration, when the fuel cell is stopped, the load is cut off,
At the same time as stopping the supply of the reaction gas to the fuel cell main body 1, a command is given to the discharge controller 4 to close its contact. Therefore, the discharge control relay 3 is actuated, the relay contact 3a is closed, and the discharge resistor 2 is closed and connected between the output terminals of the fuel cell body 1. As a result, the residual energy of the fuel cell body is discharged and consumed as electrical energy through the discharge resistor 2. The resistance value of the discharge resistor 2, the charging time, etc. are appropriately selected so that the fuel cell will not be over-discharged.
If over-discharged, the discharge of the plurality of stacked single cells is not uniform, and therefore the reverse battery works on some of the single cells to electrolyze phosphoric acid, resulting in damage to the cells.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで上記した従来の放電制御回路では、停電,電圧
低下等の電源トラブルで制御電源5が不測に喪失した緊
急停止時の事態では放電制御リレー3が作動せず、放電
抵抗2の投入,切り離し制御が不能となって燃料電池の
残エネルギーの速やかな除去が遂行できない。
By the way, in the above-mentioned conventional discharge control circuit, the discharge control relay 3 does not operate in the event of an emergency stop in which the control power supply 5 is unexpectedly lost due to a power supply trouble such as a power failure or a voltage drop, and the discharge resistor 2 is turned on and off. Therefore, the remaining energy of the fuel cell cannot be quickly removed.

なお、この対策として制御電源とは別に緊急事態に備え
て補助バッテリーを装備して置き、制御電源が喪失した
場合には補助バッテリーを用いて放電制御を遂行させる
方式も知られているが、補助バッテリーを装備して常時
充電状態に保持することは発電装置の設備費が増すのみ
ならず、バッテリーの充電回路を含めてシステムが複雑
化する。
As a countermeasure, a method is also known in which an auxiliary battery is installed separately from the control power source in case of emergency, and when the control power source is lost, discharge control is performed using the auxiliary battery. Equipped with a battery and keeping it constantly charged not only increases the equipment cost of the power generator, but also complicates the system including the battery charging circuit.

本発明な上記の点にかんがみ成されたものであり、補助
バッテリーを用いることなく制御電源喪失による緊急停
止時に、支障なく放電抵抗を燃料電池の出力端子間に投
入接続して電池本体の残エネルギーを電気エネルギーと
して速やかに放電消費させるともに、燃料電池の過放電
も防止して燃料電池を保護できるようにした燃料電池の
放電制御回路を提供することを目的とする。
The present invention has been made in view of the above points, and at the time of an emergency stop due to a loss of control power without using an auxiliary battery, a discharge resistor is connected between the output terminals of the fuel cell without any problem to connect the remaining energy of the battery body. It is an object of the present invention to provide a discharge control circuit for a fuel cell, which is capable of promptly consuming electric power as electric energy for discharge and protecting the fuel cell by preventing over-discharge of the fuel cell.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記課題を解決するために、本発明は、単セルを複数個
積層してセルスタックを構成した燃料電池本体と、燃料
電池の停止時に燃料電池の残エネルギーを放電させる放
電抵抗と、a接点を有する通常停止用の放電制御リレー
と、該リレーを開閉するための放電制御器と、燃料電池
の制御電源と、a接点を有する緊急停止用の放電制御リ
レーと、b接点を有する制御電源喪失検出リレーと、前
記緊急停止用の放電制御リレーの電圧を調整するための
調整抵抗とを備えた燃料電池の放電制御回路であって、 前記燃料電池本体の出力端子間に,前記通常停止用の放
電制御リレーのa接点と前記緊急停止用の放電制御リレ
ーのa接点とを並列に接続し,かつ該並列に接続した二
つの接点と直列に前記放電抵抗を接続してなり、 さらに、前記燃料電池本体の出力端子間に,前記緊急停
止用の放電制御リレーと前記調整抵抗と前記制御電源喪
失検出リレーのb接点とを直列に,かつ前記放電抵抗と
二つのa接点とに並列に接続してなり、 さらにまた、前記制御電源と出力端子間に,前記放電制
御器と前記通常停止用の放電制御リレーとを直列に接続
し,かつ前記制御電源喪失検出リレーを前記放電制御器
と前記通常停止用の放電制御リレーとの並列に接続して
なり、 前記緊急停止用の放電制御リレーは、前記燃料電池本体
の無負荷電圧より低い電圧によってオン動作する電圧を
有し,かつ前記調整抵抗は前記燃料電池本体の無負荷電
圧と前記オン動作する電圧との差を電圧を分担するよう
にその抵抗値を選定してなるものとする。
In order to solve the above-mentioned problems, the present invention provides a fuel cell main body in which a plurality of single cells are stacked to form a cell stack, a discharge resistance for discharging residual energy of the fuel cell when the fuel cell is stopped, and an a contact. A discharge control relay for normal stop, a discharge controller for opening and closing the relay, a control power source for the fuel cell, a discharge control relay for emergency stop having an a contact, and a control power loss detection having a b contact A discharge control circuit for a fuel cell comprising a relay and an adjusting resistor for adjusting the voltage of the discharge control relay for emergency stop, wherein the discharge for normal stop is provided between output terminals of the fuel cell body. A contact of a control relay and a contact of a discharge control relay for emergency stop are connected in parallel, and the discharge resistor is connected in series with the two contacts connected in parallel, and the fuel cell Between the output terminals of the body, the discharge control relay for the emergency stop, the adjusting resistor, and the b contact of the control power loss detection relay are connected in series, and the discharge resistor and the two a contacts are connected in parallel. Furthermore, the discharge controller and the discharge control relay for the normal stop are connected in series between the control power supply and the output terminal, and the control power loss detection relay is connected to the discharge controller and the normal stop. Is connected in parallel with a discharge control relay for an emergency stop, the discharge control relay for an emergency stop has a voltage that is turned on by a voltage lower than the no-load voltage of the fuel cell main body, and the adjustment resistor is It is assumed that the resistance value is selected so that the difference between the no-load voltage of the fuel cell main body and the voltage at which the fuel cell turns on is shared.

