JPS61100938A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61100938A
JPS61100938A JP59221551A JP22155184A JPS61100938A JP S61100938 A JPS61100938 A JP S61100938A JP 59221551 A JP59221551 A JP 59221551A JP 22155184 A JP22155184 A JP 22155184A JP S61100938 A JPS61100938 A JP S61100938A
Authority
JP
Japan
Prior art keywords
single crystal
thin film
silicon single
substrate
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59221551A
Other languages
Japanese (ja)
Inventor
Hiroshi Komatsu
博志 小松
Hiroyuki Oshima
弘之 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP59221551A priority Critical patent/JPS61100938A/en
Publication of JPS61100938A publication Critical patent/JPS61100938A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain the semiconductor element having special merits that the stray capacity is small, that the response to quick signal is superior, and that the minute circuit is obtainable, by composing the insulator substrate with the silicon single crystal substrate and the single crystal thin film of the semi- insulating semicondutor having the matched lattice to the silicon single crystal and the wider forbidden band than the silicon single crystal. CONSTITUTION:The insulator substrate is substrate 1 and the single crystal thin film 2 of the semi-insulating semiconductor having the matched lattice to the silicon single crystal and the wider forbidden band than the silicon single crystal. For example, the substrate 1 is made of p-type silicon single crystal whose surface orientation is (100) and impurity density is about 1X10<15>cm<-3>. On this surface the thin film 2 of the single crystal of the semi-insulating gallim phosphide is formed by epitaxial growth, on which the thin film 3 of the p-type silicon single crystal is formed. Installing the source and drain of MOSFET in the thin film 3 the silicon single crystal thin film transistor of SOI structure is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁性基板上に作製した半導体装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor device manufactured on an insulating substrate.

〔従来の技術〕[Conventional technology]

半導体単結晶基板上に作り込んだ半導体素子に存在する
寄生容量や、配線と基板との間に存在する配線容量など
各種の浮遊容量に起因した信号伝達遅延を克服する有効
手段として、絶縁体基板表面に単結晶成長させた半導体
薄膜表面にMO8tN T (Metal−Oxle−
8emiconcluctor ?1eld’1ffe
ct、Tr )等の半導体電子デバイスを作製し、また
余分な半導体薄膜は除去又は不活性化し、絶縁体基板上
に配線を形成したSO工(5emiconductor
on工n5uxator )  技術がある。従来のS
O工技術には、サファイア表面にシリコン単結晶薄膜を
埋積させたS OS (5ilicon on 8ap
hive )  技術や、昭和58年度応物学会予稿集
31p−V−5のように石英基板上に多結晶シリコンを
埋積させたのち、加熱によりて単結晶化したり、あるい
は昭和58年度応物学会予稿集31p−V−7のように
シリコン酸化膜上の多結晶シリコンをレーザアニールに
て結晶化するso工(5ilicon onIns−u
lator )技術があった。
Insulating substrates are an effective means of overcoming signal transmission delays caused by various stray capacitances, such as parasitic capacitance existing in semiconductor elements fabricated on semiconductor single crystal substrates and wiring capacitance existing between wiring and substrate. MO8tNT (Metal-Oxle-
8emiconctor? 1eld'1ffe
ct, Tr), etc., the excess semiconductor thin film was removed or inactivated, and wiring was formed on the insulator substrate using an SO process (5emiconductor).
On Engineering 5uxator) There is a technology. Conventional S
O technology includes SOS (5ilicon on 8ap), which is a silicon single crystal thin film buried on the sapphire surface.
hive) technology, or by embedding polycrystalline silicon on a quartz substrate and turning it into a single crystal by heating, as shown in Proceedings of the Japan Society of Applied Physics, 1983, p-V-5, or by heating it to form a single crystal. SO technology (5ilicon on Ins-u) that crystallizes polycrystalline silicon on a silicon oxide film by laser annealing like
lator) technology was available.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述の従来技術では次のような問題点がある。 However, the above-mentioned conventional technology has the following problems.

