JPS6110208A - Manufacture of rare earth and iron permanent magnet - Google Patents

Manufacture of rare earth and iron permanent magnet

Info

Publication number
JPS6110208A
JPS6110208A JP59130108A JP13010884A JPS6110208A JP S6110208 A JPS6110208 A JP S6110208A JP 59130108 A JP59130108 A JP 59130108A JP 13010884 A JP13010884 A JP 13010884A JP S6110208 A JPS6110208 A JP S6110208A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
iron
iron permanent
thin band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59130108A
Other languages
Japanese (ja)
Other versions
JPH0732091B2 (en
Inventor
Masakatsu Haga
羽賀 正勝
Tetsuhiko Mizoguchi
徹彦 溝口
Koichiro Inomata
浩一郎 猪俣
Hisashi Yoshino
芳野 久士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59130108A priority Critical patent/JPH0732091B2/en
Publication of JPS6110208A publication Critical patent/JPS6110208A/en
Publication of JPH0732091B2 publication Critical patent/JPH0732091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain the permanent magnet with high energy product having high magnetic flux density and high coercive force by uniting through heating after laminating the crystalline thin band of a rare earth and iron permanent magnetic alloy formed by way of a molten metal quenching method. CONSTITUTION:A rare earth and iron permanent magnetic alloy contains at least one chosen from yttrium and such rare earth metals as Ce, Pr, Nd and Sm, and iron as a principal componet, and further contains such a nonmetal as B, C to stabilize. As an axis C orientates at right angles to a thin band surface when the rare earth and iron permanent magnetic alloy is made to change into a thin band with the molten metal quenching method, the rare earth and iron permanent magnetic alloy changes into a thin band with bursting an alloyed molten metal over a rotary cooler. This crystalline thin band gained is united by heating after laminating in order to become a desired form. Heating temperature differs depending on a composition. The temperature to unite needs to be at least 600 deg.C, and it is preferable that the temperature to prevent a liquid phase from crystallizing needs to be at most 1,100 deg.C.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、希土類・鉄系永久磁石の製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for manufacturing rare earth/iron permanent magnets.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来から希土類00系の永久磁石が知られている。この
永久磁石は高いエネルギー積を有しているため、広い分
野で用いられている。最近、さら(高いエネルギー積(
例えば30MGOe以上)を有する希土類・Fe系の永
久磁石が研究されている。この希土類・鉄系の永久磁石
は、高いエネルギー積に加え、Co系に比べFeが主体
であるため、安価であるというメリットも有し有望な材
料である。
Permanent magnets of rare earth 00 series have been known for some time. Since this permanent magnet has a high energy product, it is used in a wide range of fields. Recently, even (high energy product)
For example, rare earth/Fe-based permanent magnets having a magnetic flux of 30 MGOe or more are being researched. This rare-earth/iron-based permanent magnet is a promising material because it has a high energy product and also has the advantage of being inexpensive compared to Co-based magnets because it is mainly composed of Fe.

造きれるが、粉砕後磁場中プレス等の工程が必要であり
、工程が複雑であるという欠点に加え、製造工程中特に
粉砕工程での不純物の混入の恐れがあり、安定した磁気
特性が得にくいという欠点があった。
Although it can be manufactured, it requires processes such as pressing in a magnetic field after crushing, and in addition to the disadvantage that the process is complicated, there is a risk of contamination with impurities during the manufacturing process, especially during the crushing process, making it difficult to obtain stable magnetic properties. There was a drawback.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点を考慮してなされたもので、高磁束密
度、高保磁力を有しエネルギー積の大きい希土類・鉄系
永久磁石を容易に得ることのできる希土類・鉄系永久磁
石の製造方法を提供することを目的とする。
The present invention has been made in consideration of the above points, and is a method for manufacturing rare earth/iron permanent magnets that can easily obtain rare earth/iron permanent magnets that have high magnetic flux density, high coercive force, and a large energy product. The purpose is to provide

〔発明の概要〕[Summary of the invention]

本発明は、希土類・鉄系永久磁石合金を溶湯急冷法で作
製した場合、その薄帯は薄帯面に対し、垂直方向に0軸
が配向することをみいだしたことを基本とするものであ
る。
The present invention is based on the discovery that when a rare earth/iron permanent magnet alloy is produced by a molten metal quenching method, the zero axis of the ribbon is oriented perpendicular to the ribbon surface. be.

