JPS6110113A - Synchronous eccentric rotation suppressor for magnetic bearing - Google Patents

Synchronous eccentric rotation suppressor for magnetic bearing

Info

Publication number
JPS6110113A
JPS6110113A JP12936984A JP12936984A JPS6110113A JP S6110113 A JPS6110113 A JP S6110113A JP 12936984 A JP12936984 A JP 12936984A JP 12936984 A JP12936984 A JP 12936984A JP S6110113 A JPS6110113 A JP S6110113A
Authority
JP
Japan
Prior art keywords
amplitude
detection signal
pll
signal
magnetic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12936984A
Other languages
Japanese (ja)
Inventor
Yoshinori Kamiya
神谷 嘉則
Kiyoshi Ishida
石田 精
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP12936984A priority Critical patent/JPS6110113A/en
Publication of JPS6110113A publication Critical patent/JPS6110113A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To eliminate uncontrolled state under low displacement detection signal by operating the proper gap on the basis of a rotary angle detection signal obtained from the detection signal of a gap detector and a swing amplituide detection signal passed through lowest amplitude compensator. CONSTITUTION:PLL unit 3 is comprised of multipliers 36, 37, adders 38, 39, an amplifier 32, rotor rotation command frequency transmitter 35 and two-phase oscillator 34. While an amplitude operating unit 5 is comprised of two multipliers 51, 52, an adder 53, a sign inversion amplifier and a lowpss filter 55. The input signal DELTAdeltasintheta for the amplifier 32 in PLL unit 3 is brough to 0 through PLL 3 while the input signal DELTAdeltacostheta for the lowpass filter 55 is also brought to 0, thereby DELTAdeltacostheta will be DELTAdelta, to produce only the swing amplitude. In the invention, a lowest amplitude compensator 13 is provided before PLL unit 3.

Description

【発明の詳細な説明】 〔産業上の利用分野とその目的〕 本発明は高速工作機械や遠心分離機、あるいはジャイロ
駆動用電動機等の高速回転する回転軸に用いられる磁気
軸受装置の同期偏心回転抑制制御装置の改良に関するも
ので、その目的とするところは、変位検出信号が小さい
場合でも制御機能を発揮する構竜が簡単なこの種の制御
装置を提供するにある。
[Detailed description of the invention] [Industrial field of application and its purpose] The present invention relates to synchronous eccentric rotation of a magnetic bearing device used for a rotating shaft that rotates at high speed such as a high-speed machine tool, a centrifugal separator, or a gyro drive electric motor. This invention relates to an improvement of a suppression control device, and its purpose is to provide a control device of this type with a simple structure that can perform a control function even when a displacement detection signal is small.

〔従来の技術〕[Conventional technology]

周知のように1回転軸並びに回転体は均質には出来てい
ないので、回転軸を磁鍬力によって空中支持する磁気軸
受装置では、どんなにバランス・ウェイトの調整をして
も偏心荷重が残り、それによって偏心回転が発生して、
その運動性に支障を来し1回転軸と固定部が接触を起し
て損傷事故や騒音を発生し易く、安定した回転を得るた
めには同期偏心回転の制御は必要とするものである。
As is well known, the rotating shaft and rotating body are not made homogeneous, so in a magnetic bearing device that supports the rotating shaft in the air using magnetic hoe force, eccentric loads remain no matter how much the balance weight is adjusted. Eccentric rotation occurs due to
This hinders the movement of the rotating shaft and causes contact between the rotating shaft and the fixed part, which can easily cause damage or noise, and in order to obtain stable rotation, control of synchronous eccentric rotation is necessary.

この同期偏心回転は、高速回転になればなる程大きくな
ることは勿論であるが、磁気軸受装置を工作機械に適用
する場合、切削刃物による負荷によって必然的にダイナ
ミック・アンバランスが発生するものであるから、それ
を補償制御する制御装置を備えることは必須要件である
Of course, this synchronous eccentric rotation increases as the rotation speed increases, but when a magnetic bearing device is applied to a machine tool, dynamic unbalance will inevitably occur due to the load from the cutting tool. Therefore, it is essential to have a control device that compensates for this.

