JPS61100583A - Production of 5,6,7,8-tetrahydrofolic acid - Google Patents

Production of 5,6,7,8-tetrahydrofolic acid

Info

Publication number
JPS61100583A
JPS61100583A JP59221189A JP22118984A JPS61100583A JP S61100583 A JPS61100583 A JP S61100583A JP 59221189 A JP59221189 A JP 59221189A JP 22118984 A JP22118984 A JP 22118984A JP S61100583 A JPS61100583 A JP S61100583A
Authority
JP
Japan
Prior art keywords
acid
reaction
folic acid
catalyst
dihydrofolic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59221189A
Other languages
Japanese (ja)
Other versions
JPH0414677B2 (en
Inventor
Hiroshi Hirai
平井 寛
Masaaki Torisu
鳥巣 正昭
Eri Notabe
野田部 恵里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59221189A priority Critical patent/JPS61100583A/en
Priority to US06/786,126 priority patent/US4665176A/en
Priority to AU48546/85A priority patent/AU556498B2/en
Priority to MX000342A priority patent/MX166400B/en
Priority to KR1019850007799A priority patent/KR870001648B1/en
Priority to CA000493563A priority patent/CA1234570A/en
Priority to DE8585307636T priority patent/DE3578862D1/en
Priority to DK486985A priority patent/DK162997C/en
Priority to EP85307636A priority patent/EP0179654B1/en
Publication of JPS61100583A publication Critical patent/JPS61100583A/en
Priority to KR1019870005236A priority patent/KR880000092B1/en
Publication of JPH0414677B2 publication Critical patent/JPH0414677B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:The catalytic reduction of folic acid or dihydrofolic acid is carried out in an aqueous inorganic base at a specific pH in the presence of a noble metal catalyst to enable economic and advantageous production of the compound of high quality, which is used as a coenzyme, through simple operations in high yield. CONSTITUTION:Folic acid or dihydrofolic acid is dissolved or suspended in an aqueous solution containing an almost equivalent amount, preferably 0.8-1 equivalent amount of an inorganic base such as ammonium hydroxide based on the acid, to keep the pH 5-9, preferably 6-8 and the catalytic hydrogenation is effected in the presence of a noble metal catalyst at a temperature over 0 deg.C, preferably 0-80 deg.C. The amount of the catalyst used in the reaction is 0.15-3.0wt% calculated as metallic element, based on folic acid or 0.15-2wt% based on dihydrofolic acid.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は5. e、 ’tp 8−テトラヒドロ葉酸の
改良された工業的製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to 5. e, 'tp Concerning an improved industrial production method of 8-tetrahydrofolic acid.

酵素化反応において、例えば懐酸と結合した♂−1−〇
−ホルミル体は、ホルミル基の供与体として、またホル
ムアルデヒドとの結合体のN3−1N10−メチレン体
は、ヒドロキシメチル供与体としてグリシンからセリン
をつくり、その還元物のN5−メチル体はホモシスティ
ンからメチオニンを生成するなど生合成反応に重要な役
割を果している有益な化合物である。
In the enzymatic reaction, for example, the ♂-1-〇-formyl compound bound to phoric acid acts as a formyl group donor, and the N3-1N10-methylene compound bound to formaldehyde acts as a hydroxymethyl donor from glycine. It produces serine, and its reduced product, the N5-methyl form, is a useful compound that plays an important role in biosynthetic reactions such as producing methionine from homocysteine.

従来の技術 従来、テトラヒドロ葉酸の製造方法としては、葉酸を水
皺化ナトリウム水溶液に溶解し、ナトリウムハイドロサ
ルファイドで還元しジヒドロ葉酸を得、ついで、これを
水素化ホウ素ナトリウムなどによりさらに還元してテト
ラヒドロ葉酸を得る方法(ヘルベチ力 シミ力 アクタ
 He1v。
Conventional technology The conventional method for producing tetrahydrofolic acid is to dissolve folic acid in an aqueous sodium hydroxide solution and reduce it with sodium hydrosulfide to obtain dihydrofolic acid, which is then further reduced with sodium borohydride to obtain tetrahydrofolic acid. How to obtain folic acid (Helvetic force Acta He1v.