〔作用〕[Action]

上記の構成により、燃料電池発電装置が制御電源の不測
は喪失により緊急停止した場合には、前記制御電喪失検
出リレーがオフ動作し、そのリレー接点(b接点)をオ
ンにして放電制御リレーの回路を閉じる。したがってこ
の状態で燃料電池本体の端子電圧が残エネルギーにより
高電位であれば、放電制御リレーがオン動作して放電抵
抗の回路を閉じ、放電抵抗が燃料電池の出力端子間に投
入接続される。これにより燃料電池本体の残エネルギー
が電気エネルギーとして放電抵抗に放電,消費されるよ
うになる。また放電に伴って残エネルギーが少なくな
り、燃料電池本体の電圧が降下して放電制御リレーの保
持電圧降下になれば、自動的に放電制御リレーがオフ動
作して放電抵抗が出力端子より切り離され、燃料電池の
過放電を防ぐようにこの時点で放電動作が終了する。な
お制御電源が健全な定常運転状態では、前記放電制御リ
レーの回路に介挿した制御電源喪失検出リレーのリレー
接点がオフに保持されるので不要に放電抵抗が投入接続
されることはない。
With the above configuration, when the fuel cell power generator suddenly stops due to an unexpected loss of control power, the control loss detection relay is turned off, and its relay contact (b contact) is turned on to turn on the discharge control relay. Close the circuit. Therefore, in this state, if the terminal voltage of the fuel cell main body has a high potential due to the remaining energy, the discharge control relay is turned on to close the circuit of the discharge resistance, and the discharge resistance is closed and connected between the output terminals of the fuel cell. As a result, the residual energy of the fuel cell body is discharged and consumed as electric energy by the discharge resistor. In addition, if the remaining energy decreases with the discharge and the voltage of the fuel cell body drops and the holding voltage of the discharge control relay drops, the discharge control relay automatically turns off and the discharge resistance is disconnected from the output terminal. At this point, the discharge operation ends so as to prevent over-discharge of the fuel cell. In a steady operation state in which the control power source is healthy, the relay contact of the control power loss detection relay inserted in the circuit of the discharge control relay is kept off, so that the discharge resistance is not turned on and connected unnecessarily.