この目的のために用いられている従来の制御装置は、特
公開昭52−93852号公報に示されるような回転検
出器又は回転角検出器(例えばレゾルノぐ、光市変換式
タコゼネ等)を使用するものであった。
Conventional control devices used for this purpose use rotation detectors or rotation angle detectors (e.g. resolnog, Hikari City conversion type tachogenerator, etc.) as shown in Japanese Patent Publication No. 52-93852. It was something to do.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は回転検出器又は回転角検出器を使用しないこの
棟の制御装置で、しかも変位検出信号が小さい場合でも
非制御状態を生じないものを提供しようとするものであ
る。
The present invention aims to provide a control device for this building that does not use a rotation detector or a rotation angle detector, and which does not cause an uncontrolled state even when the displacement detection signal is small.

〔発明の構成〕[Structure of the invention]

本発明は磁気軸受装凌に必らず備見られている空隙検出
器の検出信号を利用し、その検出信号からPLLf P
hase−Lock Loop )装置を使って回転角
を検出すると共にこの回転角検出信号と娠れ&lJ)振
巾検出信号とから適正空隙を演算して偏心量の適正制御
を行うと共に、検出信号はそのま\使用せずに、最低振
巾補償器を通したものを使用し、制御レベル以上の変位
信号として制御を行うようにしたものである。
The present invention utilizes the detection signal of the air gap detector, which is always provided in magnetic bearing equipment, and uses the detection signal to determine the PLLf P
A hase-Lock Loop) device is used to detect the rotation angle, and an appropriate air gap is calculated from this rotation angle detection signal and a swing width detection signal to appropriately control the amount of eccentricity. Instead, a signal passed through a minimum amplitude compensator is used, and control is performed as a displacement signal higher than the control level.

先ず本発明の原理について述べる。First, the principle of the present invention will be described.

第1図(a)に示すように偏心荷重WLヲ持つ回転体R
が回転した時X軸及びY軸上に配置した空隙検出器1,
2による検出信号は第1図(b)に示すように変化する
As shown in Fig. 1(a), the rotating body R has an eccentric load WL.
air gap detector 1 placed on the X and Y axes when rotated;
2 changes as shown in FIG. 1(b).

補償制御外しの制御装Nは空隙検出器1.2の検出値を
使ってフィートノ2ツク制御を行っているが、その制御
系統をブロック図で示すと第2図に示すようになる。
The control system N without compensation control performs foot check control using the detected value of the air gap detector 1.2, and the control system is shown in a block diagram in FIG. 2.

図中、δsld、初期空隙設定値、Pはゲイン、Dは微
分定数、Sはラプラス演算子、Iけ積分定数。
In the figure, δsld is the initial air gap setting value, P is the gain, D is the differential constant, S is the Laplace operator, and I is the integral constant.

KFは制御系のマシン定数、Mは回転体の質量、にδは
空隙検出器の比例定数、Tはフィルタの遅れ時定数、r
け偏心荷重I11までの半径、ωは同期回転角速度、F
Dは外力である。
KF is the machine constant of the control system, M is the mass of the rotating body, δ is the proportionality constant of the air gap detector, T is the delay time constant of the filter, r
radius up to the eccentric load I11, ω is the synchronous rotational angular velocity, F
D is an external force.

この場合、アンバランスの力mrω2によって空隙Jに
は、Δ1JtJ  の同期振れ廻シが検出されて。
In this case, a synchronous runout of Δ1JtJ is detected in the air gap J due to the unbalanced force mrω2.

負帰還し、この振れ廻シを抑制すべく、磁気軸受のPI
D制御器が動作する。しかしながら、同期回転角速度ω
が大きくなると、このアンバランスの力がω8に比例し
て大きくなって、制御の磁気力が不足するため、ステー
タが振動したり、センサが振動しfcり、電磁石が発熱
する等の、不具合を生じて高速回転不能となる。
In order to provide negative feedback and suppress this runout, the magnetic bearing's PI
D controller operates. However, the synchronous rotational angular velocity ω
When ω becomes large, this unbalanced force increases in proportion to ω8, and the magnetic force for control becomes insufficient, causing problems such as the stator vibrating, the sensor vibrating and fc, and the electromagnet generating heat. As a result, high-speed rotation becomes impossible.