Chim、Acta、 1980.63(8)  25
54 )や、葉酸を酢酸中でNacNBH4により還元
する方法(アナリテイカル バイオケミストリ Ana
l、  Biochem、 1980.103(2) 
 255)などが知られているが、これ等の方法は高価
な還元剤を多量必要とするばかりでなく、製造工程が繁
雑であるなどの欠点があり、工業的規模で製造するには
適していない。
Chim, Acta, 1980.63(8) 25
54) and the method of reducing folic acid with NacNBH4 in acetic acid (Analytical Biochemistry Analytical Biochemistry)
l, Biochem, 1980.103(2)
255), but these methods not only require a large amount of expensive reducing agent but also have the drawbacks of complicated manufacturing processes, making them unsuitable for production on an industrial scale. do not have.

一方、貴金属触媒の存在下に葉酸を水素添加してテトラ
ヒドロ葉酸を製造する方法も知られている。
On the other hand, a method for producing tetrahydrofolic acid by hydrogenating folic acid in the presence of a noble metal catalyst is also known.

例えば、USP、2717250(1955)およびU
SP、2790802.(1957)  記載の方法で
は葉酸を氷酢酸に懸濁させ、酸化白金触媒の存在下に還
元する方法の記載があるが、いずれも触媒筺用量は葉酸
に対して10〜100重量%と大多量必要とする他、反
応溶媒である氷酢酸も多量必要とし、生成物の取出しが
繁雑であり、経済的に有利な方法ではない。また収率も
約48チ程麿と低い。
For example, USP, 2717250 (1955) and U.S.P.
SP, 2790802. (1957) describes a method in which folic acid is suspended in glacial acetic acid and reduced in the presence of a platinum oxide catalyst; In addition, a large amount of glacial acetic acid, which is a reaction solvent, is required, and the removal of the product is complicated, so it is not an economically advantageous method. Moreover, the yield is low at about 48 cm.

また、ジャーナル オン アメリカン ケミカルソサイ
アテイ(J、 Am、 Chem 、 SOC,69,
250(1947))  には葉酸を約19モル比(3
6■の葉酸に対し、0.INのNaOHl 5cc )
の多量の水酸化ナトリウム水溶液に溶解し、強アルカリ
性において、葉酸に対して70重量%という大量の酸化
白金触媒を用いて水素添加を行った例が見られるが、ジ
ヒドロ葉酸を低収率で得ているだけであり、大量の触媒
を吏用しているにもかかわらず水素添加反応はジヒドロ
葉酸の段階で停止しテトラヒドロ葉酸は得られていない
Also, Journal on American Chemical Society (J, Am, Chem, SOC, 69,
250 (1947)) contains folic acid in an approximately 19 molar ratio (3
0.0 for every 6 ■ of folic acid. IN NaOHl 5cc)
There are examples of hydrogenation using a large amount of platinum oxide catalyst, which is 70% by weight based on folic acid, dissolved in a large amount of aqueous sodium hydroxide solution in strong alkaline conditions, but dihydrofolic acid was not obtained in low yield. Although a large amount of catalyst is used, the hydrogenation reaction stops at the dihydrofolic acid stage, and tetrahydrofolic acid is not obtained.

明が ′しようとする問題点 このように、従来より知られている公知方法では、水素
化反応時に加水素分屏などによる副生物が生じたり、未
反応葉酸やジヒドロ化合物が反応マス中に残存したりし
て、目的生成物への収率が匹く、工業的規模での製造に
おいて満足すべき方法ではなかった。
Problems that Ming is trying to solve As described above, in the conventionally known methods, by-products such as hydrogen separation are generated during the hydrogenation reaction, and unreacted folic acid and dihydro compounds remain in the reaction mass. As a result, the yield of the desired product was low, and this method was not satisfactory for production on an industrial scale.

間9題点を解決するための手段 本発明者らは経済的に有利でかつ簡単化された操作で収
率良くテトラヒドロ葉酸を製造する方法につき鋭意研究
を重ねた結果、葉酸もしくはジヒドロ葉酸を当量付近、
即ち一酸塩基の場合は葉酸もしくはジヒドロ葉酸に対し
約2モル倍程度の無機塩基を用い、その水溶液に溶解ま
たは懸濁させ、反応液のpHを5〜9に維持しながら白
金またはロジウムなどの貴金属触媒の存在下に水素添加
することによりその目的を達成できることを見出し、本
発明を完成した。
Means for Solving Problems Between 9 and 9 The present inventors have conducted extensive research into an economically advantageous method for producing tetrahydrofolic acid with a high yield using simplified operations. near,
That is, in the case of a monoacid base, use an inorganic base in an amount of about 2 times the mole of folic acid or dihydrofolic acid, dissolve or suspend it in an aqueous solution, and add platinum or rhodium while maintaining the pH of the reaction solution at 5 to 9. The present invention was completed based on the discovery that the objective can be achieved by hydrogenation in the presence of a noble metal catalyst.

