JPS61101968A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS61101968A
JPS61101968A JP59222902A JP22290284A JPS61101968A JP S61101968 A JPS61101968 A JP S61101968A JP 59222902 A JP59222902 A JP 59222902A JP 22290284 A JP22290284 A JP 22290284A JP S61101968 A JPS61101968 A JP S61101968A
Authority
JP
Japan
Prior art keywords
reaction gas
piping
gas supply
supply pipe
discharge pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59222902A
Other languages
Japanese (ja)
Inventor
Sueo Ando
安藤 末雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59222902A priority Critical patent/JPS61101968A/en
Publication of JPS61101968A publication Critical patent/JPS61101968A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To suppress reaction gas leak to the utmost for rationalization of insulating construction, reduction of a piping space and improvement of heat recovery efficiency by arranging piping on the side of reaction gas supply and piping on the discharge side coaxially while housing the piping on the supply side inside the piping on the discharge side. CONSTITUTION:A hydrogen gas supply pipe 11 and a hydrogen gas discharge pipe 12 as well as an air supply tube 13 and an air discharge pipe 14 are arranged coaxially respectively from a tank 15 to a reaction gas treatment system. Since the reaction gas supply pipe is housed inside the reaction gas discharge pipe for arranging them coaxially, a pressure difference between the reaction gas supply pipe and the reaction gas discharge pipe is not more than a head pressure difference so that pressure-tight construction of the reaction gas supply pipe requires no consideration. Further, the reaction gas discharge pipe is provided with an insulation material 16 while the reaction gas inside the reaction gas supply pipe is preheated and insulated by the reaction gas so as to be able to perform rationalization of insulating construction, reduction of a piping space and improvement of heat recovery efficiency.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は燃料電池の反応ガスの供給側、排出側配管構成
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a reactant gas supply side and discharge side piping configuration of a fuel cell.

[発明の技術的昔日とその問題点1 燃料電池は、燃料の持つ化学エネルギーを電器化学プロ
セスで酸化させることにより、酸化反応に伴って放出さ
れるエネルギーを直接電気エネルギーに変換する装置で
ある。この燃料電池を用いた発電プラントは、比較的小
さな規模でも発電の熱効率が40〜50%にも達し、新
鋭火力をはるかにしのぐと期待されている。さらに、近
年大きな社会問題になっている公害要因であるSOX。
[Technical history of the invention and its problems 1] A fuel cell is a device that directly converts the energy released in the oxidation reaction into electrical energy by oxidizing the chemical energy of fuel through an electrochemical process. Power generation plants using fuel cells are expected to achieve a thermal efficiency of 40 to 50% even on a relatively small scale, far exceeding new thermal power plants. Furthermore, SOX is a pollution factor that has become a major social problem in recent years.

NOXの排出が極めて少ない、発電装置内に燃焼サイク
ルを含まないので大爵の冷却水を必要としない、振動音
が小さいなど、原理的に高いエネルギー変換効率が期待
できるのと共に、騒音・排ガス等の環境問題が少なく、
さらに、負荷変動に対して応答性が良い等の特長がある
ことから、その開発、実用化の研究に期待と関心が寄せ
られている。
In principle, high energy conversion efficiency can be expected, such as extremely low NOx emissions, no combustion cycle involved in the power generator, no need for cooling water, and low vibration noise, as well as reduced noise and exhaust gas. There are fewer environmental problems,
Furthermore, because it has features such as good responsiveness to load fluctuations, there are expectations and interest in research into its development and practical application.

この様な燃料電池の実用化への問題点としてその構造上
、作業性、あるいは輸送上の制約より燃料電池の単器容
量に大幅な増加は、望めないことから多数台の燃料電池
の個々をいかにうまくコンパクトにまとめ、据付スペー
スの最小化、合理的保温構造で熱効率の向上を図ること
。また燃料に水素ガスを使用することから、そのリーク
、ひいてはリークによる爆発を考え、いかにして燃料の
リークを防止し防爆構造とするかということがある。こ
の点を従来の燃料電池を例にとり、具体的に説明すると
、次の通りである。
The problem with the practical application of such fuel cells is that it is difficult to expect a significant increase in the unit capacity of fuel cells due to their structure, workability, and transportation constraints. How to make it compact, minimize installation space, and improve thermal efficiency with a rational heat-insulating structure. Furthermore, since hydrogen gas is used as a fuel, there is a need to consider how to prevent fuel leaks and create an explosion-proof structure, considering the possibility of hydrogen gas leaking and even explosions caused by leaks. This point will be specifically explained below using a conventional fuel cell as an example.