すなわち、絶縁体としてサファイアを用いたものは、サ
ファイア基板が高価であるために汎用の半導体素子に使
用するのには不適当であるシリコン酸化膜を絶縁体とし
て用いるものは、前述したSO工構造の長所を持つのみ
でなく、3次元集積回路への応用も期待されるが、しか
し、シリコン酸化膜上へ単結晶シ9リコンを成長させる
には、レーザアニール等の新しい技術が必要である。さ
らに、レーザアニールのスループットが悪く全面の多結
晶を単結晶化するためには長時間かかる。また、非晶質
であるシリコン酸化膜の表面で単結晶化が進むため、転
位や格子欠陥等が多く発生し、結晶性が悪いといつた問
題点がある。
In other words, those using sapphire as an insulator are unsuitable for use in general-purpose semiconductor devices because the sapphire substrate is expensive; those using a silicon oxide film as an insulator have the above-mentioned SO structure. In addition to its advantages, it is also expected to be applied to three-dimensional integrated circuits. However, new techniques such as laser annealing are required to grow single-crystal silicon on a silicon oxide film. Furthermore, the throughput of laser annealing is poor and it takes a long time to turn polycrystals over the entire surface into single crystals. Further, since single crystallization progresses on the surface of the amorphous silicon oxide film, many dislocations, lattice defects, etc. occur, resulting in problems such as poor crystallinity.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、安価に、しかも単結晶性の良い
s o I構造の半導体基板を作製し、浮遊容量が小さ
く、高速応答性の高い、微細化可能な半導体素子を提供
するところにある。
The present invention is intended to solve these problems.The purpose of the present invention is to fabricate a semiconductor substrate with an SOI structure that has good single crystallinity at low cost, and has low stray capacitance and high-speed response. The purpose of the present invention is to provide a semiconductor element with high efficiency and which can be miniaturized.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置に用いる絶縁体基板はシリコン単結
晶基板と、該シリコン単結晶基板と格子整合し、かつシ
リコン単結晶より大きな禁制帯幅−をもつりん化カリウ
ム牛絶縁性半導体単結晶薄膜から成ることを特徴とする
The insulating substrate used in the semiconductor device of the present invention is made of a silicon single crystal substrate and a potassium phosphide insulating semiconductor single crystal thin film that is lattice matched with the silicon single crystal substrate and has a larger forbidden band width than the silicon single crystal. It is characterized by becoming.

〔作用〕[Effect]

本発明の上記の構成によると、基板には汎用的に使用さ
れているシリコン単結晶基板を利用するためサファイア
基板などに比べて安価である。絶縁体にはシリコン単結
晶と良く格子整合するりん化ガリウム単結晶薄膜を用い
るため、その表面にはシリコン酸化股上の単結晶シリコ
ンに比べ結晶性のよいシリコン単結晶が成長できる。り
ん化ガリウムは禁制帯幅が広いので抵抗率の非常に高い
絶縁体となり得る。さらに9ん化ガリウムの融点は14
67℃とシリコンと同等に大きいので、一般のシリコン
プレーナ技術を使用することができる。
According to the above configuration of the present invention, since a commonly used silicon single crystal substrate is used as the substrate, it is cheaper than a sapphire substrate or the like. Since a gallium phosphide single crystal thin film that has good lattice matching with silicon single crystal is used as the insulator, a silicon single crystal with better crystallinity than single crystal silicon on silicon oxide can be grown on its surface. Gallium phosphide has a wide forbidden band, so it can be an insulator with very high resistivity. Furthermore, the melting point of gallium ninetonide is 14
Since the temperature is 67° C., which is as large as silicon, common silicon planar technology can be used.