本発明の方法によれば、安価な無機塩基水溶、液を溶媒
とするため製造費は極めて安くなり、また原料は無機塩
基水溶液に溶解またはほぼ溶解さまた懸濁状態で水素添
加されるため、反応は比較的短時間に終了する。したが
って触媒量も極めて少量で十分である。また反応液の後
処理も簡素化される。すなわち反応マスから触媒をヂ別
し、L−アスコルビン酸などの安定剤を含む酸溶液に排
出中和し、遊離した目的生成物の沈澱をF別、洗浄し、
減圧屹燥することにより、L−セリンの生合成などの反
応に十分満足して使用できる高品質のテトラヒドロ葉酸
が特別な精製をすることもなく好収率で得られる。
According to the method of the present invention, the manufacturing cost is extremely low because an inexpensive inorganic base aqueous solution or liquid is used as the solvent, and the raw materials are hydrogenated while dissolved or almost dissolved in the inorganic base aqueous solution or in a suspended state. The reaction completes in a relatively short time. Therefore, an extremely small amount of catalyst is sufficient. Further, post-treatment of the reaction solution is also simplified. That is, the catalyst is separated from the reaction mass, discharged and neutralized in an acid solution containing a stabilizer such as L-ascorbic acid, and the precipitate of the liberated target product is separated from F and washed.
By drying under reduced pressure, high-quality tetrahydrofolic acid, which can be satisfactorily used in reactions such as biosynthesis of L-serine, can be obtained in good yield without any special purification.

本発明の方法において、使用する無機塩基とし↑ ては葉酸またはジヒドロ葉酸を溶解し、水素添の口反応
に悪影響を与えないものなら何でも使用でき、例えば、
水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、
炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム
、水酸化アンモニウムなどの無機塩基が挙げられ、特に
水酸化アンモニウムが好ましい。
In the method of the present invention, any inorganic base can be used as long as it dissolves folic acid or dihydrofolic acid and does not adversely affect the hydrogenation reaction. For example,
Sodium hydroxide, potassium hydroxide, sodium carbonate,
Examples include inorganic bases such as potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and ammonium hydroxide, with ammonium hydroxide being particularly preferred.

塩基の使用1は、原料葉酸またはジヒドロ葉酸のカルボ
キシル基に対し当量付近、好ましくは0.8〜1当量比
用い、反応液のpHは5〜9、好ましくは6〜8に維持
されるようにして実施する必要がある。
In use 1 of the base, the base is used in an equivalent amount to the carboxyl group of the raw material folic acid or dihydrofolic acid, preferably in an equivalent ratio of 0.8 to 1, and the pH of the reaction solution is maintained at 5 to 9, preferably 6 to 8. It is necessary to implement it.

反応液のpHが5より低い場合には、原料の溶解性が低
下するため未反応物が多量に残る。また反応液のpHが
9より高い場合には、触媒の活性が低下するため水素吸
収量は理論量よりはるかに低くなり反応は停止し多量の
未反応物が残る。
If the pH of the reaction solution is lower than 5, the solubility of the raw materials decreases, leaving a large amount of unreacted substances. If the pH of the reaction solution is higher than 9, the activity of the catalyst decreases, so the amount of hydrogen absorbed becomes much lower than the theoretical amount, the reaction stops, and a large amount of unreacted substances remain.

通常は、原料の葉酸またはジヒドロ葉酸のカルボキシル
基に対し、0.5〜1.5当量比の範囲内で無機塩基は
使用でき、その使用量は塩基の種類、反応マスのpHと
の関連において、適宜法められる。
Usually, an inorganic base can be used in an equivalent ratio of 0.5 to 1.5 to the carboxyl group of folic acid or dihydrofolic acid as raw materials, and the amount used depends on the type of base and the pH of the reaction mass. , shall be enacted as appropriate.

尚、本発明においては、実施方法として反応開始時から
当量付近の塩基を全量装入してもよいが、反応開始時に
は塩基の1部を装入し水素添加反応をしながら反応の進
行とともに残りの塩基水溶液を反応系内に滴下装入する
方法がより好ましい方解による副生物の生成を抑制する
ことができる。
In addition, in the present invention, as a method of carrying out the reaction, the entire amount of base in the vicinity of the equivalent amount may be charged from the start of the reaction, but at the start of the reaction, a part of the base is charged, and as the hydrogenation reaction progresses, the remaining amount is added. A more preferable method is to dropwise charge an aqueous base solution into the reaction system because it can suppress the production of by-products due to decomposition.