なお、上記の放電制御回路を従来の放電制御回路と組合
せて構成することにより、制御電源が健全である通常の
運転停止時は勿論のこと制御電源喪失による緊急停止時
にも支障なく燃料電池本体の残エネルギーを放電抵抗に
放電消費させて燃料電池を保護できる。
In addition, by configuring the above discharge control circuit in combination with a conventional discharge control circuit, the fuel cell main body can be safely operated not only during a normal operation stop in which the control power source is healthy but also during an emergency stop due to the loss of the control power source. It is possible to protect the fuel cell by consuming the remaining energy in the discharge resistance.

〔実施例〕〔Example〕

第1図は第2図で述べた従来の放電制御回路と組合せて
構成した本発明の実施例による放電制御回路図を示すも
のであり、第2図に対応する同一部品には同じ符号が付
してある。
FIG. 1 shows a discharge control circuit diagram according to an embodiment of the present invention constructed in combination with the conventional discharge control circuit shown in FIG. 2, and the same reference numerals are given to the same parts corresponding to FIG. I am doing it.

すなわち本発明により、まず燃料電池1の出力端子1aと
1bとの間には緊急停止時用の放電制御リレー6が接続さ
れ、かつ該リレー6のa接点6aが放電抵抗2の回路に介
挿接続した通常停止用の放電制御リレー3のリレー接点
3aと並列に接続されている。さらに制御電源5側には通
常停止用の放電制御リレー3の他に制御電源喪失検出リ
レー7が接続され、かつ該リレー7のb接点7bが調整抵
抗8とともに前記した放電制御リレー6と直列に接続さ
れている。前記放電制御リレー6と調整抵抗8は、例え
ば下記のようにして選定される。
That is, according to the present invention, first, the output terminal 1a of the fuel cell 1
A discharge control relay 6 for emergency stop is connected between 1b and a relay contact of a discharge control relay 3 for normal stop in which an a contact 6a of the relay 6 is inserted and connected to a circuit of a discharge resistor 2.
It is connected in parallel with 3a. In addition to the discharge control relay 3 for normal stop, a control power loss detection relay 7 is connected to the control power source 5 side, and the b contact 7b of the relay 7 is connected in series with the discharge control relay 6 together with the adjusting resistor 8. It is connected. The discharge control relay 6 and the adjusting resistor 8 are selected as follows, for example.

例えば、燃料電池本体の積層セルの数を188個とする。
この場合、無負荷電圧は単セル当たり0.96〜1Vであるの
で、燃料電池本体の無負荷電圧は、180〜188Vとなる。
For example, the number of stacked cells in the fuel cell body is 188.
In this case, since the no-load voltage is 0.96 to 1V per unit cell, the no-load voltage of the fuel cell body is 180 to 188V.

市販の制御リレーの定格電圧は、DC200V,100V,48V,24V,
12Vなどがある。今定格電圧100Vの制御リレーを使用す
るものとする。この場合、調整抵抗は、例えば、燃料電
池の主負荷が遮断されて調整抵抗に電流が流れた際に90
Vの電圧が発生するようにその抵抗値を選定すると、直
列接続接続された制御リレーには、90V〜98Vの分担電圧
がかかることになる。
The rated voltage of commercially available control relays is DC200V, 100V, 48V, 24V,
There are 12V etc. Now assume that a control relay with a rated voltage of 100V is used. In this case, the adjustment resistor is, for example, 90% when the main load of the fuel cell is cut off and a current flows through the adjustment resistor.
When the resistance value is selected so that the voltage of V is generated, the shared voltage of 90V to 98V is applied to the control relays connected in series.

定格電圧100Vの制御リレーは、リレーの種類によっても
異なるが、例えば、定格電圧100Vといっても90V以上の
電圧でオンし、60V以下の電圧でオフするような仕様と
なっている。従って、燃料電池のエネルギーが放電抵抗
によって消費されて、燃料電池本体の電圧が低下し、リ
レーに60Vの分担電圧がかかる状態になるとリレーはオ
フする。リレーがオフした後は、燃料電池は自然放電に
移行し、燃料電池の過放電は防止されることとなる。
Control relays with a rated voltage of 100V differ depending on the type of relay, but for example, even with a rated voltage of 100V, it is turned on at a voltage of 90V or higher and turned off at a voltage of 60V or lower. Therefore, the energy of the fuel cell is consumed by the discharge resistance, the voltage of the fuel cell main body drops, and the relay is turned off when the shared voltage of 60V is applied to the relay. After the relay is turned off, the fuel cell shifts to spontaneous discharge, and over-discharge of the fuel cell is prevented.