〔実施例〕〔Example〕

第1図は本発明に従って作製したSO工構造の単結晶シ
リコン薄膜トランジスタである。1は例えば面方向が(
100)で不純物濃度がlX101’傷−3程度のP形
単結晶シリコン基板である。2は前記単結晶シリコン基
板表面にエピタキシャル成長させた半絶縁性のりん化ガ
リウム単結晶薄膜である。りん化ガリウム単結晶の格子
構造はせん亜鉛構造で格子定数は室温で5.4495X
である。
FIG. 1 shows a single-crystal silicon thin film transistor having an SO structure manufactured according to the present invention. 1, for example, the plane direction is (
100) and an impurity concentration of about 1×101′ scratch −3. 2 is a semi-insulating gallium phosphide single crystal thin film epitaxially grown on the surface of the single crystal silicon substrate. The lattice structure of gallium phosphide single crystal is a zinc oxide structure, and the lattice constant is 5.4495X at room temperature.
It is.

一方シリコン単結晶はダイアモンド構造で格子定数は室
温でs、 4s 1又である。これら2種類の結晶は格
子定数がわずか0.5%程の差であるため、十分に格子
整合し、異種類の結晶であるにもかかわらず、シリコン
単結晶基板上には結晶性の良いりん化ガリウム単結晶薄
膜が得られる。りん化ガリウムのエピタキシャル成長方
法には、液相成長法、気相成長法、分子線エピタキシャ
ル法などがある。気相成長法のうち有機金属気相成長法
を用いると膜質の良い結晶が量産性良く得られる特徴が
ある。りん化ガリウム単結晶の禁制帯幅は室温でり、 
25 @ Vと大きく不純物の混入がなければ伝導に寄
与するキャリア密度が非常に少なくなるため、比抵抗が
1010Ω−画以上になり完全な絶縁体として扱うこと
ができる。第1図中2のりん化ガリウム単結晶薄膜は絶
縁体として扱うのに十分な比抵抗をもっている。膜厚は
数百ナノメートルから数十ミクロンである。第1図中3
は前記りん化ガリウム単結晶薄膜表面に形成したP形シ
リコン単結晶薄膜である。この膜のエピタキシャル成長
法には気相成長法、分子線エピタキシャル法が適してい
る。5のシリコン単結晶薄膜の不純物濃度は1014〜
10”cIr”が適当で膜厚は数百ナノメーFルから数
ミクロンである。4は熱拡散法又はイオン注入法により
前記P形シリコン単結晶薄膜中に形成したn形層でMO
B11BTのソースおよびドレイン部分に相当する。5
はシリコン酸化膜等の絶縁物よりなるゲート絶縁膜、6
は金属、シリサイド、ポリシリコン等によるゲート電極
、7は半導体表面バッジページlン用の絶縁膜、8はト
ランジスタとオーミックコンタクトをとり得る金m電極
と配葱である。
On the other hand, a silicon single crystal has a diamond structure and a lattice constant of s, 4s monoatonic at room temperature. These two types of crystals have a difference in lattice constant of only about 0.5%, so they are sufficiently lattice matched, and although they are different types of crystals, phosphorus with good crystallinity can be placed on a silicon single crystal substrate. A gallium oxide single crystal thin film is obtained. Methods for epitaxial growth of gallium phosphide include liquid phase growth, vapor phase growth, and molecular beam epitaxial growth. Among the vapor phase epitaxy methods, metal organic vapor phase epitaxy has the characteristic that crystals with good film quality can be obtained with good mass production. The forbidden band width of gallium phosphide single crystal is at room temperature,
25@V, and if there is no impurity mixed in, the carrier density that contributes to conduction would be extremely low, so the resistivity would be 1010 Ω or more, and it could be treated as a perfect insulator. The gallium phosphide single crystal thin film 2 in FIG. 1 has a resistivity sufficient to be treated as an insulator. The film thickness is from several hundred nanometers to several tens of microns. 3 in Figure 1
is a P-type silicon single crystal thin film formed on the surface of the gallium phosphide single crystal thin film. A vapor phase growth method or a molecular beam epitaxial method is suitable for the epitaxial growth method of this film. The impurity concentration of the silicon single crystal thin film of No. 5 is 1014 ~
10"cIr" is suitable, and the film thickness is from several hundred nanometers to several microns. 4 is an n-type layer formed in the P-type silicon single crystal thin film by thermal diffusion method or ion implantation method;
This corresponds to the source and drain portions of B11BT. 5
6 is a gate insulating film made of an insulator such as a silicon oxide film;
1 is a gate electrode made of metal, silicide, polysilicon, etc.; 7 is an insulating film for a badge page on the semiconductor surface; 8 is a gold electrode and an onion that can make ohmic contact with the transistor.