本発明はこの問題を先ず第1に解決しようとするもので
、第3図は本発明にか\るブロック図による補償付制御
装置の基本制御系統図である。
The present invention first attempts to solve this problem, and FIG. 3 is a basic control system diagram of the compensated control device according to the present invention in a block diagram.

これは、空隙検出器出力から、同期振れ廻り量lha 
 、Jw(を除去して負帰還制御する方法であ1  +
 TS って、この方法はPID制御器は、振れ廻)に対しての
み、無制限であるから、第2図に示した従来法の欠点は
除かれて、高速運転が可能となるわけである。
This is the synchronous runout amount lha from the air gap detector output.
, Jw (1 +
TS In this method, the PID controller is unlimited only with respect to runout, so the drawbacks of the conventional method shown in FIG. 2 are eliminated and high-speed operation is possible.

この場合△δ=M+m’の定常的変位は存在するが1例
えばm=0.1f  r=25m  M−2−ならばΔ
δ中1.25(μm)程度である。
In this case, there is a steady displacement of △δ=M+m', but 1For example, if m=0.1f r=25m M-2- then Δ
It is about 1.25 (μm) in δ.

しかるに仮に1△δ→0μmにするべく第2図に示した
従来法による制御を行ったとすると、磁気111受はN
= 1000(R/s)の場合の制御力をI KHzで
制御する必要があり、この様な制御は不可能と考えられ
る穆の困蛯な問題である。
However, if control is performed according to the conventional method shown in Fig. 2 to make 1△δ→0 μm, the magnetic 111 receiver becomes N
= 1000 (R/s), it is necessary to control the control force at I KHz, and this is a difficult problem in which such control is considered impossible.

第4図はブロック図による前記同期振れ廻り演算器の回
路図で、こ\で、振れ廻り量を回転ベクトル△δ、Jo
tとすると、二相発憑器34はPLL制御によって、ε
j (art+(j l  となり、ω→0になる。
FIG. 4 is a block diagram of the synchronous run-out calculator, in which the amount of run-out can be expressed as the rotation vector △δ, Jo
t, the two-phase generator 34 is controlled by PLL so that ε
j (art+(j l , and ω→0.

次に1ムδ1を演算する時、フィルタ4を通じて。Next, when calculating 1mu δ1, it is passed through filter 4.

同期振れ廻り以外の変化分を除去し、δ=δ(1)+△
δεJ(′1から、ΔδεjQQのみを除去したδ=δ
(1)を得るものである。
Remove changes other than synchronous runout, and calculate δ=δ(1)+△
δεJ (δ = δ by removing only ΔδεjQQ from '1
(1) is obtained.

〔実施例〕〔Example〕

第5図は本発明にか\る基本同期振れ廻p演算器の実施
例を示すもので、方程式を演算するに必要なPLL装置
3.振巾演算器51乗算器6及び比較器1から構成され
る。
FIG. 5 shows an embodiment of the basic synchronous deflection p calculator according to the present invention, in which the PLL device 3 necessary for calculating the equation. It is composed of an amplitude calculator 51, a multiplier 6, and a comparator 1.

PLL装置3は乗宥器36.37.加算器38゜39、
増巾器32.ローターの回転指令周波数(ωl)送出器
35及び2相発振器34から構成され、入力信号のギャ
ップ偏差信号Δδsinωtと△δcosωtを5in
(ωt+θ)とcosイωを十〇)に夫々変換する。
The PLL device 3 includes passenger devices 36, 37. Adder 38°39,
Amplifier 32. It is composed of a rotor rotation command frequency (ωl) transmitter 35 and a two-phase oscillator 34, and input gap deviation signals Δδsinωt and Δδcosωt at 5 inches.
Convert (ωt+θ) and cos iω to 10), respectively.

振巾演算器5は2つの乗S器51.52と加算器53、
勾号反転増巾器54及びロー・ξスフイルタラ5(この
フィルタは無くともよい)から構成され、入力信号の前
記ΔδsinωtとΔδcos(I)t  からΔδC
o1tθを作る。
The amplitude calculator 5 includes two multipliers 51 and 52 and an adder 53,
It is composed of a gradient sign inversion amplifier 54 and a low/ξ filter 5 (this filter may be omitted), and it converts the input signal from the Δδ sin ωt and Δδ cos(I)t to ΔδC
Create o1tθ.

