JPH0332553B2 - - Google Patents

Info

Publication number
JPH0332553B2
JPH0332553B2 JP57132793A JP13279382A JPH0332553B2 JP H0332553 B2 JPH0332553 B2 JP H0332553B2 JP 57132793 A JP57132793 A JP 57132793A JP 13279382 A JP13279382 A JP 13279382A JP H0332553 B2 JPH0332553 B2 JP H0332553B2
Authority
JP
Japan
Prior art keywords
acetyl
bph
iodine
reaction
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57132793A
Other languages
Japanese (ja)
Other versions
JPS5921685A (en
Inventor
Toshio Tatsuoka
Masaji Ishiguro
Nobuo Nakatsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntory Ltd
Original Assignee
Suntory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Ltd filed Critical Suntory Ltd
Priority to JP13279382A priority Critical patent/JPS5921685A/en
Publication of JPS5921685A publication Critical patent/JPS5921685A/en
Publication of JPH0332553B2 publication Critical patent/JPH0332553B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は5,6,7,8−テトラヒドロ−L−
エリスローバイオプテリン(以下BPH4と略称)
の中間体であるL−エリスロ−バイオプテリンの
製造法に関する。 BPH4は6位の水素の立体配置により6−(R)
および6−(S)異性体が知られている
〔Furrer、H.J.ら、Helv.chim.Acta、622577
(1979)〕。 そして、なかんずく6−(R)BPH4はフエニ
ルアラニン水酸化酵素の補酵素であると同時に、
他の芳香族アミノ酸水酸化酵素の補酵素でもあ
る。それ故その欠乏は神経伝達物質であるセロト
ニン、ドーパミン、ノルアドレナリン、アドレナ
リンなどを欠乏させ、重篤な神経症状を発症させ
る。また、先天性代謝異状状症の一くである悪性
高フエニルアラニン血症は既存の薬物療法では容
易には治療できない難病であるが、これは6−
(R)BPH4の欠乏によりフエニルアラニンのチ
ロジンへの変換が阻害されるために起ることが知
られている。 悪性高フエニルアラニン血症の治療に6−(R)
−BPH4の投与が考えられるが、そのためには本
品を高純度に経済的に量産する方法の開発が望ま
れている。 また、6−(R)−BPH4は生化学研究上の試薬
として有用である。 一方、BPH4を合成するためにはL−エリスロ
ーバイオプテリン(以下L−BPと略称)が重要
な中間体となる。 従来、L−BPの製造法としては、Patterson,
E.L.ら〔J.Am.Chem・Soc.,78,5868(1956)〕、
Taylor,E.C.ら〔同誌、98,2301(1976)〕、
Andrews,K.J.M.ら(J.Chem.Soc(C).,1969
928)、Viscontini,M.ら〔Helv.Chim.Acta,
52,1225(1969)〕などの報告があるが、収率、純
度および精製法などに多くの問題がある。 また、松浦ら〔Brll.Chim.Soc.Jap.,52,181
(1979)〕は収率28%でL−Bpを得ているが、反
応処理の煩雑さ、副生物の混入など多くの問題が
未解決である。 本発明者らは先ずL−BPの製造について研究
を重ね、簡単な操作で大量のL−BPを得ること
に成功した。 松浦らは5−デオキシ−L−アラビノースのフ
エニルヒドラゾンをトリアミノピリミジノールと
縮合させた縮合体をフエリシアン化カリ、ヨー化
カリ、過酸化水素水および酸素を用いて酸化し、
生成物をアンモニア水で抽出し、フロリジルカラ
ムにより精製している。この場合、溶出に大量の
水を必要とするばかりでなく、L−BPの直後に
副生物のプリテンが溶出されるため純粋なL−
BPを完全に取り出すことが困難である。 本発明者らは上記の縮合体をヨー素、過酸化水
素水および酸素で酸化したのち、有機溶媒でヨー
素を除去すれば容易に粗結晶としてL−BPが得
られることを見出した。この粗結晶をアセチル化
し、シリカゲルカラムクロマトグラフイを行つて
トリアセチルバイオプリテンを得、これを加水分
解して高収率でL−BPを得ることができた。 また、6−(RまたはS)−BPH4の合成法とし
てSiscontini,M.ら〔Helv.Chim.Acta,622577
(1979)〕はトリアセチル−L−BPを還元したの
ち、アセチル化して2−N−アセチル−5−N−
アセチル−1′,2′−ジ−O−アセチル−5,6,
7,8−テトラヒドロ−L−エリスローバイオプ
テリン(以下テトラアセチル体と略称)を得、こ
れを光学分割、加水分解して目的物を得ている。
しかしながらテトラアセチル体は非常に酸素に敏
感で、通常の再結晶法による光学分割は困難であ
り、光学純度の高い目的物を得るには非常な努力
を要する。 本発明者らは、トリアセチル−L−BPを還元
したのち、無水酢酸と加熱することにより2−N
−アセチル−5,8−ジ−N−アセチル−1′,
2′−ジ−O−アセチル−5,6,7,8−テトラ
ヒドロ−L−エリスローバイオプテリン(以下ペ
ンタアセチルと略称)が得られ、この化合物は安
定で、シリカゲルカラムを用いるクロマトグラフ
イにより容易に光学異性体(RおよびS)を分離
できることを知つた。 すなわち、()2−N−アセチル−1′,2′−
ジ−O−アセチル−L−エリスローバイオプテリ
ン〔トリアセチル−L−BP〕を接触還元したの
ちアセチル化して2−N−アセチル−5,8−ジ
−N−アセチル−1′,2′−ジ−O−アセチル−
5,6,7,8−テトラヒドロ−L−エリスロ−
バイオプテリン〔ペンタアセチル〕を生成させ、
次いでこれを光学分割したのち加水分解すればテ
トラヒドロ−L−エリスローバイオプテリン
〔BPH4〕が得られ()2,5,6−トリアミ
ノ−4−ピリミジノールに5−デオキシアラビノ
ースのヒドラゾンを作用させたのちヨウ素、過酸
化水素水および酸素を作用させてL−エリスロー
バイオプテリン〔L−BP〕を得、これをアセチ
ル化して得られる2−N−アセチル−1′,2′−ジ
−O−アセチル−L−エリスローバイオプテリン
〔トリアセチル−L−BP〕を接触還元したのちさ
らにアセチル化して2−N−アセチル5,8−ジ
−N−アセチル−1′,2′−ジ−O−アセチル−
5,6,7,8−テトラヒドロ−L−エリスロー
バイオプテリン〔ペンタアセチル〕を生成させ、
次いでこれを光学分割したのち加水分解すればテ
トラヒドロ−L−エリスローバイオプテリン
〔BPH4〕が得られる。 本発明の方法()の反応工程は次のように示
されうる。 上記の方法()の反応工程の後半は()と
同様であるが前半は次のように示されうる。 上記のトリアセチル−L−BPを接触還元およ
びアセチル化すればペンタアセチルが得られる。 接触還元はトリフルオロ酢酸のような溶媒中で
常法により行いうる。触媒としては酸化白金、ロ
ジウム、パラジウムなどが挙げられるが、好まし
いのは酸化白金である。次いで、得られた還元成
績体をアセチル化する。この反応は究極アセチル
化で、そのために無水酢酸のようなアセチル化剤
を加熱下に作用させるのがよい。 かくして得られたペンタアセチルを6−(R)