ところで、燃料電池本体の積層セル数が前記188個より
少ない場合には、セル数に応じて本体の無負荷電圧は小
さい値となる。この場合には、その電圧に応じて定格電
圧の小さい制御リレーを選定し、調整抵抗も前記と同様
にして選定される。
By the way, when the number of laminated cells of the fuel cell main body is smaller than the above-mentioned 188 cells, the no-load voltage of the main body becomes a small value according to the number of cells. In this case, a control relay having a small rated voltage is selected according to the voltage, and the adjusting resistor is selected in the same manner as described above.

かかる構成で、制御電源5が健全な通常運転での停止時
には第2図で述べたように放電制御器4,放電制御リレー
3の動作によりリレー接点3aが閉じて放電抵抗2が燃料
電池本体1の出力端子間に投入接続され、これにより燃
料電池本体の残電気エネルギーが放電抵抗2を通じて放
電消費される。
With such a configuration, when the control power supply 5 is stopped in a normal normal operation, the relay contact 3a is closed by the operation of the discharge controller 4 and the discharge control relay 3 as described in FIG. Are connected between the output terminals of the fuel cell and the residual electric energy of the fuel cell main body is discharged and consumed through the discharge resistor 2.

一方、制御電源5が不測な電源トラブルで喪失した緊急
停止の事態になると、まず制御電源の喪失を検出した制
御電源喪失検出リレー7がオフ動作してそのリレー接点
7bが閉じ、これにより放電制御リレー6が前記リレー接
点7b,調整抵抗8を介して燃料電池本体1の出力端子間
に投入接続される。ここで燃料電池本体1の残エネルギ
ーが多くその出力端子間電圧が高電位の状態にあれば、
調整抵抗8を通じて放電制御リレー6に電流が流れてリ
レー6がオン動作し、そのリレー接点6aを閉じる。した
がって放電抵抗2はリレー接点6aを介して燃料電池本体
1の出力端子間に投入接続され、燃料電池本体の残エネ
ルギーが電気エネルギーとして放電抵抗2を通じて放電
消費されるようになる。またこの状態に伴って燃料電池
本体1の電位が降下し、放電制御リレー6に流れる電流
が保持電流以下になると、放電制御リレー6はオフ動作
して放電抵抗2を回路から切り離し、この時点で放電動
作が終了する。なお、調整抵抗8の抵抗値をあらかじめ
適正に調整しておくことにより、前記放電動作を燃料電
池本体が過放電となる以前の段階で終了させることがで
きる。
On the other hand, when the control power supply 5 is lost due to an unexpected power supply trouble and an emergency stop occurs, first, the control power supply loss detection relay 7 that detects the loss of the control power supply is turned off and the relay contact is lost.
7b is closed, whereby the discharge control relay 6 is closed and connected between the output terminals of the fuel cell body 1 via the relay contact 7b and the adjusting resistor 8. Here, if the remaining energy of the fuel cell main body 1 is large and the voltage between its output terminals is in a high potential state,
A current flows through the discharge control relay 6 through the adjusting resistor 8, the relay 6 is turned on, and the relay contact 6a is closed. Therefore, the discharge resistor 2 is connected between the output terminals of the fuel cell main body 1 via the relay contact 6a, and the residual energy of the fuel cell main body is discharged and consumed through the discharge resistor 2 as electric energy. Further, when the electric potential of the fuel cell main body 1 drops with this state and the current flowing through the discharge control relay 6 becomes equal to or less than the holding current, the discharge control relay 6 is turned off to disconnect the discharge resistor 2 from the circuit. The discharging operation ends. By properly adjusting the resistance value of the adjusting resistor 8 in advance, the discharging operation can be ended at a stage before the fuel cell body is over-discharged.

〔発明の効果〕〔The invention's effect〕

本発明の放電制御回路は、以上説明したように構成され
ているので、次記の効果を奏する。
Since the discharge control circuit of the present invention is configured as described above, it has the following effects.