前記PLL装置31ておける増巾器32の入カ信1号Δ
δsinθ Δδ5in(/−Δδ(sinfωt+θIcosω+
−cos(ω1+θ)sin(υt〕は、  PLL装
置3のPLL制御機能によりΔδsinθ→0 となるため、ローパス□フィルタ55の入力信号△ac
osθ Δδcosθ=Δδ(cos(ωt+θ)cosωj+
5in(ωを十θ)sinω1はθ→0となるため Δδcosθ→△δ となる。つ才り撮れ廻シ儂巾のみが得られること(でな
る。
The input signal Δ of the amplifier 32 in the PLL device 31
δsinθ Δδ5in(/−Δδ(sinfωt+θIcosω+
−cos(ω1+θ)sin(υt) becomes Δδsinθ→0 due to the PLL control function of the PLL device 3, so the input signal Δac of the low-pass □ filter 55
osθ Δδcosθ=Δδ(cos(ωt+θ)cosωj+
5 inches (ω=10θ) sinω1 becomes θ→0, so Δδcosθ→Δδ. The only thing that can be obtained is the ability to take pictures of people who are talented.

第6図は是なる実施例を示すもので、△δかであること
に着目し、1辰巾演尊1回路5′を2 +;、−1の自
乗関数発生烈と1個のルート関数発生器からなるΔδ演
算回路56とローパス・フィルタ55で構成したもので
、実用的装置Frとして使えるものであ6口 なお△δ演3γ回路56としては折れ線クランに・よる
関数発生器で構成することが出来る。
Fig. 6 shows a proper embodiment. Focusing on the fact that △δ or It is composed of a Δδ operation circuit 56 consisting of a generator and a low-pass filter 55, and can be used as a practical device Fr.The Δδ operation 3γ circuit 56 is composed of a function generator based on a polygonal line crank. I can do it.

以上のようにダイナミックア;′)ぐランスによる同期
撮れ廻り現象に対して、最適制御を行うため、従来は回
転検出器や回転角検出器を用いなければ2ンらなかった
が5本発明による前記基本同期振れ廻り演算器を用いれ
ばそれが不要となるもので、その実用的価値大なるもの
である。
As mentioned above, in order to perform optimal control against the synchronized shooting phenomenon caused by the dynamic aperture, conventionally it was necessary to use a rotation detector or a rotation angle detector, but with the present invention. If the basic synchronous runout calculator is used, this becomes unnecessary, and its practical value is great.

しかしながら、以上説明した基本同期(脹れ廻シ演算器
を用いた装置^IVよ、変位出力信号のΔδ5in(ω
を十〇)とΔδcos’ωt+0)が制御不能な程小さ
い場合VCは非制御状態となる欠点がある。
However, in the device ^IV using the basic synchronization (bulge rotation calculator) explained above, the displacement output signal Δδ5in(ω
10) and Δδcos'ωt+0) are uncontrollably small, the VC will be in an uncontrolled state.

そこで本発明は、 PLL装置の前段に定数設定器?備
えた最低振巾補償器を更に付加して制御レベル以上の変
位出力信号を確保して、非制御状態となることを解消す
るようにしたものである。
Therefore, the present invention provides a constant setting device at the front stage of the PLL device. A minimum amplitude compensator is further added to ensure a displacement output signal higher than the control level, thereby eliminating the possibility of an uncontrolled state.

第7図は本発明の実施例のブロック図で、13が最低振
巾補償器114が設定器である。第5図と同一符号を付
したブロックは第5図のものと同じものである。
FIG. 7 is a block diagram of an embodiment of the present invention, in which 13 is a minimum amplitude compensator 114 is a setting device. Blocks with the same reference numerals as in FIG. 5 are the same as those in FIG.

288図は最低振巾補償器13の詳細図で、131け基
準振巾演算器、132は加算器、133は増巾器、13
4及び135は乗算器である。
Figure 288 is a detailed diagram of the minimum amplitude compensator 13, which includes a 131-digit reference amplitude calculator, 132 an adder, 133 an amplifier, 13
4 and 135 are multipliers.

t1ケ低掘巾補償器13では基準振巾演算器131で入
力信号の基準振巾を演算し、その基準振巾と設定:’、
’; 14によって与えられる設定値と比較して・その
偏差を増巾器133で増巾し、その値を乗算器134,
135により各入力信号に乗じ、常に。
In the t1 low digging width compensator 13, the reference amplitude calculator 131 calculates the reference amplitude of the input signal, and sets the reference amplitude as: ',
'; The deviation is amplified by the amplifier 133, and the value is applied to the multiplier 134
Multiply each input signal by 135, always.