体と6−(S)体に光学分割する。この分割は、
たとえばシリカゲルカラムクロマトグラフイによ
り行うことができる。 次いで各光学異性体を加水分解する。この反応
は塩酸のような鉱酸の存在下に緩和な条件で進行
させるのが望ましい。 かくして6−(R)BPH4および6−(S)
BPH4を得ることができる。 本発明によれば、トリアセチルL−BPを得る
ために、先ず2,5,6−トリアミノ−4−ピリ
ミジノールに5−デオキシ−L−アラビノースヒ
ドラゾンを作用させ、生成する中間体をヨウ素、
過酸化水素および酸素で酸化する。 5−デオキシ−L−アラビノースヒドラゾンは
公知の方法により5−デオキシ−L−アラビノー
スをフエニルヒドラジンのような芳香族ヒドラジ
ンと作用させることにより得られる。 酸化反応はヨウ素、過酸化水素水を加えた中間
体の溶液に酸素を通導して行われうる。 反応混合物から減圧下に溶媒を留去し、残留物
をアセトン、メタノールのような有機溶媒で洗浄
してヨウ素を除去し、たとえばアンモニア水で抽
出、濃縮すれば高収率でL−BPの粗結晶が得ら
れる。この粗結晶は精製することなく直ちにアセ
チル化することができる。このアセチル化は、た
とえば無水酢酸−酢酸を用いて行うことができ
る。反応生成物は、次いで、シリカゲル等を担体
とするカラムクロマトグラフイにより容易に精製
することができる。 かくしてトリアセチル−L−BPを収率よく製
造することができる。 次に実施例を示すが本発明がこれらの例に限定
されないことはいうまでもない。 実施例 L−エリスロ−バイオプテリンの製造 13.6g(0.089モル)の5−デオキシ−L−ア
ラビノース1水和物を30mlのエタノールにとか
し、3滴の酢酸を加える。10.3g(0.107モル)
のフエニルヒドラジンを5mlのエタノールにとか
し加える。数分後反応物は固化する。反応物は30
分室温に放置し、ここに150mlのメタノールを加
え、撹拌しながら固化物を溶解する。次に450ml
の水、300mlのメタノールに11.5g(0.054モル)
の2,5,6−トリアミノピリミジノール・2塩
酸塩をとかした溶液に生成したヒドラゾン溶液を
一度に加え、チツ素気流下40分間加熱還流する。
加熱することにより溶液は濃赤色になる。加熱後
氷水を用い冷却する。 一方22.9g(0.09モル)ヨウ素、40ml30%過酸
化水素水、15ml98%ギ酸、400mlメタノールの混
合液を0゜〜5℃に保つ。この酸化剤の溶液に酸素
ガスを吹き込みながら上記縮合反応物の溶液を加
え、30分間0゜〜5℃に保ちながら激しく撹拌す
る。さらに3時間室温で反応を行ない完結させ
る。 反応終了後、減圧下濃縮乾固により得られた固
体を300mlアセトン、200mlメタノールで洗いヨウ
素等を除き、1000mlの2%アンモニア水を用い
BPを抽出する。抽出液をつづいて1/4に濃縮する
と沈澱物が生じてくる。生じた沈澱物を取し、
50mlの水で2回、100mlのメタノールで3回洗い
乾燥すると、48g(37%)の粗結晶が得られる。 この粗結晶は高速液体クロマト*により96%L
−BP含有と同定された。 (*ワツトマン社製(Whatman社製)Partisil−
10scxカラム12.5mM PH3.3酢酸−アンモニアバ
ツフアーの溶出溶媒を用いた。) 上記の粗結晶4.8gを750ml無水酢酸、200ml酢
酸にとかし4時間加熱還流する。減圧下濃縮乾固
後カラムクロマトにより精製する。カラムクロマ
トは350gのシリカゲル(メルク社Kieselgel60)
を用い、溶出溶媒として5%メタノール塩化メチ
レンで溶出すると6.86g(0.019モル)のトリア
セチル−L−バイオプテリンが油状物として得ら
れる(収率35%)。 このトリアセチル−L−バイオプテリンは文献
記載の物理定数と一致する。 トリアセチル−L−バイオプテリン6.86gを
3N−HCl550mlに溶解し、50℃1時間加熱するこ
とにより定量的に加水分解される。減圧下水を除
去し、残渣を2%アンモニア水で抽出、20%酢酸
−水から再結晶を行なうと4.40g(0.019モル)
の純粋な結晶が得られた。収率34%。 得られたL−エリスローバイオプテリンは
NMRスペクトル、IRスペクトル、UVスペクト
ル、〔α〕D等で文献記載(松浦らBull.Chim.Soc.
Jap.,52,181(1979)のL−エリスローバイオプ
テリンと完全に一致した。 参考例 5,6,7,8−テトラヒドロ−L−エリスロ
ーバイオプテリンの製造 360mgの酸化白金を20mlのトリフルオロ酢酸に
懸濁して水素雰囲気気下活性化する。一方1.20g
(3.31mモル)の2−N−アセチル−1′,2′−ジ−
O−アセチルバイオプテリン(文献既知)
〔Furrer,H.J.らHeLv.Chim.Acta,62.2577
(1979)〕を40mlのトリフルオロ酢酸に溶解した溶
液を作り、水素ガス雰囲気下、激しく撹拌しなが
ら還元を行なう。反応終了後、触媒はアルゴン気
流下減圧過により除去し、溶媒を濃縮乾固す
る。 残渣をアルゴン雰囲気下2.0mlの濃塩酸と処理
し、次いで冷やした24mlメタノール(無酸素)、
冷却した無酸素エーテル250mlを加えると無色沈
澱が生じる。沈澱物を遠心分離により集め、残つ
ている溶媒は減圧下取り除く。 沈澱物をアルゴン気流下40mlの無水酢酸に溶解
し、あらかじめ120℃に加熱しておいた油浴中で
1時間加熱する。溶媒を減圧下留去すると1.42g
の残渣が得られる。 分離、精製は140gのシリカゲル(メルク社製
Kieselgel60)を用い、カラムクロマトにより分
離する。溶出溶媒は塩化メチレン−メタノール
(95:5)を用い注意深くカラムクロマトを行な
うことにより目的とする6−(R)ペンタアセチ
ル体〔6−(R)−2−N−アセチル−5,8−ジ
−N−アセチル−1′,2′−ジ−O−アセチル−
5,6,7,8−テトラヒドロ−バイオプテリ
ン〕が597mg(1.32mモル、収率40%)得られる。
この時光学異性体6−(S)ペンタアセチル体は
329mg(0.73mモル、収率22%)得られる。 6−(R)−ペンタアセチル体の物理定数 UVスペクトル:(λEtOH/max)237nm(ξ= 23000)、 267nm(ξ=8200)、 312nm(ξ=11000) IRスペクトル:(cm-1、in CHCl3)1200、
1220、1615、1670、3000 1H−NMRスペクトル:(δppm in D6
DMSO) 1.20(d,3H,J=6Hz,3′−CH3) 1.85(s,3H 2′−OCOCH3) 2.05(s,3H 1′−OCOCH3) 2.07(s,3H 5−NCOCH3) 2.25(s,3H 2−NCOCH3) 2.26(s,3H 8−NCOCH3) 3.00〜3.62(m,2H, H−7) 3.95(m,1H, H−6) 4.44〜5.04(m,2H、H−1′,H−2′) 11.48〜11.58(br,1H,3−NH) 12.00(br,1H,2−NH) Massスペクトル:(m/z) 451(M+) 409(M+−COCH2) 367(M+−2(COCH2)) 278、250、236、208、 6−(S)−ペンタアセチル体の物理定数 UVスペクトル:(λEtOH/max)237nm(ξ= 18200) 267nm(ξ=5800) 310nm(ξ=8200) IRスペクトル:(cm-1in CHCl3)1200、1220、
1610、1670、3000 1H−NMRスペクトル:(δppm in D6
DMSO) 1.16(d,3H,J=6Hz 3′−CH3) 1.89(s,3H 2′−OCOCH3) 1.91(s,3H 1′−OCOCH3) 2.03(s,3H 5−NCOCH3) 2.22(s,3H 2−NCOCH3) 2.25(s,3H 8−NCOCH3) 3.10〜3.64(m,2H, H−7) 4.02(m,1H, 6−H) 4.60〜5.27(m,2H, H−1′,H−2′) 11.55(br,1H, 3−NH) 11.98(br,1H, 2−NH) Massスペクトル:(m/z) 451(M+) 409(M+−COCH2) 367(M+−2(COCH2)) 293、250、208、 6−(R)−ペンタアセチル体597mgを600mlの