第2図は、第1図に示した半導体装置中のりん化ガリウ
ム単結晶薄膜とシリコン単結晶薄膜との界面付近のエネ
ルギーバンド図を表わしている。
FIG. 2 shows an energy band diagram near the interface between a gallium phosphide single crystal thin film and a silicon single crystal thin film in the semiconductor device shown in FIG.

第2図(4)はりん化ガリウムとp形シリコンの界面付
近のエネルギーバンド図である。ヘテロ接合界面ではど
ちら側にもバンドの曲がりが生じ、りん化ガリウム側に
電子、P形シリコン側に正孔が蓄積する。第2図Cb)
はりん化ガリウムとn+形シリコン界面付近のエネルギ
ーバンド図である0ヘテロ接合部でのバンドの曲がりが
(α)のものより急峻になり、より多くのキャリアが界
面の両側に蓄積される。
FIG. 2(4) is an energy band diagram near the interface between gallium phosphide and p-type silicon. At the heterojunction interface, band bending occurs on either side, with electrons accumulating on the gallium phosphide side and holes on the P-type silicon side. Figure 2 Cb)
In the energy band diagram near the interface between gallium phosphide and n+ type silicon, the band bending at the 0 heterojunction becomes steeper than that at (α), and more carriers are accumulated on both sides of the interface.

第3図は第2図に表わしたエネルギー準位図に基づき、
第1図に示した実施例のMO8?]lCTについてキャ
リア分布を現わしたものである。第3図中の1〜Bは第
1図において説明したものと同じである。9はゲート電
圧’Vaを印加したことにより形成された表面反転層で
チャネル部分になる。シリコン単結晶薄膜内にはへテロ
接合にすることによって形成された空乏層を介して両側
に電子と正孔が存在する。しかしトランジスタ動作には
シリコンの表面側に集合した電子のみが関与し、ヘテロ
接合近傍の正孔および電子はトランジスタ動作には関与
しないので、このようにして作製されたMOSFETは
完全な動作をする。ヘテロ接合のりん化ガリウム側に誘
起された電子濃度は、特にp形シリコン直下で非常に低
濃度であるため、りん化ガリウムのへテロ界面近傍では
抵抗が大きく、ソース、ドレイン間の分離は十分になさ
れている。
Figure 3 is based on the energy level diagram shown in Figure 2,
MO8 of the embodiment shown in FIG. ] This shows the carrier distribution for lCT. 1 to B in FIG. 3 are the same as those explained in FIG. 1. Reference numeral 9 denotes a surface inversion layer formed by applying a gate voltage 'Va, which becomes a channel portion. In a silicon single crystal thin film, electrons and holes exist on both sides via a depletion layer formed by forming a heterojunction. However, only the electrons gathered on the silicon surface side are involved in the transistor operation, and the holes and electrons near the heterojunction are not involved in the transistor operation, so the MOSFET manufactured in this way operates perfectly. The electron concentration induced on the gallium phosphide side of the heterojunction is very low, especially directly under the p-type silicon, so the resistance is large near the gallium phosphide heterointerface, and the source and drain are sufficiently isolated. is being done.

