JPS61101943A - Evaporating furnace for solid sample - Google Patents

Evaporating furnace for solid sample

Info

Publication number
JPS61101943A
JPS61101943A JP22211484A JP22211484A JPS61101943A JP S61101943 A JPS61101943 A JP S61101943A JP 22211484 A JP22211484 A JP 22211484A JP 22211484 A JP22211484 A JP 22211484A JP S61101943 A JPS61101943 A JP S61101943A
Authority
JP
Japan
Prior art keywords
heater
atmospheric pressure
thermoelectric couple
solid sample
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22211484A
Other languages
Japanese (ja)
Inventor
Toshimichi Taya
田谷 俊陸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22211484A priority Critical patent/JPS61101943A/en
Publication of JPS61101943A publication Critical patent/JPS61101943A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To avoid error of thermal testing with a thermoelectric couple as well as preventing damage or shortening the life of a heater, by using a heater and a thermoelectric couple placed in the atmospheric pressure in order to increase and control the temperature of an evaporating furnace placed in a vacuum. CONSTITUTION:A solid sample collector 1, an ionization box 3, and a filament 4 are placed in a vacuum. On the other hand, a heater 2, a thermoelectric couple 8, and current terminals 9 to the heater 2 and the thermoelectric couple 8 are placed in the atmospheric pressure. Since the thermal conduction is through the air, it is possible to conduct heat without direct contact of the sample collector 1 and the heater 2, causing to prevent troubles such as damage from the different rate of expansion between them. And, since the thermal conduction by the heater 2 is performed under the atmospheric pressure, the temperature in the solid sample collector 1 can be tested accurately with the thermoelectric couple 8, resulting in a possibility of a highly accurate thermal control.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はイオン打込装置のイオン源部に使用される固体
試料用蒸発炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an evaporation furnace for solid samples used in an ion source section of an ion implantation device.

〔発明の背景〕[Background of the invention]

半導体表面にイオンを打込むイオン打込装置は]砒素や
リンなどの固体試料を真空中で加熱することにより蒸発
させてイオン化室に導きイオン化し、さらにこのイオン
を加速して打込み用のイオンビームを得る方法が取られ
る。
An ion implantation device that implants ions into a semiconductor surface heats a solid sample of arsenic or phosphorus in a vacuum to evaporate it, guide it into an ionization chamber, ionize it, and then accelerate the ions to create an ion beam for implantation. A method is taken to obtain

従来の代表例として、フリーマン形イオン源の固体試料
用蒸発炉を第4図に示す。このフリーマン形の蒸発炉に
おいて、イオン源内の真空中に設置された固体試料溜1
はヒータ2により加熱される。これにより、試料溜1内
の固体試料が蒸発し、その蒸気がイオン化箱3に導入さ
れる。イオン箱3に導入された蒸気はフィラメント4か
ら発生される熱電子の*I!によりイオン化され、さら
に引出電極5によってイオンビーム6として引出される
As a typical example of the conventional method, a solid sample evaporation furnace of a Freeman type ion source is shown in FIG. In this Freeman type evaporation furnace, a solid sample reservoir 1 is installed in the vacuum inside the ion source.
is heated by heater 2. As a result, the solid sample in the sample reservoir 1 evaporates, and the vapor is introduced into the ionization box 3. The steam introduced into the ion box 3 is filled with *I! of thermoelectrons generated from the filament 4. The ion beam is ionized and further extracted as an ion beam 6 by an extraction electrode 5.

ところが、このような構造においては、蒸発炉7とヒー
タ2との熱接触を良くするため、これらを密着させてい
る。このため、ヒータ2の絶縁物である例えばセラミッ
クと蒸発炉の材料である例えばステンレスとの熱膨張係
数の差により、ヒータ2の絶縁物が破損してしまうとい
う問題点があった。また、蒸発炉7内は真空状態に置か
れるが、この真空状態の中でヒータ2の素材と固定試料
が化学反応を起すと、ヒータ2の材質が変化し、寿命が
短くなるという問題点があった。さらに、試料溜1の温
度を検出するために熱電対8が設けられるが、この熱電
対8も試料溜1との熱膨張係数の差により機械的歪を受
け、検出温度に誤差が現われるという問題点があった。
However, in such a structure, in order to improve thermal contact between the evaporation furnace 7 and the heater 2, they are brought into close contact with each other. Therefore, there is a problem that the insulator of the heater 2 is damaged due to the difference in thermal expansion coefficient between the insulator of the heater 2, such as ceramic, and the material of the evaporation furnace, such as stainless steel. In addition, the inside of the evaporation furnace 7 is placed in a vacuum state, and if a chemical reaction occurs between the material of the heater 2 and the fixed sample in this vacuum state, the material of the heater 2 changes and its lifespan is shortened. there were. Furthermore, a thermocouple 8 is provided to detect the temperature of the sample reservoir 1, but this thermocouple 8 is also subjected to mechanical strain due to the difference in thermal expansion coefficient with the sample reservoir 1, resulting in an error in the detected temperature. There was a point.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ヒータの破損や寿命の低下を防ぐと共
に、熱雷対の温度検出誤差もなくすことができる固体試
料用蒸発炉を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an evaporation furnace for solid samples that can prevent damage to the heater and shorten its life, as well as eliminate temperature detection errors of the thermal lightning pair.