制御信号として役に立つ信号とする。The signal is useful as a control signal.

〔発明の効果〕〔Effect of the invention〕

この発明は以上のように、回転検出器や回転角検出器を
使用しないので、それだけ小型且つ安価に提供し得ると
共に非制御状!川となることがないので、ダイナミック
アンバランスによる同期振れ廻り現象に対して最適制御
を行う装置′〆tが得られ効果がある。
As described above, since this invention does not use a rotation detector or a rotation angle detector, it can be provided in a smaller size and at a lower cost, and can be provided without control! Since the flow does not become a river, it is possible to obtain a device that performs optimal control against the synchronous run-out phenomenon caused by dynamic imbalance, which is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回転体と空隙検出器の関数位動と、空隙検出器
の出力信号の変化を示す説明図、第2図は補償制御なし
の制御装置のブロック図、第3図は補償制御付制御装置
のブロック図1第4図は同期振れ廻り演算2:÷のブロ
ック図、第5図は本発明にか\る基本同期振れ廻り演篤
ン≠の実施例のブロック図、第6図は界なる基本同押撮
れ廻り演算器の実施例のブロック図、雨7図は本発明実
施例のブロック図、第8図は最低振巾補償器の詳細を示
すブロック図である。 3・・・P L L装置、5・・・振巾演算器、6・・
・乗算器、7・・・比較器、11.12・・・加算器、
13・・・最低振巾補償器、14・・・設定器。 第1図 (α)(b) 工 第   2   図 第6図 第   4   図 第   5   L″!! 、9 g7゛6 第6図 81べ
Figure 1 is an explanatory diagram showing the functional position of the rotating body and the gap detector, and changes in the output signal of the gap detector, Figure 2 is a block diagram of the control device without compensation control, and Figure 3 is the diagram with compensation control. Block diagram of the control device Fig. 1 is a block diagram of the synchronous run-out calculation 2:÷, Fig. 5 is a block diagram of an embodiment of the basic synchronous run-out calculation ≠ according to the present invention, and Fig. 6 is a block diagram of the synchronous run-out calculation 2: ÷. Figure 7 is a block diagram of an embodiment of the present invention, and Figure 8 is a block diagram showing details of the minimum amplitude compensator. 3... PLL device, 5... amplitude calculator, 6...
- Multiplier, 7... Comparator, 11.12... Adder,
13... Minimum amplitude compensator, 14... Setting device. Figure 1 (α) (b) Engineering Figure 2 Figure 6 Figure 4 Figure 5 L''!!, 9 g7゛6 Figure 6 81

Claims (1)

【特許請求の範囲】[Claims] 空隙検出器を直交又は直交軸系に換算可能に配置した磁
気軸受の制御装置において、直交又は直交軸系に換算し
た空隙検出値から基準空隙値を差し引いた直交方向各々
の変位出力信号を入力として基準振巾信号を出力する振
巾演算器と、前記変位出力信号を入力とし基準振巾と設
定値を比較し、その差を前記入力信号に乗じた値を出力
する最低振巾補償器と、この最低振巾補償器の出力を入
力としその正弦波信号と余弦波信号を出力するPLL装
置と、このPLL装置の前記各出力信号に前記振巾演算
器の出力を乗ずる乗算器と、この乗算器の出力信号と前
記変位出力信号の各々を比較する比較器を具備したこと
を特徴とする磁気軸受装置の同期偏心回転抑制制御装置
In a magnetic bearing control device in which a gap detector is arranged so as to be able to be converted into an orthogonal or orthogonal axis system, displacement output signals in each orthogonal direction obtained by subtracting a reference gap value from the air gap detection value converted to an orthogonal or orthogonal axis system are input. an amplitude calculator that outputs a reference amplitude signal; a minimum amplitude compensator that receives the displacement output signal as input, compares the reference amplitude with a set value, and outputs a value obtained by multiplying the input signal by the difference; a PLL device that receives the output of the minimum amplitude compensator and outputs its sine wave signal and cosine wave signal; a multiplier that multiplies each of the output signals of the PLL device by the output of the amplitude calculator; 1. A synchronous eccentric rotation suppression control device for a magnetic bearing device, comprising a comparator for comparing an output signal of the device with each of the displacement output signals.
JP12936984A 1984-06-25 1984-06-25 Synchronous eccentric rotation suppressor for magnetic bearing Pending JPS6110113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12936984A JPS6110113A (en) 1984-06-25 1984-06-25 Synchronous eccentric rotation suppressor for magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12936984A JPS6110113A (en) 1984-06-25 1984-06-25 Synchronous eccentric rotation suppressor for magnetic bearing