すなわち、本発明は溶湯急冷法によシ希土類・鉄系永久
磁石合金からなる結晶質薄帯を得る第1の工程:、+(
) 第1の工程によシ得られた結晶質薄帯からなる積層体を
加熱によシ一体化する第2の工程:とを有する希土類・
鉄系永久磁石合金の製造方法である。
That is, the present invention involves the first step of obtaining a crystalline ribbon made of a rare earth/iron permanent magnet alloy by a molten metal rapid cooling method.
) A second step of integrating the laminate made of crystalline ribbons obtained in the first step by heating:
This is a method for manufacturing an iron-based permanent magnet alloy.

希土類・鉄系永久磁石合金は、イツトリウム及びOe、
Pr、Nd、Sm等の希土類金属(希土類元素と複数程
合むミツシーメタル(M、M)でも良い)から選ばれた
少なくとも一種及び鉄を主成分として、さらに安定化の
ためのB、O等の非金属を含むものである。例えばBを
例にとれば、R1a  p  BαFeβ R:Y、希土類 0.001≦α≦0.5 0.5≦β≦0.95 α+β〈1.O ここでα<0.001.β<0.5だけと保磁力が向上
せず永久磁石合金としては不適当であり、α>0.5゜
β>0.95だと磁束密度が低下し、やはシ永久磁石と
しては不適当である。
Rare earth/iron permanent magnet alloys include yttrium and Oe,
At least one selected from rare earth metals such as Pr, Nd, and Sm (or Mitsushi metals (M, M), which are compatible with rare earth elements in multiple degrees) and iron as main components, further containing B, O, etc. for stabilization. Contains non-metals. For example, taking B as an example, R1a p BαFeβ R:Y, rare earth 0.001≦α≦0.5 0.5≦β≦0.95 α+β<1. O where α<0.001. When β<0.5, the coercive force does not improve and it is unsuitable as a permanent magnet alloy, and when α>0.5゜β>0.95, the magnetic flux density decreases and it is unsuitable as a permanent magnet alloy. Appropriate.

又、Bと同等のものとして、O,N、0.P、H。Also, as equivalent to B, O, N, 0. P.H.

S、Al、Sr等が挙げられる。これらの元素でBの一
部もしくは全部を置換してもよい。
S, Al, Sr, etc. are mentioned. Part or all of B may be replaced with these elements.

又得られた結晶質薄帯の耐食性向上の面に着目し、各種
元素の耐食性に及ぼす影響について研究を重ねた結果R
−Fe−B合金をペースにして、これにOr andl
or  AJを添加することKより耐食性を大巾に向上
させ得るという新たな知見を見い出した。Ri−a−β
−rBαFeβMγ(但しR=Y。
In addition, we focused on improving the corrosion resistance of the obtained crystalline ribbon, and as a result of repeated research on the effects of various elements on corrosion resistance, R
- Based on Fe-B alloy, Or andl
A new finding has been discovered that the addition of AJ or AJ can significantly improve corrosion resistance compared to K. Ri-a-β
-rBαFeβMγ (where R=Y.

希土類1M八4(ミツシメタル)の1種又は2種以上、
M=Or、Alの1種又は2種でα、β、rがそれぞれ
0001≦α≦0.5,0.5≦β≦0.95,0.0
01≦γく01;α+β+γ<1)の範囲が特に耐食性
が良い。
One or more types of rare earth 1M84 (Mitsushi Metal),
M=Or, one or two types of Al, α, β, r are 0001≦α≦0.5, 0.5≦β≦0.95, 0.0, respectively
Corrosion resistance is particularly good in the range of 01≦γ; 01; α+β+γ<1).