〔発明の概要〕[Summary of the invention]

本発明は、真空中に置かれる蒸発炉の温度上昇と温度制
御とを大気圧下で行うようにしたものである。
According to the present invention, the temperature increase and temperature control of an evaporation furnace placed in a vacuum are performed under atmospheric pressure.

(発明の実施例〕 第1図は本発明による蒸発炉の一実施例を示す図であり
、固体試料溜1、イオン化箱3.フィラメント4は真空
中に置かれる。これに対し、ヒータ2、熱電対8および
これらヒータ2.熱電対8に対する電流端子9は大気圧
下に置かれる。
(Embodiment of the Invention) Fig. 1 is a diagram showing an embodiment of an evaporation furnace according to the present invention, in which a solid sample reservoir 1, an ionization box 3, and a filament 4 are placed in a vacuum. The thermocouples 8 and their heaters 2. The current terminals 9 to the thermocouples 8 are placed under atmospheric pressure.

なお、試料溜1とヒータ2は蒸発炉用フランジ10の端
部に隣接して配置されるが、この蒸発炉用フランジ10
の端部はイオン源用フランジ11で構成される室内に真
空状態で置かれ、ヒータ2、熱電対8.電流端子9の周
囲のみが大気圧下になるように構成されている。また、
フランジ10は冷却水管17により冷却されるようにな
っている。
Note that the sample reservoir 1 and the heater 2 are arranged adjacent to the end of the evaporation furnace flange 10.
The ends of the ion source flange 11 are placed in a vacuum state in a chamber composed of the ion source flange 11, and the heater 2, thermocouple 8. It is configured so that only the area around the current terminal 9 is under atmospheric pressure. Also,
The flange 10 is designed to be cooled by a cooling water pipe 17.

第2図は1本発明の固体用蒸発炉とマイクロ波によるに
よる高周波電界および直流磁界の共鳴によるプラズマ放
電とを組合せて構成したいわゆるマイクロ波イオン源の
構成を示す図である。
FIG. 2 is a diagram showing the structure of a so-called microwave ion source which is constructed by combining the solid-state evaporation furnace of the present invention with a high-frequency electric field caused by microwaves and a plasma discharge caused by the resonance of a DC magnetic field.

第2図において、信号12で示す部分が本発明による蒸
発炉であり、各構成要素と第1図と同一記号で示してい
る。この蒸発炉12は、イオン源の中心軸に沿ってマイ
クロ炉13を導入するための透過材14が存在するため
、イオン源用フランジ11の周辺部に配置され、試料溜
1から蒸発した固体試料の蒸気はイオン源の中心軸上に
配置されたイオン化箱3に導かれ、ここでイオン化され
るようになっている。
In FIG. 2, the part indicated by the signal 12 is the evaporation furnace according to the present invention, and each component is indicated by the same symbol as in FIG. This evaporation furnace 12 has a transparent material 14 for introducing the micro-furnace 13 along the central axis of the ion source, so it is placed around the flange 11 for the ion source, and the solid sample evaporated from the sample reservoir 1 is The vapor is led to an ionization box 3 placed on the central axis of the ion source, where it is ionized.

イオン化された試料はマイクロ波7による高周波電界と
励磁コイル15から発生される直流磁界とによってプラ
ズマ化され、加速電極16と引出し電極との間に印加さ
れた加速電圧によって加速され、イオンビーム6として
引出される。
The ionized sample is turned into plasma by the high-frequency electric field generated by the microwave 7 and the DC magnetic field generated by the excitation coil 15, and is accelerated by the accelerating voltage applied between the accelerating electrode 16 and the extraction electrode, and is converted into an ion beam 6. be drawn out.

なお、第3図に第2図の蒸発炉12の拡大図を示してい
る。
Incidentally, FIG. 3 shows an enlarged view of the evaporation furnace 12 shown in FIG. 2.

以上のように、上記した実施例によれば、固体試料溜1
とヒータ2との間が大気圧のため、この間の熱伝導には
空気が介在している。このため、試料溜1とヒータ2と
を密着させなくても熱を伝達させることが可能となる。
As described above, according to the embodiment described above, the solid sample reservoir 1
Since the pressure between the heater 2 and the heater 2 is at atmospheric pressure, air is involved in heat conduction therebetween. Therefore, heat can be transferred even if the sample reservoir 1 and the heater 2 are not brought into close contact with each other.

これにより、両者の熱膨張係数の差による破損等の事故
を防止できるようになる。また、ヒータ2による熱伝導
が大気圧下で行われるため、固体試料溜1の温度を熱電
対8により精度よく検出することができる。この結果、
温度コントロールを高精度で行うことができる。
This makes it possible to prevent accidents such as damage due to the difference in thermal expansion coefficients between the two. Further, since the heat conduction by the heater 2 is performed under atmospheric pressure, the temperature of the solid sample reservoir 1 can be detected with high accuracy by the thermocouple 8. As a result,
Temperature control can be performed with high precision.