Publications (1)

Publication Number Publication Date
JPS6110113A true JPS6110113A (en) 1986-01-17

Family

ID=15007875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12936984A Pending JPS6110113A (en) 1984-06-25 1984-06-25 Synchronous eccentric rotation suppressor for magnetic bearing

Country Status (1)

Country Link
JP (1) JPS6110113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039630A (en) * 2007-08-08 2009-02-26 Olympus Corp Centrifuge and cell treatment apparatus using centrifuge
CN114962450A (en) * 2022-03-21 2022-08-30 华中科技大学 Synchronous vibration suppression method and system for magnetic suspension rotor system, storage medium and terminal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039630A (en) * 2007-08-08 2009-02-26 Olympus Corp Centrifuge and cell treatment apparatus using centrifuge
CN114962450A (en) * 2022-03-21 2022-08-30 华中科技大学 Synchronous vibration suppression method and system for magnetic suspension rotor system, storage medium and terminal
CN114962450B (en) * 2022-03-21 2023-06-16 华中科技大学 Synchronous vibration suppression method and system for magnetic suspension rotor system, storage medium and terminal

Similar Documents

Publication Publication Date Title
US4839550A (en) Controlled type magnetic bearing device
JPS60245443A (en) Controllable radial magnetic shaft bearing device
US4121143A (en) Device for compensating synchronous disturbances in the magnetic suspension of a rotor
JPS63285321A (en) Method for preventing and controlling unbalanced vibration and synchronous interfering vibration
US5084643A (en) Virtual rotor balancing in magnetic bearings
JP4554204B2 (en) Apparatus and method used for automatic compensation of synchronous disturbances
US5213184A (en) Device for compensating a vibrational force or torque acting on a body
JPS63501245A (en) Signal processor for inertial measurements using accelerometer arrays sensing Coriolis forces
JPS6372916A (en) Control device for electromagnetic bearing
JPH0242125B2 (en)
He et al. Reduction of the high-speed magnetically suspended centrifugal compressor harmonic vibration using cascaded phase-shifted notch filters
ICHIMONJI et al. The dynamics of a rotor system with a shaft having a slant crack: a qualitative analysis using a simple rotor model
JPS6110113A (en) Synchronous eccentric rotation suppressor for magnetic bearing
CN111504295A (en) Method for overcoming low-speed self-locking effect of rate integral vibration gyro
CN108509661A (en) A kind of shafting dynamic balance aggravates the emulated computation method and device of influence coefficient
CN114371622B (en) Magnetic suspension rotor harmonic vibration force suppression method based on multi-harmonic inverse Park transformation
JP3492124B2 (en) Frequency detector
RU96121141A (en) METHOD FOR DETERMINING A SPATIAL ANGULAR ORIENTATION OF A MOBILE OBJECT AND A LASER MEASURING BLOCK
Lu et al. Ultra-low speed control strategy for SGCMG gimbal servo system
JP2723738B2 (en) Vibration control device for structures
JPS60196429A (en) Synchronously eccentric rotation check controller for magnetic bearing unit
Xia et al. Adaptive notch filter based on Lorentz force magnetic bearing for the suppression of imbalance vibration
JPH08326750A (en) Magnetic bearing controller, and control method
Li et al. Imbalance Vibration Control of Active Magnetic Bearing Rotor System Based on Improved Synchronous Rotating Frame Transformation
Carabelli et al. Orbital tubes