本発明方法において使用する貴金属触媒は白金またはロ
ジウムが好ましく、通常これらの触媒は活性炭、シリカ
、アルミナなどを担体とした担持触媒として使用され、
また酸化白金のような酸化物として用いてもよい。
The noble metal catalyst used in the method of the present invention is preferably platinum or rhodium, and these catalysts are usually used as supported catalysts on activated carbon, silica, alumina, etc.
It may also be used as an oxide such as platinum oxide.

触媒の使用量は、原料葉酸に対して貴金属として0.1
5〜3.0重量%、ジヒドロ葉酸を原料とする場合は0
.15〜2.0重量%が使用される。例えば5チ白金−
活性炭触媒を用いる場合は、通常、葉酸に対して3〜2
0重量%が適当である。葉酸を原料とする場合、5襲白
金−活性炭触媒の使用量が、3チより少い場合には、反
応は途中で停止し未反応物及び反応中間体を残し、触媒
量が20係より多い場合には反応は早く終了するが、加
水ない。従って好ましい使用量は5〜15重量%である
。また、反応に使用された触媒は濾過などにより分離し
水洗した後、再び次回の反応に使用される。その際触媒
の活性が低下しているため、必要ならば新触媒を追加す
る〇 水素添加における水素の圧力は常圧で十分であるが、必
要なら加圧下に反応を行うこともできる。
The amount of catalyst used is 0.1% of the precious metal based on the raw material folic acid.
5-3.0% by weight, 0 if dihydrofolic acid is used as raw material
.. 15-2.0% by weight is used. For example, 5-chi platinum-
When using an activated carbon catalyst, it usually contains 3 to 2
0% by weight is suitable. When folic acid is used as a raw material, if the amount of 5-stage platinum-activated carbon catalyst used is less than 3 parts, the reaction will stop midway, leaving unreacted substances and reaction intermediates, and the amount of catalyst will be more than 20 parts. In some cases, the reaction completes quickly, but no water is added. Therefore, the preferred amount used is 5 to 15% by weight. Further, the catalyst used in the reaction is separated by filtration or the like, washed with water, and then used again in the next reaction. At this time, since the activity of the catalyst has decreased, add a new catalyst if necessary. 〇 Normal pressure is sufficient for the hydrogen pressure during hydrogenation, but the reaction can also be carried out under increased pressure if necessary.

水素添加を行う反応温度は0℃以上が適当であり、常圧
下に反応を行う場合には0〜80°Cが望ましい。特に
好ましい温度は20〜50℃である訝水素添加反応は反
応液の撹拌速度により反応速度が大きく変るため、撹拌
を激しくして十分水素と接触させるのが好ましい。
The reaction temperature for hydrogenation is suitably 0°C or higher, and preferably 0 to 80°C when the reaction is carried out under normal pressure. A particularly preferable temperature is 20 to 50°C. Since the reaction rate of the hydrogenation reaction varies greatly depending on the stirring speed of the reaction solution, it is preferable to stir vigorously to bring the reaction solution into sufficient contact with hydrogen.

反応液からのテトラヒドロ葉酸の取出し操作は通常不活
性ガス雰囲気下で行い、テトラヒドロ葉酸の酸化による
劣化を防止する。
The operation for extracting tetrahydrofolic acid from the reaction solution is usually performed under an inert gas atmosphere to prevent deterioration of tetrahydrofolic acid due to oxidation.

すなわち反応液は窒素で空気を置換した窒素筒中で濾過
などの方法で触媒を分離した後、要すればL−アスコル
ビン酸、メルカプトエタノールなどの安定剤の存在下に
塩酸で中和してテトラヒドロ葉酸を沈澱させる。このと
き中和のpHは3.5付近が好ましい。
That is, the reaction solution is separated from the catalyst by a method such as filtration in a nitrogen cylinder in which the air has been replaced with nitrogen, and then neutralized with hydrochloric acid in the presence of a stabilizer such as L-ascorbic acid or mercaptoethanol if necessary to obtain tetrahydrofolic acid. precipitate. At this time, the neutralization pH is preferably around 3.5.

次に冷却した中和液を濾過などの方法によって分離し、
要すれば脱気した冷水で塩類を除去した後乾燥する。
Next, the cooled neutralized liquid is separated by a method such as filtration,
If necessary, remove salts with deaerated cold water and then dry.