ソース又はドレイン部分に寄生する容量について考える
。シリコン基板とソース又はドレイン間の容量は中間に
存在するりん化ガリウム層が十分に厚いため無視できる
。ヘテロ接合の形成によりて誘起されたシリコン内の空
乏層容量は大きいものの、正孔側か電気的に70−ティ
ングのため、空乏層への電荷移動はあまり起こらず等価
的に容量は小さいと見てよい。したがって、ソースおよ
びドレインに寄生する容量は、バルクに作り込んだMO
5UETの場合より小さくなる。
Consider the parasitic capacitance in the source or drain portion. Capacitance between the silicon substrate and the source or drain can be ignored because the intermediate gallium phosphide layer is sufficiently thick. Although the depletion layer capacitance in silicon induced by the formation of a heterojunction is large, since the hole side is electrically 70-tinged, charge transfer to the depletion layer does not occur much and the capacitance is equivalently small. It's fine. Therefore, the parasitic capacitance at the source and drain is reduced by the MO
It is smaller than in the case of 5UET.

配線の基板との間の容量、すなわち配線層ffi i2
基板の比抵抗が非常に大きいため、等価的に小さくなる
The capacitance between the wiring and the substrate, that is, the wiring layer ffi i2
Since the specific resistance of the substrate is very large, it is equivalently small.

以上のように第1図に示した実施例に基づい★構造のM
 OS F E T’では寄生容量と配線容量を小 。
As mentioned above, based on the embodiment shown in FIG.
OSFET' reduces parasitic capacitance and wiring capacitance.

さくして、゛高速応答可能なものが得ら些、ヤ。If you do that, you won't be able to get something that can respond quickly.

第4図はりん化ガリウ゛ム琳結晶薄膜を層間絶縁膜とし
て用いた三次元構造MO3?11iTの実施例を示す。
FIG. 4 shows an example of a three-dimensional structure MO3-11iT using a gallium phosphide crystal thin film as an interlayer insulating film.

10はp形シリコン単結晶基板、11はn+ 形拡散層
でソースおよびドレイン領域になる。12はゲート絶縁
膜、13はゲート電極、14ハ表面パッシベーション用
絶縁膜である。10〜13のものでバルクMO5FET
を形成している。15はシリコン単結晶基板表面に露出
したシリコン単結晶を棟として成長さ−せたりん化ガリ
ウム単結晶薄膜である。結晶成長法および膜質は第1図
に示した実施例のものと同じである。16はバルクMO
8IFETの電極をりん化ガリウム表面に引き出すため
に、りん化ガリウムにイオウ等を拡散させて形成した上
下導電体である。17〜22は第1図に示した5〜8の
ものに対応しており、上層のシリコン単結晶薄膜MO8
?ICTを形成する。25はバルクMO3?ETから引
き出したりん化ガリウム中の電極とオーミックコンタク
トを取り、薄膜MO31FETの電極と接続し得る配線
層である。
10 is a p-type silicon single crystal substrate, and 11 is an n+ type diffusion layer which becomes a source and drain region. 12 is a gate insulating film, 13 is a gate electrode, and 14 is a surface passivation insulating film. Bulk MO5FET with 10 to 13
is formed. Reference numeral 15 denotes a gallium phosphide single crystal thin film grown using the silicon single crystal exposed on the surface of a silicon single crystal substrate as a ridge. The crystal growth method and film quality are the same as those in the example shown in FIG. 16 is bulk MO
These are upper and lower conductors formed by diffusing sulfur or the like into gallium phosphide in order to bring out the electrodes of the 8IFET to the gallium phosphide surface. 17 to 22 correspond to those 5 to 8 shown in FIG. 1, and the upper layer silicon single crystal thin film MO8
? Form ICT. 25 is bulk MO3? This is a wiring layer that makes ohmic contact with the electrode in gallium phosphide drawn out from the ET and can be connected to the electrode of the thin film MO31FET.

本発明を用いて第4図に示すような構造の3次元デバイ
スを構成すれば、集積度の増加が期待できる。
If a three-dimensional device having a structure as shown in FIG. 4 is constructed using the present invention, an increase in the degree of integration can be expected.

各実施例中のMO8FE’l’の代わりにバイポーラト
ランジスタやS工T、抵抗、ダイオードなどを利用して
も同じ効果が得られる。
The same effect can be obtained by using a bipolar transistor, an S-T, a resistor, a diode, etc. in place of MO8FE'l' in each embodiment.