ここで13の添加量が0001未満の場合は、保磁力が
上昇せず永久磁石合金としては不適である。
If the amount of 13 added is less than 0001, the coercive force will not increase, making it unsuitable as a permanent magnet alloy.

又0.5を越える場合は、磁束密度が低下し好ましくな
い。
If it exceeds 0.5, the magnetic flux density will decrease, which is not preferable.

Feは0.5未満の場合は磁束密度が不足し、095を
越える場合は保磁力が低下する。γの値は0.001未
満では、耐食性向上の効果が見られず01を越えると磁
束密度が低下する。
If Fe is less than 0.5, the magnetic flux density will be insufficient, and if it exceeds 095, the coercive force will decrease. When the value of γ is less than 0.001, no effect of improving corrosion resistance is observed, and when it exceeds 0.01, the magnetic flux density decreases.

このような希土類・鉄系永久磁石合金は、溶湯急冷法で
薄帯化すると、ある冷却条件下でその薄帯面に対して垂
直方向にC軸が配向する。これはSm−Co系ではみら
れない現象である。製造に際しては、非晶質合金と同様
な方法をとる。すなわち、水気で冷却されている回転冷
却体上に合金溶湯を噴出し薄帯化する。
When such a rare earth/iron permanent magnet alloy is formed into a thin ribbon by a molten metal quenching method, the C-axis is oriented perpendicularly to the surface of the ribbon under certain cooling conditions. This is a phenomenon not seen in Sm-Co systems. The manufacturing process is similar to that used for amorphous alloys. That is, the molten alloy is spouted onto a rotary cooling body that is cooled with water to form a thin ribbon.

この時回転冷却体の回転速度が大きすぎると、薄帯が非
晶質化してしまい、配向かなく永久磁石として働かなく
なる。又、回転速度が遅いと結晶質とはなるものの、結
晶粒が粒状晶となり配向性が劣化してしまい、磁気特性
が悪くなる。このように考えると、回転冷却体の表面速
度が3〜20m7秒の範囲であることが好ましい。
At this time, if the rotational speed of the rotary cooling body is too high, the ribbon becomes amorphous and is not oriented and does not function as a permanent magnet. On the other hand, if the rotation speed is slow, although the material becomes crystalline, the crystal grains become granular and the orientation deteriorates, resulting in poor magnetic properties. Considering this, it is preferable that the surface speed of the rotary cooling body is in the range of 3 to 20 m7 seconds.

このようにして得られた結晶質薄帯は、所望の形状とな
るように積層され、加熱によシ一体化される。加熱温度
は組成によシ異なるが、一体化のために祉600℃以上
が必要であり、液相晶出を防止するため1100℃以下
であることが好ましい。
The crystalline ribbons thus obtained are stacked in a desired shape and integrated by heating. Although the heating temperature varies depending on the composition, a temperature of 600° C. or higher is required for integration, and is preferably 1100° C. or lower to prevent liquid phase crystallization.

処理時藺は0.1 H〜5H程度で十分である。During the treatment, a treatment time of about 0.1 to 5 hours is sufficient.

またより大きいエネルギー積を得るため、加熱一体化の
際0.1ton/cd程度の加圧をすることが好ましい
Furthermore, in order to obtain a larger energy product, it is preferable to apply a pressure of about 0.1 ton/cd during heating and integration.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によれば従来法における粉
砕、磁場中プレス等の工程を省略することができ、大幅
な工程の簡略化が達成されるとともに、得られる永久磁
石の磁気特性も改善される。
As explained above, according to the present invention, the steps of conventional methods such as crushing and pressing in a magnetic field can be omitted, thereby achieving a significant simplification of the process and improving the magnetic properties of the resulting permanent magnet. be done.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を以下に説明する。 Examples of the present invention will be described below.