3N−HClに溶解しアルゴン雰囲気下4日間室温
(22℃)に放置後、凍結乾燥すると目的とした6
−(R)BPH4〔6−(R)−5,6,7,8−テト
ラヒドロ−L−エリスローバイオプテリン〕・2
塩酸塩が定量的に得られる。収量319mg(1.32m
モル)、収率40%)。 得られた6−(R)−BPH4は文献(Furrer,H.
J.らHelv.Chim.Acta,62,2577(1979)記載の
1H−NMR、 13C−NMR、〔α〕Dと完全に一致し
た。 同様に6−(R)−ペンタアセチル体からも定量
的に6−(S)−BPH4・2塩酸塩が収率22%
(176mg、0.73モル)で得られ、物理データは文献
値、Furrer、H.J.らHelv.Chim.Acta,62,2577
(1979)と一致した。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides 5,6,7,8-tetrahydro-L-
Erythro biopterin (hereinafter abbreviated as BPH 4 )
The present invention relates to a method for producing L-erythro-biopterin, which is an intermediate for. BPH 4 is 6-(R) due to the configuration of hydrogen at the 6-position
and the 6-(S) isomer are known [Furrer, HJ et al., Helv.chim.Acta, 62 2577
(1979)]. Above all, 6-(R)BPH 4 is a coenzyme of phenylalanine hydroxylase, and at the same time,
It is also a coenzyme for other aromatic amino acid hydroxylases. Therefore, its deficiency leads to a deficiency of neurotransmitters such as serotonin, dopamine, noradrenaline, and adrenaline, leading to the development of serious neurological symptoms. In addition, malignant hyperphenylalaninemia, which is a type of congenital metabolic disorder, is an incurable disease that cannot be easily treated with existing drug therapy.
It is known that this occurs because the conversion of phenylalanine to tyrosine is inhibited by a deficiency of (R)BPH 4 . 6-(R) for the treatment of malignant hyperphenylalaninemia
-Administration of BPH 4 is considered, but for this purpose, it is desired to develop a method to economically mass-produce this product with high purity. In addition, 6-(R)-BPH 4 is useful as a reagent in biochemical research. On the other hand, in order to synthesize BPH 4 , L-erythrobiopterin (hereinafter abbreviated as L-BP) is an important intermediate. Conventionally, methods for producing L-BP include Patterson,
EL et al. [J.Am.Chem.Soc., 78 , 5868 (1956)],
Taylor, EC et al. [Id., 98 , 2301 (1976)],
Andrews, KJM et al. (J.Chem.Soc(C)., 1969 ,
928), Viscontini, M. et al. [Helv.Chim.Acta,
52, 1225 (1969)], but there are many problems with yield, purity, purification method, etc. Also, Matsuura et al. [Brll.Chim.Soc.Jap., 52 , 181
(1979)] obtained L-Bp with a yield of 28%, but many problems such as the complexity of the reaction treatment and the contamination of by-products remain unsolved. The present inventors first conducted extensive research on the production of L-BP and succeeded in obtaining a large amount of L-BP through simple operations. Matsuura et al. oxidized a condensate of 5-deoxy-L-arabinose phenylhydrazone with triaminopyrimidinol using potassium ferricyanide, potassium iodide, hydrogen peroxide, and oxygen.
The product was extracted with aqueous ammonia and purified using a Florisil column. In this case, not only a large amount of water is required for elution, but also pure L-BP because the by-product pretene is eluted immediately after L-BP.
It is difficult to completely remove the BP. The present inventors have discovered that L-BP can be easily obtained as crude crystals by oxidizing the above condensate with iodine, hydrogen peroxide and oxygen and then removing iodine with an organic solvent. The crude crystals were acetylated and subjected to silica gel column chromatography to obtain triacetyl biopretene, which was then hydrolyzed to yield L-BP in high yield. Also, as a method for synthesizing 6-(R or S)-BPH 4 , Siscontini, M. et al. [Helv.Chim.Acta, 62 2577