〔発明の効果〕〔Effect of the invention〕

SO工技術にシリコン単結晶基板を使用するため、基板
が安価で大面積のものが得られる。絶縁体として比較的
容易にエピタキシャル成長させることのできるりん化ガ
リウムを用いるため、紡孔性の良い絶縁体が得られる。
Since a silicon single crystal substrate is used in SO technology, a substrate with a large area can be obtained at low cost. Since gallium phosphide, which can be epitaxially grown relatively easily, is used as the insulator, an insulator with good spinnability can be obtained.

したがって、シリコン単結晶薄膜をレーザアニールや熱
処理過程を経ずに容易に成長できる。りん化ガリウムの
融点はシリコンのそれ程度に高いため、シリコンの一般
のプレーナ技術に使用する温度には耐え得る。りん化ガ
リウムは半等体であるから不純物を導入すれば低抵抗の
導電層が得られ、素子を結合する際の導電体としても使
用することができる。このSO工柳造のMOf9FET
はバルクシリコンに作製したMO+37に丁に比べ、ド
レイン容量および配線容量が小さくなるため、高速応答
性が良い。三次元構造の眉間絶縁膜として本発明のりん
化ガリウムSO工構造を使用することができる。
Therefore, a silicon single crystal thin film can be easily grown without laser annealing or heat treatment. Gallium phosphide has a melting point as high as that of silicon, so it can withstand the temperatures used in typical silicon planar technology. Since gallium phosphide is a semiisomer, a low-resistance conductive layer can be obtained by introducing impurities, and it can also be used as a conductor when bonding elements. This SO Koryuzou MOf9FET
Compared to MO+37 fabricated in bulk silicon, the drain capacitance and wiring capacitance are smaller, so high-speed response is better. The gallium phosphide SO structure of the present invention can be used as a three-dimensionally structured glabella insulating film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSO工溝構造単結晶シリコン薄膜トランジスタ
を示す図。第2図(a)、(j)は第1図に示した構造
のうち、りん化ガリウム単結晶とシリコン単結晶薄膜と
のへテロ接合付近のエネルギー準位図を表わす。第5図
はfg2図のエネルギー準位図を参考にして、第1図の
SO工構造薄膜トランジスタのキャリア分布について現
わした図。第4図はりん化ガリウム単結晶薄膜を眉間絶
縁膜として用いた三次元構造MOI9?ICTの実施例
を示す。 1・・・・・・シリコン単結晶基板 2・・・・・・りん化ガリウム半絶縁性単結晶薄膜17
.3・・・・・・p形シリコン単結晶薄膜18.4・・
・・・・n膨拡散層(ソース、ドレイン部19.5・・
・・・・ゲート絶縁膜 20.6・・・・・・ゲート電極 21.7・・・・・・表面バッジベージ1ン膜22.8
・・・・・・金属電極 ? −−−−−・表面反転層(チャンネル部分)10・
・・・・・シリコン単結晶基板 11・”””n膨拡散層(ソース、ドレイン部)12−
・・・・・ゲート絶縁膜 13・・・・・・ゲート電極 14・・・・・・表面パ、シペーシw:/J[15・・
・・・・りん化ガリウム半絶縁性単結晶族16・・・・
・・上下導電体 23・・・・・・電極・配線層 以  上
FIG. 1 is a diagram showing a single-crystal silicon thin film transistor with an SO trench structure. FIGS. 2(a) and 2(j) represent energy level diagrams near the heterojunction between a gallium phosphide single crystal and a silicon single crystal thin film in the structure shown in FIG. 1. FIG. 5 is a diagram showing the carrier distribution of the SO-structured thin film transistor of FIG. 1, with reference to the energy level diagram of the FG2 diagram. Figure 4 shows a three-dimensional structure MOI9? using a gallium phosphide single crystal thin film as an insulating film between the eyebrows. An example of ICT is shown. 1... Silicon single crystal substrate 2... Gallium phosphide semi-insulating single crystal thin film 17
.. 3...P-type silicon single crystal thin film 18.4...
...N-swelled diffusion layer (source, drain part 19.5...
...Gate insulating film 20.6...Gate electrode 21.7...Surface badge 1-layer film 22.8
...Metal electrode? --------・Surface inversion layer (channel part) 10・
...Silicon single crystal substrate 11・"""N swelling diffusion layer (source, drain part) 12-
...Gate insulating film 13...Gate electrode 14...Surface pattern w:/J[15...
...Gallium phosphide semi-insulating single crystal group 16...
... Upper and lower conductors 23 ... Electrode/wiring layer and above