すなわち、制御電源喪失の緊急停止時の際に、燃料電池
本体の残エネルギーを活用して放電抵抗を出力端子間に
投入接続させるように放電制御回路を構成したことによ
り、従来の放電制御回路では不能であった放電制御を補
助バッテリーを用いることなく遂行して燃料電池放電の
残エネルギーを電気エネルギーとして放電消費させ、燃
料電池を高電位状態から速やかに低電位状態に移すこと
ができる。しかも放電動作により燃料電池の電位が低レ
ベル値に降下すれば、自動的に放電動作が終了するので
燃料電池が過放電に移行するのを防止でき、これにより
高温,高電位によるセル特性の劣化防止,並びに過放電
に起因したセル電位逆転による特性劣化も防止できる。
That is, in the case of an emergency stop due to loss of control power, the discharge control circuit is configured so that the remaining energy of the fuel cell body is utilized to connect and connect the discharge resistance between the output terminals. It is possible to perform the discharge control that was impossible, without using an auxiliary battery, to discharge and consume the residual energy of the fuel cell discharge as electric energy, and to quickly shift the fuel cell from the high potential state to the low potential state. Moreover, if the potential of the fuel cell drops to a low level value due to the discharge operation, the discharge operation is automatically terminated, so that it is possible to prevent the fuel cell from shifting to over-discharge, which deteriorates the cell characteristics due to high temperature and high potential. It is also possible to prevent deterioration of characteristics due to reversal of cell potential due to overdischarge.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例の放電制御回路図、第2図は従来
における燃料電池の放電制御回路である。各図におい
て、 1:燃料電池本体、1a,1b:出力端子、2:放電抵抗、5:制御
電源、6:緊急停止時用の放電制御リレー、6a:リレー接
点、7:制御電源喪失検出リレー、7a:リレー接点。
FIG. 1 is a discharge control circuit diagram of an embodiment of the present invention, and FIG. 2 is a conventional fuel cell discharge control circuit. In each figure, 1: Fuel cell main body, 1a, 1b: Output terminal, 2: Discharge resistance, 5: Control power supply, 6: Discharge control relay for emergency stop, 6a: Relay contact, 7: Control power loss detection relay , 7a: Relay contact.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】単セルを複数個積層してセルスタックを構
成した燃料電池本体と、燃料電池の停止時に燃料電池の
残エネルギーを放電させる放電抵抗と、a接点を有する
通常停止用の放電制御リレーと、該リレーを開閉するた
めの放電制御器と、燃料電池の制御電源と、a接点を有
する緊急停止用の放電制御リレーと、b接点を有する制
御電源喪失検出リレーと、前記緊急停止用の放電制御リ
レーの電圧を調整するための調整抵抗とを備えた燃料電
池の放電制御回路であって、 前記燃料電池本体の出力端子間に,前記通常停止用の放
電制御リレーのa接点と前記緊急停止用の放電制御リレ
ーのa接点とを並列に接続し,かつ該並列に接続した二
つの接点と直列に前記放電抵抗を接続してなり、 さらに、前記燃料電池本体の出力端子間に,前記緊急停
止用の放電制御リレーと前記調整抵抗と前記制御電源喪
失検出リレーのb接点とを直列に,かつ前記放電抵抗と
二つのa接点とに並列に接続してなり、 さらにまた、前記制御電源の出力端子間に,前記放電制
御器と前記通常停止用の放電制御リレーとを直列に接続
し,かつ前記制御電源喪失検出リレーを前記放電制御器
と前記通常停止用の放電制御リレーとの並列に接続して
なり、 前記緊急停止用の放電制御リレーは、前記燃料電池本体
の無負荷電圧より低い電圧によってオン動作する電圧を
有し,かつ前記調整抵抗は前記燃料電池本体の無負荷電
圧と前記オン動作する電圧との差の電圧を分担するよう
にその抵抗値を選定してなることを特徴とする燃料電池
の放電制御回路。
1. A fuel cell body having a cell stack formed by stacking a plurality of single cells, a discharge resistor for discharging residual energy of the fuel cell when the fuel cell is stopped, and a discharge control for normal stop having an a contact. A relay, a discharge controller for opening and closing the relay, a fuel cell control power supply, an emergency stop discharge control relay having an a contact, a control power loss detection relay having a b contact, and the emergency stop A discharge control circuit for a fuel cell, comprising: an adjusting resistor for adjusting the voltage of the discharge control relay, comprising: an a contact of the discharge control relay for normal stop and an output terminal of the fuel cell main body; An a-contact of a discharge control relay for emergency stop is connected in parallel, and the discharge resistor is connected in series with two contacts connected in parallel, and further, between the output terminals of the fuel cell main body, The above A discharge control relay for sudden stop, the adjusting resistor, and a contact b of the control power loss detection relay are connected in series and in parallel with the discharge resistor and two contacts a, and the control power supply is further provided. The discharge controller and the discharge control relay for normal stop are connected in series between the output terminals, and the control power loss detection relay is connected in parallel with the discharge controller and the discharge control relay for normal stop. The discharge control relay for emergency stop has a voltage that is turned on by a voltage lower than the no-load voltage of the fuel cell main body, and the adjusting resistor has a no-load voltage of the fuel cell main body. A discharge control circuit for a fuel cell, wherein a resistance value of the fuel cell is selected so as to share a voltage which is a difference from the voltage for the ON operation.
JP63129869A 1988-05-27 1988-05-27 Fuel cell discharge control circuit Expired - Lifetime JPH07107859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63129869A JPH07107859B2 (en) 1988-05-27 1988-05-27 Fuel cell discharge control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63129869A JPH07107859B2 (en) 1988-05-27 1988-05-27 Fuel cell discharge control circuit