まず、燃料電池の原理を示す断面模型図を第1図に示し
た。即ち、−組の多孔質電極1の間に、リン酸などの電
解液を含浸させた電解質層2を介在させて単電地を形成
し、この単電地の両端面に水素ガスHと空気Aを連続し
て供給する。この様にすると、反応生成物及び反応残余
物りが外部に連続して除去されるので発電が長期にわた
り継続される。
First, a cross-sectional model diagram showing the principle of a fuel cell is shown in FIG. That is, an electrolyte layer 2 impregnated with an electrolyte such as phosphoric acid is interposed between the - set of porous electrodes 1 to form a single conductive layer, and hydrogen gas H and air are applied to both end surfaces of the single conductive layer. Supply A continuously. In this way, reaction products and reaction residues are continuously removed to the outside, so power generation can be continued for a long period of time.

また、この様な燃料電池の基本的な構成は、第2図に示
す通りである。即ち、電解質マトリックス廣3の両側に
正極4及び負極5が配設されて四角形の板状をなす単電
地が構成され、この単電地を発電装置として使用するた
めに、多数の単電地が直列に結合されて積層されている
が、これら単電地の・間には、ガスを供給するための溝
を設けたインタコネクタ6が配設され、前記単電地と交
互に積重ねられている。この溝付インタコネクタ6には
、対向する二側縁に開口する複数の溝が設けられており
、−側面の溝を流路とする水素ガス流路7と、他の側面
の溝を流路とする空気流路8は、互いに直交する方向に
配列されている。
Further, the basic configuration of such a fuel cell is as shown in FIG. 2. That is, a positive electrode 4 and a negative electrode 5 are disposed on both sides of an electrolyte matrix wide 3 to form a rectangular plate-shaped single electrode, and in order to use this single electrode as a power generation device, a large number of single electrodes are are connected in series and stacked, and interconnectors 6 with grooves for supplying gas are provided between these single conductors, and are stacked alternately with the single conductors. There is. This grooved interconnector 6 is provided with a plurality of grooves that open on two opposing side edges, and a hydrogen gas flow path 7 that uses the groove on the - side as a flow path, and a flow path that uses the groove on the other side as a flow path. The air flow paths 8 are arranged in directions perpendicular to each other.

ところで、現在開発が進められている燃料電池は、第3
図(a)、(b)に示す如く、上記の様な単電地を四角
状に複数個積層してセルスタック9が構成され、その四
周の側面には反応ガス供給用マニホールド10a、10
b及び反応カス排出用マニホールド10c、10dが取
付けられている。このVニホールド10a 、   1
0b 、10c 。
By the way, the fuel cell currently under development is
As shown in FIGS. (a) and (b), a cell stack 9 is constructed by stacking a plurality of single electrodes as described above in a rectangular shape, and reaction gas supply manifolds 10a and 10 are provided on the four circumferential sides of the cell stack 9.
b and reaction scum discharge manifolds 10c and 10d are attached. This V-nifold 10a, 1
0b, 10c.

10dには、それぞれ水素ガス供給管11、水素ガス排
出管12、空気供給管13、空気排出管14が接続され
ている。そして水素ガスは燃料処理系から水素ガス供給
管11を通し供給側マニホールド10aに入り、セルス
タック9の一側面に開口している一方のインタコネクタ
6の溝内に流入し、この溝内を流れてこの一側面と対向
する側面から排出側マニホールド10bに排出され水素
ガス排出管12を通して燃料処理系に送り込まれる。
A hydrogen gas supply pipe 11, a hydrogen gas discharge pipe 12, an air supply pipe 13, and an air discharge pipe 14 are connected to 10d, respectively. Then, hydrogen gas enters the supply side manifold 10a from the fuel processing system through the hydrogen gas supply pipe 11, flows into the groove of one interconnector 6 that is open on one side of the cell stack 9, and flows inside this groove. The hydrogen gas is discharged from the side opposite to one side of the lever to the discharge side manifold 10b and sent to the fuel processing system through the hydrogen gas discharge pipe 12.