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁体基板上にシリコン単結晶薄膜を有する半導
体基板を用いた半導体装置において、該絶縁体基板は、
シリコン単結晶基板と、該シリコン単結晶基板と格子整
合し、かつシリコン単結晶より大きな禁制帯幅をもつ半
絶縁性半導体単結晶薄膜から成ることを特徴とする半導
体装置。
(1) In a semiconductor device using a semiconductor substrate having a silicon single crystal thin film on an insulator substrate, the insulator substrate is
A semiconductor device comprising a silicon single crystal substrate and a semi-insulating semiconductor single crystal thin film that is lattice matched to the silicon single crystal substrate and has a larger forbidden band width than the silicon single crystal.
(2)前記半絶縁性半導体薄膜として、りん化カリウム
単結晶薄膜を用いたことを特徴とする特許請求の範囲第
1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein a potassium phosphide single crystal thin film is used as the semi-insulating semiconductor thin film.
JP59221551A 1984-10-22 1984-10-22 Semiconductor device Pending JPS61100938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59221551A JPS61100938A (en) 1984-10-22 1984-10-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59221551A JPS61100938A (en) 1984-10-22 1984-10-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61100938A true JPS61100938A (en) 1986-05-19

Family

ID=16768489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59221551A Pending JPS61100938A (en) 1984-10-22 1984-10-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61100938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266559A (en) * 1989-04-06 1990-10-31 Nec Corp Semiconductor device
JP2007181426A (en) * 2006-01-06 2007-07-19 Matsuyama Plow Mfg Co Ltd Farm implement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266559A (en) * 1989-04-06 1990-10-31 Nec Corp Semiconductor device
JP2007181426A (en) * 2006-01-06 2007-07-19 Matsuyama Plow Mfg Co Ltd Farm implement

Similar Documents

Publication Publication Date Title
EP0073509B1 (en) Semiconductor integrated circuit device
US4897710A (en) Semiconductor device
JP2000509559A (en) Silicon carbide metal insulator semiconductor field effect transistor
US5229625A (en) Schottky barrier gate type field effect transistor
JP2000106371A (en) Fabrication of silicon carbide semiconductor device
JPH07106573A (en) High-voltage device and its preparation
KR840001605B1 (en) Thin film transistor
US4914491A (en) Junction field-effect transistors formed on insulator substrates
JPH0383332A (en) Manufacture of silicon carbide semiconductor device
US6384428B1 (en) Silicon carbide semiconductor switching device
KR890016686A (en) Semiconductor devices with regions doped to levels above the solubility limit
WO1989004056A1 (en) Mosfet in silicon carbide
US7605047B2 (en) Method for the integration of two bipolar transistors in a semiconductor body, semiconductor arrangement in a semiconductor body, and cascode circuit
JPS61100938A (en) Semiconductor device
JPH0724312B2 (en) Method for manufacturing semiconductor device
US3277351A (en) Method of manufacturing semiconductor devices
EP0093557B1 (en) High-speed complementary semiconductor integrated circuit
JPH0249422A (en) Manufacture of silicon carbide semiconductor device
JPH07142505A (en) Manufacturing for semiconductor device
JPH0272669A (en) Thin film semiconductor device and manufacture thereof
JPH01187873A (en) Manufacture of semiconductor device
EP0231656B1 (en) Silicon semiconductor device
JPH0435019A (en) Thin film transistor
KR890004642B1 (en) Bipolar ic fet using tunneling emitter contact
KR850000277B1 (en) The fabrication method of semiconductor