Publications (2)

Publication Number Publication Date
JPH01298649A JPH01298649A (en) 1989-12-01
JPH07107859B2 true JPH07107859B2 (en) 1995-11-15

Family

ID=15020308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63129869A Expired - Lifetime JPH07107859B2 (en) 1988-05-27 1988-05-27 Fuel cell discharge control circuit

Country Status (1)

Country Link
JP (1) JPH07107859B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025083A (en) * 1998-02-25 2000-02-15 Siemens Westinghouse Power Corporation Fuel cell generator energy dissipator
JP5264040B2 (en) * 2004-08-27 2013-08-14 東京瓦斯株式会社 Fuel cell system
KR101049827B1 (en) 2008-12-19 2011-07-15 삼성에스디아이 주식회사 Fuel cell system and its driving method
AT512622B1 (en) * 2012-02-15 2016-09-15 Fronius Int Gmbh METHOD AND DEVICE FOR OPERATING A FUEL CELL UNIT
JP6575873B2 (en) * 2016-02-18 2019-09-18 トヨタ自動車株式会社 Fuel cell system

Also Published As

Publication number Publication date
JPH01298649A (en) 1989-12-01

Similar Documents

Publication Publication Date Title
US6781343B1 (en) Hybrid power supply device
US8193773B2 (en) Electronic system for a battery
US10326288B2 (en) Method and device for the voltage-controlled self-deactivation of electronic components or battery cells
EP1143595B1 (en) Emergency power system
JP6178328B2 (en) DC voltage source including an electrochemical cell
KR20190001927A (en) Safe energy supply device for a vehicle
KR20130001239A (en) High-current battery system and method for controlling a high-current battery system
JP2001309563A (en) Building power supply system and battery device
KR20010041324A (en) Fuel cell generator energy dissipator
CN103531861A (en) Battery and motor vehicle
JP7396555B2 (en) Automotive power system
CN111130094A (en) On-line discharging direct current system for mutual hot standby
JP2010272219A (en) Charge control device for lithium ion battery pack, and lithium ion battery pack system
JP2006223050A (en) Power supply system
JPH06141479A (en) Protective circuit for secondary battery
JP2002058170A (en) Uninterruptible power supply
JP2007166747A (en) Battery pack and its charging method
JP6848075B2 (en) Storage battery device
JP4724726B2 (en) DC power supply system and charging method thereof
WO2015040655A1 (en) Switching device and storage battery system
JPH07107859B2 (en) Fuel cell discharge control circuit
CA1231130A (en) Fuel cell/battery hybrid system
WO2000069045A1 (en) An arrangement in a power supply unit
WO2021241136A1 (en) Backup power supply device
US12046930B2 (en) Battery system