また、空気は、空気処理系から空気供給管13を通し供
給側マニホールド10Cに入りセルスタック9の一側面
に開口している一方のインタコネクタ6の溝内に流入し
、この溝内を流れてこの一側面と対向する側面から排出
側マニホールド10dに排出され空気排出管14を通し
て空気処理系に送り込まれる。
In addition, air enters the supply side manifold 10C from the air treatment system through the air supply pipe 13, flows into the groove of one interconnector 6 that is open on one side of the cell stack 9, and flows inside this groove. The air is discharged from the side opposite to this one side into the discharge side manifold 10d and sent through the air discharge pipe 14 to the air treatment system.

なお、このような燃Fl電池は、効率を上げるため作動
温度を200℃程度に設定してあり、水素ガスおよび空
気は加熱器によって加熱して供給することによってセル
スタック内ガス流入の入口と出口とで温度が不均一とな
らないようにしなければならない。
In addition, the operating temperature of such a fuel cell is set at around 200°C to increase efficiency, and the hydrogen gas and air are heated by a heater and supplied to the inlet and outlet of the gas inflow into the cell stack. It must be ensured that the temperature does not become uneven.

大容量の燃料電池発電プラントの実用化に際しては、数
十個あるいは数百側の燃料電池を併設する必要があり、
燃料電池本体は、いうまでもなく、反応ガスの供給、排
出配管の据付スペースをいかにして縮小J“るかが総合
コストに大きく影響する。
When putting a large-capacity fuel cell power generation plant into practical use, it is necessary to install dozens or even hundreds of fuel cells.
Needless to say, how to reduce the installation space for the reactant gas supply and exhaust piping will greatly affect the overall cost of the fuel cell itself.

また、燃料電池の大容量化に伴ない反応ガスを加熱する
加熱器が大容量のものとなり、設備コス1−が上昇する
とともに燃料電池本体と加熱器との距離を長くとらざる
を得ない。そのために、配管途中で反応ガスの温度が低
下し発電効率が下ってしまうためその対策として保温材
を使用していた。
Further, as the capacity of the fuel cell increases, the capacity of the heater for heating the reactant gas increases, which increases equipment cost 1- and requires a longer distance between the fuel cell body and the heater. As a result, the temperature of the reactant gas decreases in the middle of the piping, reducing power generation efficiency, so heat insulators have been used as a countermeasure.

しかしながら、配管系統が複雑多岐にわたるためその取
付作業性が悪い上、大きなスペースを必要としていた。
However, the piping system is complex and diverse, making installation work difficult and requiring a large space.

さらには、多量の燃料ガスとして水素ガスを必要とし、
燃料ガス配管から水素ガスがリークした場合爆発する危
険性があり、燃料ガスのリークには、」−分な配慮とが
必要であった。
Furthermore, it requires a large amount of hydrogen gas as fuel gas,
If hydrogen gas leaks from the fuel gas piping, there is a risk of explosion, and special consideration must be taken to prevent fuel gas leaks.

[発明の目的] 本発明は、上述の如き要求に従って提案されたもので、
その目的は、反応ガス配管の構成を複雑にすることなく
、反応ガスのリークを防止し、保温構造合理化による配
管スペースの縮小と熱回収効率の向上を図り、効率の高
い燃料電池を提供することにある。
[Object of the invention] The present invention was proposed in accordance with the above-mentioned requirements, and
The purpose is to provide a highly efficient fuel cell by preventing leakage of reactant gas without complicating the configuration of reactant gas piping, reducing piping space by rationalizing the heat insulation structure, and improving heat recovery efficiency. It is in.