低温で短時間に乾燥するためアセトン、メタノールなど
の低沸点でかつ水に溶解する溶剤で洗浄したのち乾燥す
るのが好ましい。
In order to dry in a short time at a low temperature, it is preferable to wash with a solvent having a low boiling point and soluble in water, such as acetone or methanol, and then drying.

この様にして得たテトラヒドロ葉酸は白色〜灰白色の結
晶であり、通常純度80チ以上(HLC分析)を示し、
特別な精製をすることなく酵素反応の補酵素として十分
な活性を示す。
The tetrahydrofolic acid obtained in this way is a white to off-white crystal, and usually has a purity of 80% or more (HLC analysis).
Shows sufficient activity as a coenzyme in enzyme reactions without special purification.

以下、実施例により具体的に本発明方法を説明する。な
お実施例に使用した葉酸は純度91.3チのもので、モ
ル数は純分換算の値である◎実施例−1 11バツフル付丸底フラスコに葉酸15.01211、
xosxxoモル)およびN/2水酸化アンモニウム水
溶液10.8工1(5,40×10モル)を加え、かき
まぜその大半を溶解した。(溶液のpHは6,6を示し
た。) 次に、3%白金−活性炭触媒2.025#(貴金属とし
て0.44%/葉酸)を蒸留水1601dに懸濁させた
液を加え、系内を窒素置換後、常法により激しくかきま
ぜながら、常圧で水素添加反応を行った。(水素吸収率
100.4%、反応時間360分)′ 反応後、窒素気流下にN/2水酸化アンモニウム水溶液
18.6mA!を加え、ごく微量存在する不溶物を溶解
した。以降、反応生成物の分離および乾燥は全て窒素雰
囲気下に行った。
Hereinafter, the method of the present invention will be specifically explained with reference to Examples. Note that the folic acid used in the examples has a purity of 91.3%, and the number of moles is the value in terms of purity. ◎Example-1 15.01211% of folic acid,
xosxxo mol) and 10.8 ml of N/2 ammonium hydroxide aqueous solution (5.40 x 10 mol) were added and stirred to dissolve most of it. (The pH of the solution was 6.6.) Next, a suspension of 3% platinum-activated carbon catalyst 2.025# (0.44% noble metal/folic acid) in 1601d of distilled water was added to the system. After purging the inside with nitrogen, a hydrogenation reaction was carried out at normal pressure while vigorously stirring in a conventional manner. (Hydrogen absorption rate 100.4%, reaction time 360 minutes)' After the reaction, N/2 ammonium hydroxide aqueous solution 18.6 mA under nitrogen stream! was added to dissolve the very small amount of insoluble matter present. Thereafter, all separation and drying of the reaction products were performed under a nitrogen atmosphere.

すなわち、反応終了液を吸引ヂ過器で濾過し触媒を分離
した後、蒸留水30ばて洗浄した。次に炉況液をL−ア
スコルビン酸3.31をN/2塩酸117.4mjに溶
解した溶液中に排出、中和しpHプ・ぐ をミに調節した。析出した沈澱を吸引濾過し、5℃の蒸
留水30m1で洗浄した後、さらに5℃のアセトン20
0m1で洗浄した。次に湿ケーキを乾燥剤を入れた減圧
乾燥器中で25〜30℃15ilHg X 8時間減圧
乾燥し、5.6.7.8−テトラヒドロ葉酸を得た。収
量10.714.!1F(収率77.5チ) 得られたテトラヒドロ葉酸の高速液体クロマトグラフィ
ーによる純度は85.0%であり、従来性われているカ
ラムクロマトグラフィー等による精製をすることなく酵
素反応を試みたところ、市販試薬品と同等の活性を示し
た。
That is, the reaction-completed liquid was filtered with a suction filter to separate the catalyst, and then washed with distilled water for 30 minutes. Next, the furnace liquid was discharged into a solution in which 3.31 l of L-ascorbic acid was dissolved in 117.4 mj of N/2 hydrochloric acid, and the solution was neutralized and the pH was adjusted to 1. The deposited precipitate was suction filtered, washed with 30 ml of distilled water at 5°C, and then washed with 20 ml of acetone at 5°C.
Washed with 0ml. The wet cake was then dried under reduced pressure in a vacuum dryer containing a desiccant at 25-30° C. for 8 hours at 15 il Hg to obtain 5.6.7.8-tetrahydrofolic acid. Yield 10.714. ! 1F (yield 77.5%) The purity of the obtained tetrahydrofolic acid by high performance liquid chromatography was 85.0%, and an enzymatic reaction was attempted without purification by conventional column chromatography. , showed activity equivalent to that of commercially available reagents.