さらに、ヒータ2が大気圧下にあるため、冷却や交換が
容易となり、また交換時に真空を破る必要、もなくなる
。また、ヒータ2や熱電対8の温度時′性が大気圧下で
測定されているため、真空下の影響を考慮する必要がな
くなる6 〔発明の効果〕 以上の説明から明らかなように本発明によれば、ヒータ
の破損や寿命の低下を防止でき、さらに熱電対による温
度検出誤差もなくすことができ、高精度で制御されたイ
オンビームを得ることができるという効果がある。
Furthermore, since the heater 2 is under atmospheric pressure, cooling and replacement are easy, and there is no need to break the vacuum when replacing. Furthermore, since the temperature characteristics of the heater 2 and thermocouple 8 are measured under atmospheric pressure, there is no need to consider the effects of vacuum.6 [Effects of the Invention] As is clear from the above description, the present invention According to this method, it is possible to prevent damage to the heater and shorten its lifespan, and also to eliminate temperature detection errors caused by thermocouples, resulting in an ion beam that is controlled with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図は本発明を
用いたマイクロ波イオン源の構成を示す図、第3図は第
2図における蒸発炉の拡大図、第4図はフリーマン形イ
オン源の蒸発炉の従来構成を示す図である。 1・・・試料溜、2・・・ヒータ、3・・・イオン化箱
、7゜そIIIZJ
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing the configuration of a microwave ion source using the present invention, FIG. 3 is an enlarged view of the evaporation furnace in FIG. 2, and FIG. 4 is a diagram showing an example of the present invention. 1 is a diagram showing a conventional configuration of an evaporation furnace of a Freeman type ion source. 1...Sample reservoir, 2...Heater, 3...Ionization box, 7゜SoIIIZJ

Claims (1)

【特許請求の範囲】[Claims] 1、固体試料を入れる試料溜と、この試料溜を加熱する
ヒータと、前記試料溜の温度を測定する熱電対と、これ
らを支持する冷却機構付のフランジとから成るイオン源
用の固体試料用蒸発炉において、前記ヒータと熱電対と
を大気圧下に配置したことを特徴とする固体試料用蒸発
炉。
1. For a solid sample for an ion source, consisting of a sample reservoir into which a solid sample is placed, a heater that heats the sample reservoir, a thermocouple that measures the temperature of the sample reservoir, and a flange with a cooling mechanism that supports them. An evaporation furnace for solid samples, characterized in that the heater and thermocouple are placed under atmospheric pressure.
JP22211484A 1984-10-24 1984-10-24 Evaporating furnace for solid sample Pending JPS61101943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22211484A JPS61101943A (en) 1984-10-24 1984-10-24 Evaporating furnace for solid sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22211484A JPS61101943A (en) 1984-10-24 1984-10-24 Evaporating furnace for solid sample

Publications (1)

Publication Number Publication Date
JPS61101943A true JPS61101943A (en) 1986-05-20

Family

ID=16777365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22211484A Pending JPS61101943A (en) 1984-10-24 1984-10-24 Evaporating furnace for solid sample

Country Status (1)

Country Link
JP (1) JPS61101943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224941A (en) * 1988-07-14 1990-01-26 Teru Barian Kk Ion implanter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224941A (en) * 1988-07-14 1990-01-26 Teru Barian Kk Ion implanter

Similar Documents

Publication Publication Date Title
Chupka et al. Direct determination of the heat of sublimation of carbon with the mass spectrometer
Sharakhovsky et al. A theoretical and experimental investigation of copper electrode erosion in electric arc heaters: II. The experimental determination of arc spot parameters
JPH0531260B2 (en)
Bergeret et al. Nottingham effect of a superconducting metal
JPS61101943A (en) Evaporating furnace for solid sample
US3418513A (en) Mass spectrometer ion source with cooling means
Wada et al. Generation and Application of Highly Ionized Quiescent Cesium Plasma in Steady State
JP2912616B1 (en) Plate heating device
JPH03285246A (en) Quadrupole mass spectrometric device
JPS5963651A (en) Ionizing device for material
JP3629536B2 (en) Calorimeter and detector system
US4214117A (en) Furnace heated by radiation
US3527937A (en) Electron bombardment type ion source for a mass spectrometer
JP2628533B2 (en) Mass spectrometer residual gas analyzer
JP2006343305A (en) Triode-type hot cathode ionization vacuum gauge
JP3498405B2 (en) Ion source
JPS6271147A (en) Ion source with evaporation furnace
JPH0676775A (en) Ion implantation method
JPH1186778A (en) Ionization apparatus
US3560627A (en) Furnace assembly for thermal analysis use
USRE26392E (en) Mass spectrometer sample insertion devices
JPS551062A (en) Electric field-radiation electronic gun
JPH0219187B2 (en)
JP2572726B2 (en) Method for manufacturing semiconductor device using ion source with evaporating furnace
JP2001357816A (en) Mass spectrometer