[発明の概要J 本発明の燃料電池は、単電地を複数個積層して成るセル
スタックをタンク内に収納し、セルスタックの四周に設
けられたマニホールドに反応ガスである燃料ガス(水素
)および酸化剤ガス(空気)を供給し排出するための配
管を接続したもので、この反応ガス供給側配管と排出側
配管を同軸に配置し圧力の高い供給側配管を排出側配管
内に収納して構成し、少なくとも供給側配管から外部へ
の反応ガスリークを極力おさえることができ、さらに保
管構造の合理化、配管スペースの縮小、熱回収効率の向
上を図るようにしたものである。
[Summary of the Invention J The fuel cell of the present invention houses a cell stack formed by stacking a plurality of single electrodes in a tank, and stores fuel gas (hydrogen) as a reactive gas in a manifold provided around the four circumferences of the cell stack. and piping for supplying and discharging oxidizing gas (air).The reaction gas supply side piping and the discharge side piping are arranged coaxially, and the high pressure supply side piping is housed within the discharge side piping. This structure makes it possible to suppress leakage of reaction gas from at least the supply side piping to the outside as much as possible, and also to rationalize the storage structure, reduce piping space, and improve heat recovery efficiency.

[発明の実施例1 以下本発明を第4図および第5図に示す実施例に賜づい
て具体的に説明する。なお第1図乃至第3図の従来型と
同一の部材については同一符号を付して説明は、省略す
る。
[Embodiment 1 of the Invention The present invention will be specifically explained below with reference to the embodiment shown in FIGS. 4 and 5. Note that the same members as those of the conventional type shown in FIGS. 1 to 3 are designated by the same reference numerals, and a description thereof will be omitted.

第4図に示すとおり、タンク15内に収納されたセルス
タックの四周に反応ガス供給用マニホールド10a、1
0bおよび反応ガス排出用マニホールド10c、10d
が取付けられている。このマニホールド10a 、10
b 、10c 、10dには、それぞれ水素ガス供給管
11、水素ガス排出管12、空気供給管13、空気排出
管14が接続されている。この反応ガス供排出管におい
て、タンク15より反応ガス処理系までの間、水素ガス
供給管11と水素ガス排出管12および空気供給管13
と空気供給管14をそれぞれ同軸に配置する。燃料電池
はその発電効率を高めるため反応ガスの圧力を4〜8k
g/Cll12にする必要があるが、反応ガス供給管を
反応ガス排出管内に納めて同軸に配置するために反応ガ
ス供給管と反応ガス排出管の圧力差は、ヘッド圧差分し
かなく、反応ガス供給管の耐圧構造はほとんど考慮する
必要はない。
As shown in FIG. 4, reaction gas supply manifolds 10a and 1 are placed around the cell stack housed in the tank 15.
0b and reaction gas discharge manifolds 10c, 10d
is installed. This manifold 10a, 10
A hydrogen gas supply pipe 11, a hydrogen gas discharge pipe 12, an air supply pipe 13, and an air discharge pipe 14 are connected to b, 10c, and 10d, respectively. In this reaction gas supply and discharge pipe, from the tank 15 to the reaction gas processing system, there is a hydrogen gas supply pipe 11, a hydrogen gas discharge pipe 12, and an air supply pipe 13.
and the air supply pipe 14 are arranged coaxially. In order to increase the power generation efficiency of fuel cells, the pressure of the reactant gas is increased to 4 to 8 k.
g/Cll12, but since the reaction gas supply pipe is housed in the reaction gas discharge pipe and arranged coaxially, the pressure difference between the reaction gas supply pipe and the reaction gas discharge pipe is only the head pressure difference, and the reaction gas There is almost no need to consider the pressure-resistant structure of the supply pipe.

また反応ガス排出管には、保温材16を取付けであるが
反応ガス供給管内の反応ガスは反応ガス排出管内の反応
ガスにより、予熱、保温されることから、保温構造の合
理化、配管スペースの縮小および熱回収効率の向上を図
れる。
In addition, a heat insulator 16 is attached to the reaction gas discharge pipe, but the reaction gas in the reaction gas supply pipe is preheated and kept warm by the reaction gas in the reaction gas discharge pipe, which streamlines the heat insulation structure and reduces piping space. and improve heat recovery efficiency.