(1979)] reduced triacetyl-L-BP and then acetylated it to 2-N-acetyl-5-N-
Acetyl-1',2'-di-O-acetyl-5,6,
7,8-Tetrahydro-L-erythrobiopterin (hereinafter abbreviated as tetraacetyl form) was obtained, and the target product was obtained by optical resolution and hydrolysis.
However, the tetraacetyl compound is extremely sensitive to oxygen, making it difficult to optically resolve it by ordinary recrystallization methods, and it requires great efforts to obtain the target product with high optical purity. The present inventors reduced triacetyl-L-BP and then heated it with acetic anhydride to reduce 2-N.
-acetyl-5,8-di-N-acetyl-1',
2'-di-O-acetyl-5,6,7,8-tetrahydro-L-erythrobiopterin (hereinafter abbreviated as pentaacetyl) was obtained, and this compound was stable and was purified by chromatography using a silica gel column. I learned that optical isomers (R and S) can be easily separated. That is, ()2-N-acetyl-1',2'-
Di-O-acetyl-L-erythrobiopterin [triacetyl-L-BP] was catalytically reduced and then acetylated to give 2-N-acetyl-5,8-di-N-acetyl-1',2'- di-O-acetyl-
5,6,7,8-tetrahydro-L-erythro-
Generates biopterin [pentaacetyl],
Next, this was optically resolved and then hydrolyzed to obtain tetrahydro-L-erythrobiopterin [ BPH4 ] (2,5,6-triamino-4-pyrimidinol was reacted with hydrazone of 5-deoxyarabinose). Thereafter, iodine, hydrogen peroxide solution and oxygen were reacted to obtain L-erythrobiopterin [L-BP], which was then acetylated to obtain 2-N-acetyl-1',2'-di-O- After catalytic reduction of acetyl-L-erythrobiopterin [triacetyl-L-BP], it was further acetylated to produce 2-N-acetyl-5,8-di-N-acetyl-1',2'-di-O- Acetyl-
producing 5,6,7,8-tetrahydro-L-erythrobiopterin [pentaacetyl],
Next, this is optically resolved and then hydrolyzed to obtain tetrahydro-L-erythrobiopterin [BPH 4 ]. The reaction steps of the method () of the present invention can be shown as follows. The second half of the reaction step in the above method () is similar to (), but the first half can be expressed as follows. Pentaacetyl is obtained by catalytic reduction and acetylation of the above triacetyl-L-BP. Catalytic reduction can be carried out in a conventional manner in a solvent such as trifluoroacetic acid. Examples of the catalyst include platinum oxide, rhodium, palladium, etc., but platinum oxide is preferred. Next, the obtained reduced product is acetylated. This reaction is the ultimate acetylation, and for this purpose it is best to use an acetylating agent such as acetic anhydride under heat. The thus obtained pentaacetyl is converted into 6-(R)
and 6-(S) body. This division is
For example, it can be carried out by silica gel column chromatography. Each optical isomer is then hydrolyzed. This reaction is preferably carried out under mild conditions in the presence of a mineral acid such as hydrochloric acid. Thus 6-(R)BPH 4 and 6-(S)
You can get BPH 4 . According to the present invention, in order to obtain triacetyl L-BP, 2,5,6-triamino-4-pyrimidinol is first reacted with 5-deoxy-L-arabinose hydrazone, and the resulting intermediate is treated with iodine,