4.310#(8,91X10モル)およびN/2水酸
化アンモニウム水溶液32,2ゴ(16,1x1゜モル
)を加えかきまぜ溶解した。(溶液のpHは6.6を示
した。) 次に酸化白金o、o6srlc貴金属として1.5%/
葉酸)を蒸留水50m/に懸濁させた液を加え、実施例
−1と同様にして水素添加反応を行い収量2.973!
i(収率74.9チ)の5.6.7.8−テトラヒドロ
葉酸を得た。
4.310 # (8,91 x 10 mol) and N/2 ammonium hydroxide aqueous solution 32,2 # (16,1 x 1 mmol) were added and stirred to dissolve. (The pH of the solution was 6.6.) Next, platinum oxide O, O6SRLC, 1.5%/
A suspension of folic acid (folic acid) in 50 ml of distilled water was added, and a hydrogenation reaction was carried out in the same manner as in Example-1, yielding 2.973!
i (yield 74.9) of 5.6.7.8-tetrahydrofolic acid was obtained.

実施例−3 300mjtバッフル付丸底フラスコに葉酸2.296
3J(4,75X10モル)及びN/2水酸化アンモニ
ウム水溶液16.5t/(8,25X10モル)を加え
かきまぜ溶解した。(溶液のpHは6.5を示した。) 次に5%ロジウム活性炭触媒o、zao、l貴金属とし
て0.55%/葉酸)を25m/の蒸留水に懸濁させた
液を加え、実施例−1と同様にして水素添加反応を行い
5.6.7.8−テトラヒドロ葉酸1.593FC収率
75.3チ)を得た。
Example-3 Folic acid 2.296 in a 300 mjt baffled round bottom flask
3J (4,75 x 10 mol) and 16.5 t/(8,25 x 10 mol) of N/2 ammonium hydroxide aqueous solution were added and stirred to dissolve. (The pH of the solution was 6.5.) Next, a suspension of 5% rhodium activated carbon catalyst (0.55% as precious metals/folic acid) in 25 m/distilled water was added and the process was carried out. A hydrogenation reaction was carried out in the same manner as in Example 1 to obtain 5.6.7.8-tetrahydrofolic acid (1.593FC, yield 75.3%).

実施例−4 300m1バツフル付丸底フラスコに葉酸4.384J
i’(9,07X10モル)およびN/2水酸化ナトリ
ウム水溶液3 s、7y(17,85X 10”モル)
を加え、かきまぜ溶解した。(溶液のpHは7.3を示
した。) 次に5%白金−活性炭触媒0.399Nを50−の蒸留
水に懸濁させた液を加え実施例−1と同様にして水素添
加反応を行った。(水素吸収率101.8%、反応時間
515分) 触媒を濾過分離した後、p液をN/2塩酸34dおよび
L−アスコルビン腺1.0261jからなる溶液に排出
、中和しpHを3,5に調節した。
Example-4 4.384J of folic acid in a 300ml round bottom flask
i' (9,07 x 10 mol) and N/2 aqueous sodium hydroxide solution 3 s, 7y (17,85 x 10'' mol)
was added and stirred to dissolve. (The pH of the solution was 7.3.) Next, a suspension of 0.399N of 5% platinum-activated carbon catalyst in 50-distilled water was added and a hydrogenation reaction was carried out in the same manner as in Example-1. went. (Hydrogen absorption rate: 101.8%, reaction time: 515 minutes) After separating the catalyst by filtration, the p liquid was discharged into a solution consisting of 34d of N/2 hydrochloric acid and 1.0261j of L-ascorbic acid, and neutralized to a pH of 3. Adjusted to 5.

次に実施例−1に準じて分離、乾燥を行い、収!2.9
26Jl収率72.4qIJ)の5.6.7.8−テト
ラヒドロ葉酸を得た。
Next, separate and dry according to Example 1, and collect! 2.9
5.6.7.8-tetrahydrofolic acid was obtained with a yield of 26 Jl (72.4 qIJ).

実施例−5 300ゴパツフル付丸底フラスコに7,8ジヒドロ葉酸
2.179!9およびN/2水酸化アンモニウム水溶液
17.5 mlを加え、撹拌溶解した。(溶液のpHは
6.7を示した。2 次に5チ白金−活性炭触媒0.112.9(貴金属とし
て0.26Vジヒドロ葉酸)を加え実施例−1と同様に
して水素添加反応を行い1.439#(収率65.7チ
)の5.6.7.8−テトラヒドロ葉酸を得た。
Example 5 2.179!9 of 7,8 dihydrofolic acid and 17.5 ml of N/2 ammonium hydroxide aqueous solution were added to a 300-gopatsuflu round bottom flask and dissolved with stirring. (The pH of the solution was 6.7.2) Next, 5T platinum-activated carbon catalyst 0.112.9 (0.26V dihydrofolic acid as noble metal) was added and a hydrogenation reaction was carried out in the same manner as in Example-1. 1.439 # (yield 65.7) of 5.6.7.8-tetrahydrofolic acid was obtained.