つぎに第5図に反応ガス供排出管の同軸配置方法の実施
例を示す。反応ガス供排出管内に反応ガス供給管を組込
み、同一フランジ17を溶接し取付ける。同様に組立て
られた対向する供排管を締付ボルト18で取付ける。
Next, FIG. 5 shows an embodiment of a method for coaxially arranging reaction gas supply and discharge pipes. The reaction gas supply pipe is assembled into the reaction gas supply and discharge pipe, and the same flange 17 is welded and attached. The opposing supply and discharge pipes assembled in the same manner are attached with tightening bolts 18.

内部の反応ガス供給管は、パツキン19をはさみ突き合
わせただけであるが、反応ガス供排管内の差圧がほとん
どないためそのシール効果は十分である。ただし何らか
の事情で反応ガス供給管の中に反応ガス排出管を収納し
た構成においては、上記構造としたときそのシール効果
は若干悪くなるも従来構造に比較すると本発明における
効果と同様の効果を得ることができる。
Although the internal reaction gas supply pipes are simply butted together with a gasket 19 sandwiched between them, the sealing effect is sufficient since there is almost no differential pressure within the reaction gas supply and discharge pipes. However, if the reaction gas discharge pipe is housed in the reaction gas supply pipe for some reason, the sealing effect will be slightly worse when the above structure is used, but when compared with the conventional structure, the same effect as in the present invention can be obtained. be able to.

[発明の効果] 以上の通り、本発明によれば、反応ガス配管の構成を複
雑にすることなく、反応ガス供給管と反応ガス排出管の
圧力差がほとんどないことから、少なくととも反応ガス
供給管の耐圧構造を考慮する必要がなく、反応ガスのリ
ークを防止でき反応ガスの防爆構造を提供できる。
[Effects of the Invention] As described above, according to the present invention, there is almost no pressure difference between the reaction gas supply pipe and the reaction gas discharge pipe, without complicating the configuration of the reaction gas piping. There is no need to consider the pressure-resistant structure of the supply pipe, leakage of the reaction gas can be prevented, and an explosion-proof structure for the reaction gas can be provided.

さらに少なくとも反応ガス供給管の保温は、反応ガス排
出管の排ガス熱によりその効果が11られ、保温構造の
合理化を図ることができ配管スペースを縮小することが
できる。
Furthermore, the heat retention of at least the reaction gas supply pipe is enhanced by the exhaust gas heat of the reaction gas discharge pipe, so that the heat insulation structure can be rationalized and the piping space can be reduced.

また、セルスタック内に送入する反応ガスは、従来予熱
して供給されていたが、反応ガス排出管の排ガス熱によ
り、予熱効果が得られることから、熱回収効率が向上し
燃料電池の発電効率が向上する。
In addition, the reaction gas fed into the cell stack has conventionally been preheated before being supplied, but the exhaust gas heat from the reaction gas exhaust pipe provides a preheating effect, improving heat recovery efficiency and generating power for the fuel cell. Increased efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃料電池の原理を示す断面模型図、第2図は燃
料電池の基本構成を示す斜視図、第3図(a )は現在
開発が進められている燃料電池の概略m成を示す平面図
、第3図(b)はその縦断面図、第4図は本発明の燃料
電池の一実施例を示す縦断面図、第5図は第4図のD部
拡大図である。 9・・・セルスタック 10a 、10b 、10c 、10d−マニホールド
、11・・・水素ガス供給管、12・・・水素ガス排出
管、13・・・空気供給管、14・・・空気排出管、1
5・・・タンク
Figure 1 is a cross-sectional model diagram showing the principle of a fuel cell, Figure 2 is a perspective view showing the basic configuration of a fuel cell, and Figure 3 (a) shows a schematic configuration of a fuel cell currently under development. 3(b) is a longitudinal sectional view thereof, FIG. 4 is a longitudinal sectional view showing one embodiment of the fuel cell of the present invention, and FIG. 5 is an enlarged view of section D in FIG. 4. 9...Cell stack 10a, 10b, 10c, 10d-manifold, 11...Hydrogen gas supply pipe, 12...Hydrogen gas discharge pipe, 13...Air supply pipe, 14...Air discharge pipe, 1
5...Tank