Oxidizes with hydrogen peroxide and oxygen. 5-deoxy-L-arabinose hydrazone can be obtained by reacting 5-deoxy-L-arabinose with an aromatic hydrazine such as phenylhydrazine by known methods. The oxidation reaction can be carried out by passing oxygen through a solution of the intermediate to which iodine and hydrogen peroxide are added. The solvent is distilled off from the reaction mixture under reduced pressure, the residue is washed with an organic solvent such as acetone or methanol to remove iodine, extracted with aqueous ammonia, and concentrated to obtain crude L-BP in high yield. Crystals are obtained. This crude crystal can be immediately acetylated without purification. This acetylation can be carried out using, for example, acetic anhydride-acetic acid. The reaction product can then be easily purified by column chromatography using silica gel or the like as a carrier. In this way, triacetyl-L-BP can be produced with good yield. Examples will be shown next, but it goes without saying that the present invention is not limited to these examples. EXAMPLE Preparation of L-erythro-biopterin 13.6 g (0.089 mol) of 5-deoxy-L-arabinose monohydrate are dissolved in 30 ml of ethanol and 3 drops of acetic acid are added. 10.3g (0.107mol)
Dissolve phenylhydrazine in 5 ml of ethanol and add. After a few minutes the reaction solidifies. Reactants are 30
Leave at room temperature for a minute, then add 150 ml of methanol to dissolve the solidified material while stirring. Next 450ml
of water, 11.5 g (0.054 mol) in 300 ml of methanol
The resulting hydrazone solution was added all at once to a solution of 2,5,6-triaminopyrimidinol dihydrochloride, and heated under reflux for 40 minutes under a nitrogen stream.
Upon heating, the solution turns deep red. After heating, cool using ice water. On the other hand, a mixed solution of 22.9g (0.09mol) iodine, 40ml 30% hydrogen peroxide, 15ml 98% formic acid, and 400ml methanol was maintained at 0° to 5°C. The solution of the condensation reaction product was added to the oxidizing agent solution while blowing oxygen gas, and the solution was vigorously stirred while maintaining the temperature at 0° to 5° C. for 30 minutes. The reaction is further carried out at room temperature for 3 hours to complete the reaction. After the reaction, the solid obtained by concentration to dryness under reduced pressure was washed with 300 ml of acetone and 200 ml of methanol to remove iodine, etc., and 1000 ml of 2% ammonia water was used.
Extract BP. When the extract is subsequently concentrated to 1/4, a precipitate forms. Remove the resulting precipitate,
After washing twice with 50 ml of water and three times with 100 ml of methanol and drying, 48 g (37%) of crude crystals are obtained. This crude crystal was 96%L by high performance liquid chromatography * .
-Identified as containing BP. (*Manufactured by Whatman) Partisil-
A 10scx column with an elution solvent of 12.5mM PH3.3 acetic acid-ammonia buffer was used. ) Dissolve 4.8 g of the above crude crystals in 750 ml acetic anhydride and 200 ml acetic acid, and heat under reflux for 4 hours. After concentrating to dryness under reduced pressure, it is purified by column chromatography. Column chromatography uses 350 g of silica gel (Merck Kieselgel 60)
Using 5% methanol and methylene chloride as the elution solvent, 6.86 g (0.019 mol) of triacetyl-L-biopterin was obtained as an oil (yield 35%). This triacetyl-L-biopterin corresponds to the physical constants described in the literature. 6.86g of triacetyl-L-biopterin
It is quantitatively hydrolyzed by dissolving it in 550ml of 3N-HCl and heating it at 50°C for 1 hour. After removing the sewage water under reduced pressure, the residue was extracted with 2% aqueous ammonia and recrystallized from 20% acetic acid-water to give 4.40 g (0.019 mol).
Pure crystals were obtained. Yield 34%. The obtained L-erythro biopterin is
NMR spectrum, IR spectrum, UV spectrum, [α] D , etc. are described in literature (Matsuura et al. Bull.Chim.Soc.