実施例−6 葉酸z、4179(s、ox1oモル)にN/2水酸化
アンモニウム10.0+1d(0,5当量)を加え、p
 H6,3とし、次いで5チ白金−活性炭触媒0.20
2J7.蒸留水25−を加えて水素添加反応を開始した
Example-6 N/2 ammonium hydroxide 10.0+1d (0.5 equivalent) was added to folic acid z, 4179 (s, ox1o mol), and p
H6,3 and then 5 Ch platinum-activated carbon catalyst 0.20
2J7. A hydrogenation reaction was started by adding 25-liters of distilled water.

次に水素吸収速度が遅くなった時点から9.8コのN/
2水酸化アンモニウム水溶液を、反応の進行に伴い少量
づつ徐々に滴下装入しながら反応を行った。(最終的な
pHは6.8を示した。)以降、実施例−1と同様に処
理し、5,6,7.8−テトラヒドロ葉酸1.785.
l収率80.2%)を得た。
Next, from the point at which the hydrogen absorption rate slows down, 9.8 N/
The reaction was carried out while gradually adding a small amount of ammonium dihydroxide aqueous solution dropwise as the reaction progressed. (The final pH was 6.8.) Thereafter, the same treatment as in Example 1 was carried out, and 5,6,7.8-tetrahydrofolic acid was 1.785.
1 yield of 80.2%) was obtained.

Claims (5)

【特許請求の範囲】[Claims] (1)葉酸もしくはジヒドロ葉酸を貴金属、触媒の存在
下に接触水素化反応させて、5,6,7,8−テトラヒ
ドロ葉酸を製造する方法において、原料葉酸もしくはジ
ヒドロ葉酸に対し当量付近の無機塩基を用いてその水溶
液に溶解または懸濁し、pH5〜9に維持して水素化反
応させることを特徴とする5,6,7,8−テトラヒド
ロ葉酸の製造方法。
(1) In a method for producing 5,6,7,8-tetrahydrofolic acid by subjecting folic acid or dihydrofolic acid to a catalytic hydrogenation reaction in the presence of a noble metal and a catalyst, an inorganic base in an amount approximately equivalent to the raw material folic acid or dihydrofolic acid is used. A method for producing 5,6,7,8-tetrahydrofolic acid, which comprises dissolving or suspending it in an aqueous solution thereof and carrying out a hydrogenation reaction while maintaining the pH at 5 to 9.
(2)pHを、6〜8に維持して水素化反応させる特許
請求の範囲第(1)項記載の方法。
(2) The method according to claim (1), in which the hydrogenation reaction is carried out while maintaining the pH at 6 to 8.
(3)無機塩基を、原料葉酸もしくはジヒドロ葉酸に対
し、0.8〜1当量比用いる特許請求の範囲第(1)項
記載の方法。
(3) The method according to claim (1), wherein the inorganic base is used in an equivalent ratio of 0.8 to 1 with respect to the raw material folic acid or dihydrofolic acid.
(4)無機塩基を累積添加しながら行う特許請求の範囲
第(1)項記載の方法。
(4) The method according to claim (1), which is carried out while cumulatively adding an inorganic base.
(5)貴金属触媒が白金またはロジウムである特許請求
の範囲第(1)項記載の方法。
(5) The method according to claim (1), wherein the noble metal catalyst is platinum or rhodium.
JP59221189A 1984-10-23 1984-10-23 Production of 5,6,7,8-tetrahydrofolic acid Granted JPS61100583A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP59221189A JPS61100583A (en) 1984-10-23 1984-10-23 Production of 5,6,7,8-tetrahydrofolic acid
US06/786,126 US4665176A (en) 1984-10-23 1985-10-10 Process for the preparation of 5,6,7,8-tetrahydrofolic acid
AU48546/85A AU556498B2 (en) 1984-10-23 1985-10-14 Preparation of 5,6,7,8-tetrahydrofolic acid
MX000342A MX166400B (en) 1984-10-23 1985-10-21 PROCEDURE FOR THE PREPARATION OF 5,6,7,8-TETRAHYDROPHOLIC ACID
CA000493563A CA1234570A (en) 1984-10-23 1985-10-22 Process for the preparation of 5,6,7 8- tetrahydrofolic acid
KR1019850007799A KR870001648B1 (en) 1984-10-23 1985-10-22 Process for preparing 5,6,7,8-tetrahydrofolic acid
DE8585307636T DE3578862D1 (en) 1984-10-23 1985-10-23 METHOD FOR PRODUCING 5,6,7,8-TETRAHYDROFOLIC ACID.
DK486985A DK162997C (en) 1984-10-23 1985-10-23 METHOD OF PREPARING 5,6,7,8-TETRAHYDROPHOLIC ACID
EP85307636A EP0179654B1 (en) 1984-10-23 1985-10-23 Process for the preparation of 5,6,7,8-tetrahydrofolic acid
KR1019870005236A KR880000092B1 (en) 1984-10-23 1987-05-26 Stabilization method of 5,6,7,8-tetrahyarofolic acid for storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59221189A JPS61100583A (en) 1984-10-23 1984-10-23 Production of 5,6,7,8-tetrahydrofolic acid