Claims (2)

【特許請求の範囲】[Claims] (1)単電地を複数個積層して成るセルスタックをタン
ク内に収納し、このタンクにはセルスタックにタンク外
部から燃焼ガス及び酸化剤ガスを供給し排出するための
配管を接続して構成された燃料電池において、反応ガス
供給側配管と排出側配管とを同軸的に配置したことを特
徴とする燃料電池。
(1) A cell stack consisting of a plurality of stacked electrical conductors is housed in a tank, and piping is connected to the tank for supplying and discharging combustion gas and oxidizing gas from outside the tank. What is claimed is: 1. A fuel cell constructed in this manner, wherein a reactant gas supply side pipe and a discharge side pipe are arranged coaxially.
(2)供給側配管を排出側配管内に同軸的に配置したこ
とを特徴とする特許請求の範囲第1項記載の燃料電池。
(2) The fuel cell according to claim 1, wherein the supply side pipe is coaxially arranged within the discharge side pipe.
JP59222902A 1984-10-25 1984-10-25 Fuel cell Pending JPS61101968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59222902A JPS61101968A (en) 1984-10-25 1984-10-25 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59222902A JPS61101968A (en) 1984-10-25 1984-10-25 Fuel cell

Publications (1)

Publication Number Publication Date
JPS61101968A true JPS61101968A (en) 1986-05-20

Family

ID=16789655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59222902A Pending JPS61101968A (en) 1984-10-25 1984-10-25 Fuel cell

Country Status (1)

Country Link
JP (1) JPS61101968A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195672A (en) * 1988-01-29 1989-08-07 Hitachi Ltd Structure of fuel cell
WO2012079874A3 (en) * 2010-12-16 2012-08-16 Airbus Operations Gmbh Fuel cell system, use of a fuel cell system and aircraft with a fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195672A (en) * 1988-01-29 1989-08-07 Hitachi Ltd Structure of fuel cell
WO2012079874A3 (en) * 2010-12-16 2012-08-16 Airbus Operations Gmbh Fuel cell system, use of a fuel cell system and aircraft with a fuel cell system
US9673460B2 (en) 2010-12-16 2017-06-06 Airbus Operations Gmbh Fuel cell system, use of a fuel cell system and aircraft with a fuel cell system

Similar Documents

Publication Publication Date Title
US5750278A (en) Self-cooling mono-container fuel cell generators and power plants using an array of such generators
US5573867A (en) Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant
US4407904A (en) Fuel cell
US7393605B2 (en) Fuel cell end unit with integrated heat exchanger
JPH0421250Y2 (en)
JPH09259910A (en) Molten carbonate fuel battery and power generator using this battery
CN110350229B (en) Modularized solid oxide fuel cell stack
JPS61101968A (en) Fuel cell
CN116190742A (en) Novel solid oxide cell stack and reactor core stacking method thereof
JPS6093764A (en) Fuel cell power generating system
Liu et al. Economic analysis of solid oxide fuel cell and its role in carbon peak, carbon neutralization process
JPH01251562A (en) Flat plate type solid electrolyte fuel cell
WO1998029917A1 (en) Self-cooling mono-container fuel cell generators and power plants using an array of such generators
JPS5975573A (en) Fuel cell
JPS61101966A (en) Fuel cell generation device
JPH04144069A (en) Fuel cell
JPS6142876A (en) Fuel cell
JPS6093769A (en) Fuel cell
CN212517257U (en) Structure of high-temperature fuel cell stack for hydrogen production by methanol reforming
JPS63128562A (en) Fuel cell
JPH0227503Y2 (en)
JPS6093763A (en) Fuel cell
JPH04280081A (en) Fuel cell power generator
JPH04294066A (en) Fuel cell
JPS60100375A (en) Fuel cell