(実施例1) Nd0.17B0.11Fe0.72なる組成を有スル
合金ヲ溶湯急冷法を用いて薄帯化した。即ち約10jl
秒で回転するロール表面に石英ノズルを介して溶湯合金
をアルゴンガス圧により射出冷却して幅10編、厚さ1
00μmの結晶質薄帯を得た。得られ九薄帯をX線回折
装置により測定した結果を#11図に、また比較のため
に合金粉末材のX線回析の結果を第2図に示す。
(Example 1) An alloy having a composition of Nd0.17B0.11Fe0.72 was formed into a thin ribbon using a molten metal quenching method. That is about 10jl
The molten alloy is injected and cooled by argon gas pressure through a quartz nozzle onto the surface of a roll that rotates in seconds.
A crystalline ribbon of 00 μm was obtained. The results of measuring the obtained nine ribbons using an X-ray diffractometer are shown in Figure #11, and for comparison, the results of X-ray diffraction of the alloy powder material are shown in Figure 2.

合金粉末材に比較して溶湯急冷薄帯の場合、リボン面と
垂直方向にC軸が配向していることがわかる。
It can be seen that, compared to the alloy powder material, in the case of the molten metal quenched ribbon, the C axis is oriented in the direction perpendicular to the ribbon surface.

溶湯急冷法で得られた薄帯を長さ10jlのタンザク状
に切断し100枚積層させ2ton/dの圧力で加圧成
形しつつ1080℃xIHの加熱処理を行なった。得ら
れた磁気特性を第1表に示す。
The thin strips obtained by the molten metal quenching method were cut into tanzag shapes with a length of 10 liters, 100 strips were stacked, and heat treatment was performed at 1080° C. x IH while press forming at a pressure of 2 tons/d. The obtained magnetic properties are shown in Table 1.

(実施例2) Pr0.15 、Bo、08 、Fe0.77なる磁石
合金の薄帯を作製し実施例1と同様に積層し、2 to
n/a/(の加圧成形しつつ1100℃xIHの加熱処
理を行なった。得られた磁気特性を第1表に示す。
(Example 2) Thin strips of magnetic alloys of Pr0.15, Bo,08, and Fe0.77 were prepared and laminated in the same manner as in Example 1, and 2 to
Heat treatment at 1100° C. x IH was performed while press molding at n/a/(. The magnetic properties obtained are shown in Table 1.

(実施例3) Nd O,2、Bo、2 、 Fe O,6なる磁石合
金薄帯を実施例1と同様の製造方法で作製した薄帯を、
外径10jl内径5〆のリング状に成形し、このリング
を実施例1と同様に積層・加熱処理の彼の磁気特性を第
1表に示す。
(Example 3) A magnetic alloy ribbon of NdO,2, Bo,2, FeO,6 was produced using the same manufacturing method as in Example 1.
It was molded into a ring shape with an outer diameter of 10 mm and an inner diameter of 5 mm, and this ring was laminated and heat treated in the same manner as in Example 1, and its magnetic properties are shown in Table 1.

々お、比較のため実施例工〜3と同様の組成を有し、粉
末焼結法で作成嘔れた永久磁石の特性もあわせて示す。
For comparison, the characteristics of a permanent magnet having the same composition as Examples 3 to 3 and produced by the powder sintering method are also shown.

第1表から明らかなように、本発明方法を用いることK
よシ、従来法に比ベエネルギー積((BH)may )
が向上することがわかる。これは粉砕工程がなく、不純
物混入の恐れがないこと、又積層熱処理による効果と思
われる。又、従来の粉末焼結法は粉砕・磁場中プレスと
いった工程が省略でき製造が非常、に容易である。
As is clear from Table 1, using the method of the present invention K
Compared to the conventional method, the energy product ((BH) may)
It can be seen that the results are improved. This seems to be due to the fact that there is no pulverization process, so there is no risk of contamination with impurities, and the effect of laminated heat treatment. In addition, the conventional powder sintering method can omit steps such as crushing and pressing in a magnetic field, making manufacturing extremely easy.