Publications (2)

Publication Number Publication Date
JPS61100583A true JPS61100583A (en) 1986-05-19
JPH0414677B2 JPH0414677B2 (en) 1992-03-13

Family

ID=16762868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59221189A Granted JPS61100583A (en) 1984-10-23 1984-10-23 Production of 5,6,7,8-tetrahydrofolic acid

Country Status (1)

Country Link
JP (1) JPS61100583A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504370A (en) * 1999-07-14 2003-02-04 エプロバ・アクチエンゲゼルシヤフト Process for the production of optically pure tetrahydropterin and its derivatives, in particular optically pure tetrahydrofolic acid and its derivatives, by stereospecific hydrogenation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504370A (en) * 1999-07-14 2003-02-04 エプロバ・アクチエンゲゼルシヤフト Process for the production of optically pure tetrahydropterin and its derivatives, in particular optically pure tetrahydrofolic acid and its derivatives, by stereospecific hydrogenation

Also Published As

Publication number Publication date
JPH0414677B2 (en) 1992-03-13

Similar Documents

Publication Publication Date Title
Kis et al. Biosynthesis of riboflavin. Studies on the reaction mechanism of 6, 7-dimethyl-8-ribityllumazine synthase
US7598378B2 (en) Method for the production of 4-(4-aminophenyl)-3-morpholinone
JPH0212475B2 (en)
US7582799B2 (en) Method for producing hydrazone derivatives
JP3927274B2 (en) Process for producing N-methyl-N'-nitroguanidine
EP0227829A1 (en) Production of l-ascorbic acid from 2-keto-l-gulonic acid.
JPS61100583A (en) Production of 5,6,7,8-tetrahydrofolic acid
CN110128449B (en) 7-phenylacetamido-3-deacetoxy cephalosporanic acid salt and preparation method and application thereof
EP2935205B1 (en) An enzymatic route for the preparation of chiral gamma-aryl-beta-aminobutyric acid derivatives
JP4046708B2 (en) Method for producing 3-alkenylcephem compound
CN113603691A (en) Preparation process of L-5-methyl tetrahydrofolic acid calcium
EP0962552B1 (en) A process for the preparation of 4-(des-dimethylamino)-tetracyclines
CN112778189A (en) (3R,4S) -N-substituent-3-carboxylic acid-4-ethyl pyrrolidine, intermediate and lapatinib
JP2993755B2 (en) Method for producing rhodium nitrate solution
CN109096148B (en) Method for preparing vorinostat by using modified mesoporous material through one-pot method
EP0124780B1 (en) Process for preparing 2-alkyl-4-amino-5-aminomethylpyrimidine
KR19990044047A (en) Method for producing 1,4-butenediol
JPWO2004058785A1 (en) Method for producing 2-deoxyaldoses
JPH0332553B2 (en)
RU1768585C (en) Method of 3ъ-amino-4ъ-chlorobenzophenone-2-carboxylic acid synthesis
JPH0827151A (en) Preparation of purine
KR820000822B1 (en) Process for producing salts of pyruvic acid
Silks III et al. A reinvestigation of the synthesis of [15N2] hydroxymethylimidazole: Useful in an improved synthesis of (D, L)‐[τ, π‐15N2] histidine
WO2020129591A1 (en) Production method for amide alcohol compound
JPS6010016B2 (en) Method for producing hydroxyacetic acid