Jap., 52 , 181 (1979). Reference Example 5, Production of 6,7,8-tetrahydro-L-erythrobiopterin 360 mg of platinum oxide is suspended in 20 ml of trifluoroacetic acid and activated under a hydrogen atmosphere. On the other hand, 1.20g
(3.31 mmol) of 2-N-acetyl-1',2'-di-
O-acetylbiopterin (known in literature)
[Furrer, HJ et al. HeLv.Chim.Acta, 62 . 2577
(1979)] in 40 ml of trifluoroacetic acid, and the reduction was carried out under a hydrogen gas atmosphere with vigorous stirring. After the reaction is complete, the catalyst is removed by filtration under reduced pressure under an argon stream, and the solvent is concentrated to dryness. The residue was treated with 2.0 ml of concentrated hydrochloric acid under an argon atmosphere, followed by 24 ml of chilled methanol (oxygen-free),
Addition of 250 ml of chilled oxygen-free ether produces a colorless precipitate. The precipitate is collected by centrifugation and the remaining solvent is removed under reduced pressure. The precipitate was dissolved in 40 ml of acetic anhydride under a stream of argon and heated for 1 hour in an oil bath preheated to 120°C. When the solvent was distilled off under reduced pressure, 1.42g
A residue is obtained. Separation and purification were performed using 140 g of silica gel (manufactured by Merck & Co., Ltd.).
Separate by column chromatography using Kieselgel60). The desired 6-(R) pentaacetyl compound [6-(R)-2-N-acetyl-5,8-dimethyl] was obtained by carefully performing column chromatography using methylene chloride-methanol (95:5) as the elution solvent. -N-acetyl-1',2'-di-O-acetyl-
5,6,7,8-tetrahydro-biopterin] was obtained in an amount of 597 mg (1.32 mmol, yield 40%).
At this time, the optical isomer 6-(S) pentaacetyl body is
329 mg (0.73 mmol, yield 22%) is obtained. Physical constants of 6-(R)-pentaacetyl compound UV spectrum: (λEtOH/max) 237 nm (ξ = 23000), 267 nm (ξ = 8200), 312 nm (ξ = 11000) IR spectrum: (cm -1 , in CHCl 3 ) 1200,
1220, 1615, 1670, 3000 1 H-NMR spectrum: (δppm in D 6
DMSO) 1.20 (d, 3H, J=6Hz, 3'-CH 3 ) 1.85 (s, 3H 2'-OCOCH 3 ) 2.05 (s, 3H 1'-OCOCH 3 ) 2.07 (s, 3H 5-NCOCH 3 ) 2.25 (s, 3H 2-NCOCH 3 ) 2.26 (s, 3H 8-NCOCH 3 ) 3.00~3.62 (m, 2H, H-7) 3.95 (m, 1H, H-6) 4.44~5.04 (m, 2H, H-1', H-2') 11.48-11.58 (br, 1H, 3-NH) 12.00 (br, 1H, 2-NH) Mass spectrum: (m/z) 451 (M + ) 409 (M + - COCH 2 ) 367 (M + -2 (COCH 2 )) 278, 250, 236, 208, Physical constants of 6-(S)-pentaacetyl compound UV spectrum: (λEtOH/max) 237 nm (ξ = 18200) 267 nm ( ξ=5800) 310nm (ξ=8200) IR spectrum: (cm -1 in CHCl 3 ) 1200, 1220,
1610, 1670, 3000 1 H-NMR spectrum: (δppm in D 6
DMSO) 1.16 (d, 3H, J=6Hz 3'-CH 3 ) 1.89 (s, 3H 2'-OCOCH 3 ) 1.91 (s, 3H 1'-OCOCH 3 ) 2.03 (s, 3H 5-NCOCH 3 ) 2.22 (s, 3H 2-NCOCH 3 ) 2.25 (s, 3H 8-NCOCH 3 ) 3.10~3.64 (m, 2H, H-7) 4.02 (m, 1H, 6-H) 4.60~5.27 (m, 2H, H -1', H-2') 11.55 (br, 1H, 3-NH) 11.98 (br, 1H, 2-NH) Mass spectrum: (m/z) 451 (M + ) 409 (M + -COCH 2 ) 367 (M + -2 (COCH 2 )) 293, 250, 208, 597 mg of 6-(R)-pentaacetyl compound in 600 ml
The desired 6
-(R)BPH 4 [6-(R)-5,6,7,8-tetrahydro-L-erythrobiopterin]・2
Hydrochloride is obtained quantitatively. Yield 319mg (1.32m
mole), yield 40%). The obtained 6-(R)-BPH 4 is described in the literature (Furrer, H.
J. et al. Helv. Chim. Acta, 62 , 2577 (1979)
1 H-NMR, 13 C-NMR, and [α] D were completely consistent. Similarly, 6-(S)-BPH 4.2 hydrochloride was quantitatively obtained from 6-(R)-pentaacetyl form in a yield of 22%.
(176 mg, 0.73 mol), physical data are literature values, Furrer, HJ et al. Helv.Chim.Acta, 62 , 2577
(1979).