(実施例3) 合金原料として、原子比でNd0.16 、Bo、07
4 。
(Example 3) As alloy raw materials, Nd0.16, Bo, 07 in atomic ratio
4.

FeO,756、Oro、01の合金(以下[合金IJ
と称する)とNd O,15、Bo、05 、 Fe 
O,77の合金(以下「合金1」と称する)2種類を用
意し、溶湯急冷法を用いて薄帯化を行なった。即ち10
jl秒で回転するロール表面に石英製ノズルを介して溶
融合金をアルゴンガス圧によシ射出冷却を行ない、幅1
0瑞、厚さ100μmの結晶質薄帯を得た。
Alloy of FeO, 756, Oro, 01 (hereinafter referred to as [alloy IJ
) and Nd O,15, Bo,05, Fe
Two types of alloys of O,77 (hereinafter referred to as "alloy 1") were prepared and formed into thin ribbons using a molten metal quenching method. That is 10
The molten alloy is injected and cooled by argon gas pressure through a quartz nozzle onto the surface of a roll that rotates at jl seconds.
A crystalline ribbon with a thickness of 100 μm was obtained.

得られた薄帯を長き10期のタンザク状に切断し積層さ
せ、2 ton/dの圧力で加圧形成しつつ1100℃
xlHアルゴン雰囲気中で加熱処理を行ない、縦10−
+横10m、厚さ10麿の永久磁石を作製した。
The obtained thin strips were cut into long tanzak shapes of 10 periods, laminated, and heated at 1100°C while being press-formed at a pressure of 2 tons/d.
Heat treatment is performed in an xlH argon atmosphere, and a vertical 10-
+ A permanent magnet with a width of 10 m and a thickness of 10 m was produced.

このようKして得られた永久磁石の磁気特性を第1表に
示す。また比較するために、従来の粉末焼結法で作製し
た合金■および合金Iの永久磁石の磁気特性を第1表に
併記する。
The magnetic properties of the permanent magnet obtained in this way are shown in Table 1. For comparison, Table 1 also lists the magnetic properties of permanent magnets of Alloy (1) and Alloy (I) produced by the conventional powder sintering method.

次に実施例で作製した2種類の永久磁石を30℃4 %
 Nacl水溶液中に放置し、表面の腐食状態を観察し
た結果を第2表に併記する。又磁束密度の時間変化を調
べた結果を第1図に示す。
Next, the two types of permanent magnets produced in the example were heated at 30℃4%.
Table 2 also shows the results of observing the corrosion state of the surface after being left in a NaCl aqueous solution. Figure 1 shows the results of examining the change in magnetic flux density over time.

第2表、第3図から明らかなように、本発明方法を用い
ることにより高い磁束密度、保磁力、および大きい最大
エネルギー積に加えて高耐食性をも兼ね備えた希土類鉄
系永久磁石を製造することができる。又従来法の溶解、
粉砕、配向、成形などの作業工程が省略でき、製造が非
常に容易である。
As is clear from Table 2 and Figure 3, by using the method of the present invention, it is possible to manufacture rare earth iron permanent magnets that have not only high magnetic flux density, coercive force, and large maximum energy product, but also high corrosion resistance. I can do it. Also, conventional dissolution,
Work processes such as crushing, orientation, and molding can be omitted, making manufacturing extremely easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るMd0.17.Bo、11.Pe
0.72薄帯のX線回折図、第2図はNd O,17、
Bo、11 、 Fe0072粉末のX線回折図、第3
図はBrの経時特性図。 代理人 弁理士 則 近 憲 佑 (ほか1名)第  
1  図
FIG. 1 shows Md0.17 according to the present invention. Bo, 11. Pe
X-ray diffraction diagram of 0.72 ribbon, Figure 2 shows NdO,17,
Bo, 11, X-ray diffraction diagram of Fe0072 powder, 3rd
The figure shows the temporal characteristics of Br. Agent Patent Attorney Kensuke Chika (and 1 other person) No.
1 figure