Claims (1)

【特許請求の範囲】 1 2,5,6−トリアミノ−4−ピリミジノー
ルに5−デオキシアラビノースのヒドラゾンを作
用させたのち、ヨウ素、過酸化水素水および酸素
を作用させることを特徴とするL−エリスロ−バ
イオプテリンの製造法。 2 ヨウ素、過酸化水素水および酸素を作用させ
た反応混合物を濃縮乾固し、次いで有機溶媒で洗
浄してヨウ素を除去することを特徴とする特許請
求の範囲第1項記載の製造法。 3 有機溶媒がアセトンおよび/またはメタノー
ルである特許請求の範囲第2項記載の製造法。
[Claims] 1. L-erythro, which is characterized in that 2,5,6-triamino-4-pyrimidinol is reacted with hydrazone of 5-deoxyarabinose, and then iodine, hydrogen peroxide and oxygen are reacted. - Method for producing biopterin. 2. The production method according to claim 1, characterized in that the reaction mixture in which iodine, hydrogen peroxide and oxygen are reacted is concentrated to dryness and then washed with an organic solvent to remove iodine. 3. The production method according to claim 2, wherein the organic solvent is acetone and/or methanol.
JP13279382A 1982-07-28 1982-07-28 Preparation of tetrahydro-l-biopterin Granted JPS5921685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13279382A JPS5921685A (en) 1982-07-28 1982-07-28 Preparation of tetrahydro-l-biopterin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13279382A JPS5921685A (en) 1982-07-28 1982-07-28 Preparation of tetrahydro-l-biopterin