Claims (1)

【特許請求の範囲】 (1)溶湯急冷法により作成された希土類・鉄系永久磁
石合金からなる結晶質薄帯を積層した後、加熱して一体
化することを特徴とする希土類・鉄系永久磁石の製造方
法。 (2)前記加熱は600〜1100℃の温度範囲で行な
われることを特徴とする特許請求の範囲第1項記載の希
土類・鉄系永久磁石の製造方法。 (3)前記希土類・鉄系永久磁石原料合金は、R_1_
−_a_−_βB_αFe_β(α、βは原子比)R:
Y及び希土類元素の少なくとも一 種 0.001≦α≦0.5 0.5≦β≦0.95 α+β<1.0 で表わされる組成を有することを特徴とする特許請求の
範囲第1項記載の希土類・鉄系永久磁石の製造方法。 (4)前記希土類−鉄系永久磁石合金は R_1_−_α_−_β−_γB_αFe_βM_γ(
α、β、γは原子比) R:Y及び希土類元素の少なくとも一種 0.001≦α≦0.5 0.5≦β≦0.95 0.001≦γ≦0.1 α+β+γ<1 で表わされる組成を有することを特徴とする特許請求の
範囲第1項記載の希土類・鉄系永久磁石の製造方法。
[Scope of Claims] (1) A rare earth/iron permanent magnet characterized by laminating crystalline thin strips made of a rare earth/iron permanent magnet alloy produced by a molten metal quenching method and then heating and integrating the crystalline ribbons. How to manufacture magnets. (2) The method for manufacturing a rare earth/iron permanent magnet according to claim 1, wherein the heating is performed at a temperature range of 600 to 1100°C. (3) The rare earth/iron permanent magnet raw material alloy is R_1_
-_a_-_βB_αFe_β (α and β are atomic ratios) R:
Claim 1, characterized in that it has a composition of at least one of Y and a rare earth element: 0.001≦α≦0.5 0.5≦β≦0.95 α+β<1.0 A method for manufacturing rare earth/iron permanent magnets. (4) The rare earth-iron permanent magnet alloy is R_1_-_α_-_β-_γB_αFe_βM_γ(
α, β, γ are atomic ratios) R: Y and at least one of rare earth elements 0.001≦α≦0.5 0.5≦β≦0.95 0.001≦γ≦0.1 α+β+γ<1 2. A method for producing a rare earth/iron permanent magnet according to claim 1, wherein the rare earth/iron permanent magnet has a composition.
JP59130108A 1984-06-26 1984-06-26 Manufacturing method of rare earth / boron / iron permanent magnet Expired - Fee Related JPH0732091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59130108A JPH0732091B2 (en) 1984-06-26 1984-06-26 Manufacturing method of rare earth / boron / iron permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59130108A JPH0732091B2 (en) 1984-06-26 1984-06-26 Manufacturing method of rare earth / boron / iron permanent magnet

Publications (2)

Publication Number Publication Date
JPS6110208A true JPS6110208A (en) 1986-01-17
JPH0732091B2 JPH0732091B2 (en) 1995-04-10

Family

ID=15026141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59130108A Expired - Fee Related JPH0732091B2 (en) 1984-06-26 1984-06-26 Manufacturing method of rare earth / boron / iron permanent magnet

Country Status (1)

Country Link
JP (1) JPH0732091B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231620A2 (en) * 1986-01-29 1987-08-12 General Motors Corporation Permanent magnet manufacture from very low coercivity crystalline rare earth-transition metal-boron alloy
US4990876A (en) * 1989-09-15 1991-02-05 Eastman Kodak Company Magnetic brush, inner core therefor, and method for making such core