Publications (2)

Publication Number Publication Date
JPS5921685A JPS5921685A (en) 1984-02-03
JPH0332553B2 true JPH0332553B2 (en) 1991-05-13

Family

ID=15089681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13279382A Granted JPS5921685A (en) 1982-07-28 1982-07-28 Preparation of tetrahydro-l-biopterin

Country Status (1)

Country Link
JP (1) JPS5921685A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3853711T2 (en) * 1987-11-30 1996-01-11 Vitamin Kenkyusho Kk Intermediates for the synthesis of 5,6,7,8-tetrahydro-L-erythro-biopterin and its derivatives.
EP1708690B1 (en) 2003-11-17 2016-07-20 BioMarin Pharmaceutical Inc. Treatment of phenylketonuria with bh4
CN101132776A (en) 2004-11-17 2008-02-27 生物马林药物股份有限公司 Stable tablet formulation of tetrahydrobiopterin
HUE058030T2 (en) 2007-04-11 2022-06-28 Biomarin Pharm Inc Methods of administering tetrahydrobiopterin, associated compositions, and methods of measuring

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HELV CHIM *

Also Published As

Publication number Publication date
JPS5921685A (en) 1984-02-03

Similar Documents

Publication Publication Date Title
US5037981A (en) Intermediates for synthesizing BH4 and its derivatives
JP2008525312A (en) Method for producing L-biopterin
JP2843592B2 (en) L-ribose derivative
JPH0332553B2 (en)
JPS60248637A (en) Manufacture of scylloinositol
JPS60181056A (en) Preparation of n-(4-(3-aminopropylaminobutyl)-2,2- dihydroxyethanamide
JP2002517399A (en) Novel vinca alkaloid derivative and method for its preparation
JP2711828B2 (en) Method for producing (6R) -tetrahydro-L-biopterin hydrochloride
JP2567639B2 (en) Pteridine derivative
JP2567638B2 (en) Tetrahydropteridine derivative
JP2611790B2 (en) Tetrahydrofuranyl pyrimidine derivative
JPH0586393B2 (en)
JP2567637B2 (en) Dihydropteridine derivative
JP2674707B2 (en) L-Biopterin manufacturing method
JPS60239496A (en) Preparation of n6-substituted-adenosine-3',5'-cyclic phosphate and salt thereof
EP0052959B1 (en) Production of purine derivatives and intermediates therefor
CN114394908B (en) Method for preparing 2-hydroxy-3-aminoacetophenone
JPH0413357B2 (en)
JPH0692916A (en) Production of 3'-amino-2'-hydroxyacetophenone
JPS582958B2 (en) Novel pyridoxamine compound and method for producing the same
CN118516426A (en) Method for preparing chiral intermediate of kinase inhibitor by enzymatic method
JPH11310558A (en) Production of 2-amino-4,5,3',4'-tetramethoxybenzophenone
JPH07223992A (en) Production of 2-methyl-1,4-naphthoquinone
JPS5832867A (en) Novel arylazopyrimidine compound
JPS5967252A (en) Preparation of optically active beta-aminoisobutyric acid and its derivative