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490598A (en) * 1977-12-28 1979-07-18 Fuji Electrochemical Co Ltd Preparation of anisotropic ferrite magnet
JPS56116844A (en) * 1980-02-15 1981-09-12 Seiko Instr & Electronics Ltd Manufacture of amorphous magnetic material and rare earth element magnet
JPS5773904A (en) * 1980-10-28 1982-05-08 Pioneer Electronic Corp Preparation of thin ribbon-like alnico magnet
JPS58136740A (en) * 1982-02-05 1983-08-13 Mitsubishi Steel Mfg Co Ltd Rapidly cooled magnet alloy and its manufacture
JPS5964739A (en) * 1982-09-03 1984-04-12 ゼネラルモーターズコーポレーション High energy rare earth metal-transition metal magnetic alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490598A (en) * 1977-12-28 1979-07-18 Fuji Electrochemical Co Ltd Preparation of anisotropic ferrite magnet
JPS56116844A (en) * 1980-02-15 1981-09-12 Seiko Instr & Electronics Ltd Manufacture of amorphous magnetic material and rare earth element magnet
JPS5773904A (en) * 1980-10-28 1982-05-08 Pioneer Electronic Corp Preparation of thin ribbon-like alnico magnet
JPS58136740A (en) * 1982-02-05 1983-08-13 Mitsubishi Steel Mfg Co Ltd Rapidly cooled magnet alloy and its manufacture
JPS5964739A (en) * 1982-09-03 1984-04-12 ゼネラルモーターズコーポレーション High energy rare earth metal-transition metal magnetic alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231620A2 (en) * 1986-01-29 1987-08-12 General Motors Corporation Permanent magnet manufacture from very low coercivity crystalline rare earth-transition metal-boron alloy
US4990876A (en) * 1989-09-15 1991-02-05 Eastman Kodak Company Magnetic brush, inner core therefor, and method for making such core

Also Published As

Publication number Publication date
JPH0732091B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US11101057B2 (en) Highly thermostable rare-earth permanent magnetic material, preparation method thereof and magnet containing the same
KR101687981B1 (en) Rare-earth permanent magnetic powders, bonded magnet comprising same, and device using bonded magnet
JPH0580401B2 (en)
US20020003006A1 (en) Alloy for high-performance rare earth permanent magnet and manufacturing method thereof
JP2703281B2 (en) Magnetic anisotropic material and method of manufacturing the same
Harada et al. Amorphization of Nd15Fe77B8 alloy ingots by mechanical grinding
JPS6110208A (en) Manufacture of rare earth and iron permanent magnet
JPS60176202A (en) Iron-rare earth-nitrogen permanent magnet
JP3469496B2 (en) Manufacturing method of magnet material
KR960014518B1 (en) Enhanced remanence permanent magnetic alloy and bodies thereof
KR0168495B1 (en) Ñß-FE BASE RE-FE-B NM CRYSTAL ALLOY AND ITS PRODUCING METHOD AND USE
JPH0146574B2 (en)
JP4043613B2 (en) Fe-based hard magnetic alloy with supercooled liquid region
CN1184345C (en) Bulk amorphous alloy material
US5403407A (en) Permanent magnets made from iron alloys
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPS62222605A (en) Manufacture of rare earth-iron permanent magnet
JPS60255941A (en) Manufacture of rare earth element-transition metal element-semimetal alloy magnet
JPS6089533A (en) Production of co-fe permanent magnet alloy
JPH0641617A (en) Production of fe-n or fe-si-n soft magnetic powder having high saturation magnetic flux density
JPH10154610A (en) Manufacturing method of anisotropic magnet powder, anisotropic magnet powder and anisotropic bond magnet
JPH07118703A (en) Production of fe-n soft magnetic powder having high saturation magnetic flux density
JPS61288047A (en) Manufacture of permanent magnet alloy
JPH0239503A (en) Rare earth-fe-b anisotropic permanent magnet and its manufacture
JPH09143641A (en) Hard magnetic material and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees