JPS61100418A - Hold - Google Patents

Hold

Info

Publication number
JPS61100418A
JPS61100418A JP22345684A JP22345684A JPS61100418A JP S61100418 A JPS61100418 A JP S61100418A JP 22345684 A JP22345684 A JP 22345684A JP 22345684 A JP22345684 A JP 22345684A JP S61100418 A JPS61100418 A JP S61100418A
Authority
JP
Japan
Prior art keywords
fluid
mold
mold body
resin
outer frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22345684A
Other languages
Japanese (ja)
Other versions
JPH0214182B2 (en
Inventor
Katsuhiko Shimazaki
嶋崎 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Shatai Co Ltd
Original Assignee
Nissan Shatai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Shatai Co Ltd filed Critical Nissan Shatai Co Ltd
Priority to JP22345684A priority Critical patent/JPS61100418A/en
Publication of JPS61100418A publication Critical patent/JPS61100418A/en
Publication of JPH0214182B2 publication Critical patent/JPH0214182B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds

Abstract

PURPOSE:To shorten a period of time during which a resin sheet is made to cool and cure by making a temperature control fluid discharge through an outer frame, by a method wherein the temperature control fluid is made to lead to a mold body through a fine hole from an outer frame and a fluid inflow path and fluid discharge path are provided on the external frame. CONSTITUTION:When a molding process terminates, a timer 17 is operated, operation of a vacuum pump 6 is stopped, a compressor 10 is operated, solenoid valves 11, 15 are opened, cooling air is streamed into a fine hole of a mold body 1 which is in lower negative pressure than a fluid inflow path 8, which arrives at a fluid discharge path 13 by transmitting the fine hole and discharged outside of an external frame 3. At that time, the air transmitting in the vicinity of a mold surface 2 cools a molded article S by depriving the molded article of its heat and the molded article S is made to cure. As a temperature control fluids such as a cooling fluid and heat retaining fluid arrive at a mold surface through the fine hole of the mold body like this and resin can be cooled after the resin has been cooled or the heat of the resin has been retained, curing period of time of the resin is shortened and productivity is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多孔性のセラミックスを用いたブロー成形や
圧空成形、真空圧空成形に使用される成形型に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a mold used in blow molding, pressure forming, and vacuum pressure forming using porous ceramics.

(従来の技術) 従来の多孔性のセラミックスを用いた成形型としては1
例えば、第4図に示すようなものが知られている。
(Conventional technology) As a mold using conventional porous ceramics, 1
For example, the one shown in FIG. 4 is known.

この成形型は、多孔性セラミックスにより形成され、成
形型面100を有し、内部に冷却水管101が設けられ
た型本体102と、該型本体lO2を被覆する外枠10
3と、前記外枠103に形成された真空吸出口l・04
と、該外枠103に形成され、前記冷却水管lO1に連
通ずる冷却水口105と、を備えたものであった。
This mold is made of porous ceramics, has a mold surface 100, has a mold body 102 in which a cooling water pipe 101 is provided, and an outer frame 10 that covers the mold body lO2.
3, and a vacuum outlet l.04 formed in the outer frame 103.
and a cooling water port 105 formed in the outer frame 103 and communicating with the cooling water pipe lO1.

従って、熱可塑性の軟化させた樹脂シートO5を成形型
面100の上に位置させ、上方から空気等により加圧し
樹脂シートO5を成形型面100に圧着させると共に、
型本体102の樹脂シートO5と外枠103との間に位
置される微小孔内の空気を真空吸出口104より吸出し
、樹脂シートO5を成形型面100に密着させ、その後
、冷却水管101に冷却水口105より冷却水を流し軟
化させた樹脂シー)O3を冷却硬化させて成形させるも
のであった。
Therefore, a softened thermoplastic resin sheet O5 is placed on the mold surface 100, and pressure is applied from above with air or the like to press the resin sheet O5 to the mold surface 100, and at the same time,
The air in the micropores located between the resin sheet O5 of the mold body 102 and the outer frame 103 is sucked out from the vacuum outlet 104, the resin sheet O5 is brought into close contact with the mold surface 100, and then cooled by the cooling water pipe 101. The resin sheet (O3), which had been softened by flowing cooling water through the water port 105, was cooled and hardened to be molded.

なお、冷却水管101と同様な構造で、ある定められた
温度範囲の温水を送って、成形面の仕上げ状態を光沢の
ある滑らかな鏡面状にすることもある。
In addition, it may have a structure similar to that of the cooling water pipe 101, and may send hot water within a certain temperature range to give the molded surface a glossy, smooth, mirror-like finish.

(発明が解決しようとする問題点) しかしながら、このような従来の成形型にあっては、型
本体が多孔性のセラミックスによって形成されているの
で、セラミックス自体の性質と、それに加えセラミック
スの微小孔内に存在する空気とのために、熱伝導率が悪
いもので、冷却水管に冷却水を流しても、樹脂シートに
冷却熱がなかなか伝わらず、樹脂シートが冷却硬化され
るのに時間がかかり成形時間が長くなってしまい生産性
に劣るという問題点があった。
(Problems to be Solved by the Invention) However, in such conventional molds, the mold body is made of porous ceramics, so the properties of the ceramics themselves and the micropores of the ceramics are affected. The heat conductivity is poor due to the air present inside the resin sheet, so even if cooling water is flowed through the cooling water pipe, the cooling heat is not easily transferred to the resin sheet, and it takes time for the resin sheet to cool and harden. There was a problem that the molding time became long and the productivity was poor.

また、型本体の内部に冷却水管等の冷却部材を埋め込む
ための手間を要するという問題点もあった。
Another problem was that it required time and effort to embed a cooling member such as a cooling water pipe inside the mold body.

なお、温水を送って成形面の仕上げを、鏡面状にする場
合でも、前記同様、温水の熱が伝わりにくいし、該成形
面仕上げの後、冷却するときも熱が逃げにくいという問
題点もあった。
Furthermore, even when hot water is sent to give the molded surface a mirror-like finish, there is the same problem that the heat of the hot water is difficult to transfer, and it is also difficult for the heat to escape when the molded surface is cooled after finishing the molded surface. Ta.

(問題点を解決するための手段) そこで、上述のような問題点を解決するために本発明は
、連通した微小孔を有する多孔性セラミックスにより形
成され、成形型面を有する型本体と、該型本体の前記成
形型面を除く外表面に被覆される外枠と、該外枠に開設
された真空吸出口と、を備えた成形型において、前記外
枠から微小孔を経過して型本体に温調流体を導かせると
共に、該温調流体を外枠から排出させるように前記外枠
に流体流入路及び流体排出路を設けたこととした。
(Means for Solving the Problems) Therefore, in order to solve the above-mentioned problems, the present invention provides a mold body made of porous ceramics having communicating micropores and having a mold surface; In a mold comprising an outer frame that covers the outer surface of the mold body except for the mold surface, and a vacuum outlet opened in the outer frame, the mold body passes through a microhole from the outer frame. The outer frame is provided with a fluid inlet passage and a fluid discharge passage so that the temperature regulating fluid is introduced into the outer frame and the temperature regulating fluid is discharged from the outer frame.

(作 用) 従って、成形の際には、外枠に形成した流体流入路より
温調流体(冷却するための冷たい流体またはある温度に
保つための加熱された流体)を次々に型本体の微小孔を
経過させて形成型部の付近に導き、成形型面に密着され
た軟化された樹脂1” シートを冷却または保温させ、その後、微小孔を経過し
て外枠の流体排出路より排出させ成形させることができ
る。
(Function) Therefore, during molding, the temperature control fluid (cold fluid for cooling or heated fluid for maintaining a certain temperature) is successively introduced into the mold body from the fluid inlet channel formed in the outer frame. The resin is introduced into the vicinity of the forming mold part through the holes, and the softened resin 1" sheet that is in close contact with the mold surface is cooled or kept warm, and then it is discharged through the micro holes through the fluid discharge path of the outer frame. It can be molded.

、 (実施例) 以下1本発明の実施例を一区画により詳述する。, (Example) Hereinafter, one embodiment of the present invention will be described in detail in one section.

まず、第1図に示す第1実施例についてその構成を説明
する。
First, the configuration of the first embodiment shown in FIG. 1 will be explained.

この実施例は本発明実施例の成形型を圧、空成形に用い
た例である。
This example is an example in which the mold of the present invention was used for pressure and air molding.

Aは本発明第1実施例の成形型である。A is a mold of the first embodiment of the present invention.

lは型本体であって、連通した微小孔を有する多孔性セ
ラミックスにより形成されたもので、この型本体lは四
角柱形をしており上面側には成形する型よりなる成形型
面2が形成されている。
1 is a mold body, which is made of porous ceramics having communicating micropores; this mold body 1 has a rectangular prism shape, and a mold surface 2 made of a mold to be molded is formed on the upper surface side. It is formed.

3は外枠であって、前記型本体lの外側面に被覆された
もので、この外枠3は金属性の箱型をしたもので、内側
面が型本体lの外側面と密接している。
Reference numeral 3 denotes an outer frame, which covers the outer surface of the mold body l. There is.

4は真空吸出口であって、前記外枠3の下面中央に開設
されたもので、この真空吸出口4は接続パイプ5によっ
てバキュームポンプ6に連通されており、該バキューム
ポンプ6を作動させるモータ7を駆動させると型本体l
の微小孔に存在する空気が、型本体lから真空吸出口4
を通ってバキュームポンプ6へ吸出されるものである。
Reference numeral 4 denotes a vacuum outlet, which is opened at the center of the lower surface of the outer frame 3. This vacuum outlet 4 is connected to a vacuum pump 6 through a connecting pipe 5, and a motor for operating the vacuum pump 6 is connected to the vacuum outlet 4. When 7 is driven, the mold body l
The air existing in the micropores of the mold body l flows through the vacuum suction port 4.
The water is sucked out through the vacuum pump 6.

8は流体流入路であって、前記外枠3に形成されたもの
で、接続パイプ9,9によって圧縮空気を送るコンプレ
ッサlOにソレノイドバルブ11を介して接続されてい
る。
Reference numeral 8 denotes a fluid inlet passage, which is formed in the outer frame 3 and is connected via a solenoid valve 11 to a compressor lO for supplying compressed air through connecting pipes 9, 9.

尚、12は前記コンプレッサlOを作動させるモータで
ある。
Note that 12 is a motor that operates the compressor IO.

この流体流入路8は、外枠3の左右2方向と上下3方向
との6方向に分岐されており、該流体流入路8より型本
体lへ流入した冷却空気は型本体lの微小孔を経過して
成形型面2付近も含めて型本体lを通過して行くもので
ある。
This fluid inflow path 8 is branched into six directions, two left and right directions and three up and down directions of the outer frame 3, and the cooling air that flows into the mold body l from the fluid inflow path 8 passes through the micropores of the mold body l. It then passes through the mold body l including the vicinity of the mold surface 2.

13は流体排出路であって、前記外枠3に形成されたも
ので、前記成形型面2の付近で温められた冷却空気を型
本体lの内部から外部へ排出するためのもので、接続パ
イプ14によりソレノイドバルブ15に接続されている
Reference numeral 13 denotes a fluid discharge passage, which is formed in the outer frame 3 and is for discharging cooling air warmed near the mold surface 2 from the inside of the mold body l to the outside. It is connected to a solenoid valve 15 by a pipe 14.

尚、この流体排出路13も前記流体流入路8と同様にし
て型本体1側が6本に分岐されている。
Note that this fluid discharge passage 13 is also branched into six lines on the mold body 1 side in the same manner as the fluid inflow passage 8.

また、16は前記型本体lの内部に設けられた導風板で
あって、前記流体流入路8から流体排出路13へ向かう
空気の流れの上部の流れを、矢印mで示すように上方へ
導き、樹脂シートよりなる成形品Sの端部まで冷却空気
を導き冷却硬化させるためのものである。
Reference numeral 16 denotes a baffle plate provided inside the mold body l, which directs the upper part of the air flow from the fluid inlet passage 8 to the fluid discharge passage 13 in an upward direction as shown by an arrow m. This is for guiding cooling air to the end of the molded product S made of a resin sheet to cool and harden it.

17はタイマーであって、前記バキュームポンプ6、コ
ンプレッサ10.の作動・停止及び両ソレノイドバルブ
11.15の開閉を時間経過によって切換るもので、前
記バキュームポンプ6の作動中はコンプレッサ10の作
動が停止されると共に1両ソレノイドバルブll、15
は閉じられており、かつ、前記バキュームポンプ6の作
動停止後にコンプレッサ10が作動されると共に、両ソ
レノイドバルブ11.15は開かれる。
17 is a timer, and the vacuum pump 6, compressor 10. The operation and stop of the solenoid valves 11 and 15 are switched over time, and while the vacuum pump 6 is in operation, the operation of the compressor 10 is stopped and the two solenoid valves 11 and 15 are stopped.
is closed, and when the compressor 10 is activated after the vacuum pump 6 is deactivated, both solenoid valves 11.15 are opened.

18は上縁部材であって、前記型本体1及び外枠3の上
端を覆うものでボルト19.19により外枠3に固定さ
れている。
An upper edge member 18 covers the upper ends of the mold body 1 and the outer frame 3, and is fixed to the outer frame 3 with bolts 19 and 19.

Pは抑圧部材であって、前記上縁部材18上にa置され
た軟化させた樹脂シートの端部を押圧して上縁部材18
とで挾持すると共に、上方に形成された吹出口Piより
空気を吹出させ前記樹脂シートを成形型面2に圧着させ
成形品Sを成形させるものである。
P is a suppressing member that presses the end of the softened resin sheet placed a on the upper edge member 18 to suppress the upper edge member 18.
At the same time, air is blown out from the blow-off port Pi formed above to press the resin sheet to the mold surface 2 and mold the molded product S.

次に、実施例の作用を説明する。Next, the operation of the embodiment will be explained.

まず、上縁部材18の上に樹脂シートを載置し、ヒータ
等で軟化させた後に押圧部材Pで押圧し樹脂シートの端
部を固定させる。
First, a resin sheet is placed on the upper edge member 18, softened with a heater, etc., and then pressed with a pressing member P to fix the ends of the resin sheet.

次に、押圧部材Pの吹出口P1より空気を吹出させ樹脂
シートの上方より圧力を加え、軟化された樹脂シートを
型本体1の成形型面2へ圧着させる。
Next, air is blown out from the outlet P1 of the pressing member P, and pressure is applied from above the resin sheet to press the softened resin sheet to the mold surface 2 of the mold body 1.

それと同時にモータ7を駆動させバキュームポンプ6を
作動させると、樹脂シートと外枠3との間の空気は真空
吸出口4より吸出され、樹脂シートは成形型面2に密着
され成形型面2の形通りの成形品Sとして成形される。
At the same time, when the motor 7 is driven and the vacuum pump 6 is operated, the air between the resin sheet and the outer frame 3 is sucked out from the vacuum outlet 4, and the resin sheet is brought into close contact with the mold surface 2. It is molded as a molded product S with the same shape.

次に、上記成形工程が終了するとタイマー17が   
1作動しバキュームポンプ6の作動が停止され、かつ、
モータ12の駆動によりコンプレッサlOが作動される
と共に、両ソレノイドバルブ11.15が開かれ、流体
流入路8より負圧になっている型本体lの微小孔へ冷却
空気が流入される。。
Next, when the above molding process is completed, the timer 17 starts.
1 operates, the operation of the vacuum pump 6 is stopped, and
The compressor lO is operated by the drive of the motor 12, and both solenoid valves 11.15 are opened, and cooling air flows from the fluid inflow path 8 into the microholes of the mold body l, which are under negative pressure. .

型本体lの微小孔へ流入された冷却空気は微小孔を伝わ
って流体排出路13へ達し外枠3の外部へ排出されるも
のであるが、その際に成形型面2の付近を伝わる空気は
成形品Sの熱を奪い冷却して成形品Sを硬化させる。
The cooling air flowing into the micropores of the mold body l passes through the micropores, reaches the fluid discharge path 13, and is discharged to the outside of the outer frame 3. At this time, the air flowing near the mold surface 2 removes heat from the molded product S to cool it and harden the molded product S.

上記冷却硬化工程が終るとタイマー17によってコンプ
レッサ10の作動が停止されると共に、両ソレノイドバ
ルブ11.15は閉じられ、その後、成形品Sを成形型
Aから取り外し成形を完了するものである。
When the cooling and hardening process is completed, the timer 17 stops the operation of the compressor 10, and both solenoid valves 11.15 are closed. Thereafter, the molded product S is removed from the mold A and molding is completed.

この場合、タイマー17は成形品Sが半硬化されるまで
バキュームポンプ6及びモータ7の作動を続けさせて、
型本体lを真空状態に保ち、半硬化後モータ12を駆動
してコンプレッサ10を作動させ同時に両ソレノイドバ
ルブ11.15が開かれ冷却空気を供給するようにして
も良い。
In this case, the timer 17 continues to operate the vacuum pump 6 and motor 7 until the molded product S is semi-cured.
The mold body 1 may be maintained in a vacuum state, and after semi-curing, the motor 12 is driven to operate the compressor 10, and at the same time both solenoid valves 11.15 are opened to supply cooling air.

なお、成形工程が終了した後、型本体lに冷却空気を供
給して真空状態でなくしても吹出口P1より空気を吹出
させ、成形品Sを成形型面2に圧着させているので形く
ずれ等の成形不良を起こす不具合は生じない。
Note that even if cooling air is supplied to the mold body l after the molding process is completed and the vacuum state is removed, the air is blown out from the air outlet P1 and the molded product S is pressed against the mold surface 2, so that the molded product S is not deformed. There are no problems such as molding defects.

次に、第2図に示す第2実施例について説明する。Next, a second embodiment shown in FIG. 2 will be described.

この実施例は、流体排出路として真空吸出口4を用いる
と共に、外枠3の上部の両側に流体流入路8を設け、か
つ、該流体流入路8をソレノイドバルブ11.11を介
して大気と連通させた例である。
In this embodiment, a vacuum outlet 4 is used as a fluid discharge path, and a fluid inlet path 8 is provided on both sides of the upper part of the outer frame 3, and the fluid inlet path 8 is connected to the atmosphere via a solenoid valve 11.11. This is an example of communication.

従って、バキュームポンプ6の作動により樹脂シートを
成形型面2に密着成形させた後に、タイマー17によっ
て両ソレノイドバルブ11.11を開き、流体流入路8
.8より冷却空気を導き、流体排出路を兼ねた真空吸出
口4より空気を排出させて成形品Sを冷却させることが
できる。
Therefore, after the resin sheet is molded in close contact with the mold surface 2 by the operation of the vacuum pump 6, both the solenoid valves 11 and 11 are opened by the timer 17, and the fluid inflow path 8
.. The molded product S can be cooled by introducing cooling air through the vacuum outlet 8 and discharging the air through the vacuum outlet 4 which also serves as a fluid discharge path.

次に、第3図に示す第3実施例について説明する。Next, a third embodiment shown in FIG. 3 will be described.

この実施例は本発明の成形型B、Bを2つ向かい合わせ
てブロー成形に用いた例である。
This example is an example in which two molds B and B of the present invention were used for blow molding by facing each other.

20.20は噴射ノズル挿通溝であって、前記上縁部材
18.18に対向して形成されたもので、成形の際には
この噴射ノズル挿通溝20,20にエア噴射ノズルNl
が位置される。
Reference numeral 20.20 denotes an injection nozzle insertion groove, which is formed to face the upper edge member 18.18. During molding, an air injection nozzle Nl is inserted into the injection nozzle insertion groove 20, 20.
is located.

N2は樹脂導出ノズルであって、軟化樹脂の筒状体を導
出するものである。
N2 is a resin lead-out nozzle that leads out a cylindrical body of softened resin.

従って、樹脂導出ンズルN2より軟化樹脂の筒状体を導
出させ、エア噴射ノズルN1が噴射ノズル挿通溝20,
20に位置されるようにして前記筒状体を内成形型B、
Bで挾み1次に、エア噴射ノズルN1より空気を筒状体
内部に導き樹脂を成形型面2に圧着させ、真空吸出口4
より型本体lの空気を吸出させ樹脂を成形型面2に密着
成形させるものである。
Therefore, the cylindrical body of the softened resin is led out from the resin lead-out nozzle N2, and the air injection nozzle N1 is inserted into the injection nozzle insertion groove 20,
20, the cylindrical body is placed in an inner mold B,
First, air is introduced into the cylindrical body from the air injection nozzle N1 to press the resin onto the mold surface 2, and the vacuum outlet 4
The air in the mold body 1 is sucked out and the resin is molded in close contact with the mold surface 2.

また、成形工程が終了した後に流体流入路8゜8から冷
却空気が流入され、該冷却空気が形本体1を通って、流
体排出路13.13から外部へ排出されるのは第1実施
例と同様である。
Furthermore, after the molding process is completed, cooling air is introduced from the fluid inlet passage 8.8, and the cooling air passes through the mold body 1 and is discharged to the outside from the fluid discharge passage 13.13 in the first embodiment. It is similar to

尚、第2実施例及び第3実施例に関し、他の構成・作用
は第1実施例と同様であるので説明を省略する。
Regarding the second and third embodiments, other configurations and operations are the same as those of the first embodiment, so explanations thereof will be omitted.

次に、第4図に示す第4実施例について説明する。Next, a fourth embodiment shown in FIG. 4 will be described.

この実施例は、流体流入路8に接続された接続パイプ9
の上流に冷却流体を供給する管路と流体を一度加熱し加
温した保温流体を供給する管路とを設け、両管路を切変
えるバルブを設けたもので、成形工程後保温流体を供給
し、その後冷却流体を供給するようにしたものである。
In this embodiment, a connecting pipe 9 connected to a fluid inflow channel 8
A pipe line for supplying cooling fluid and a pipe line for supplying heat-retaining fluid that has been heated once are installed upstream of the molding process, and a valve is installed to switch between the two pipes to supply heat-retaining fluid after the molding process. After that, cooling fluid is supplied.

これにより、成形面の仕上げ状態を鏡面のように光沢の
ある滑らかなものにするとともに、冷却時間の短縮を図
ったものである。
As a result, the finished state of the molding surface is made smooth and glossy like a mirror surface, and the cooling time is shortened.

この構成を具体的に説明する。This configuration will be specifically explained.

コンプレッサ10の下流に切換バルブ22を設け、該バ
ルブ22が冷却流体供給管路26を介して切換z<′l
z?23&接続″″0・該切換/;)p″f23   
、+が接続パイプ9に接続されている。
A switching valve 22 is provided downstream of the compressor 10, and the switching valve 22 is configured to switch z<'l via a cooling fluid supply line 26.
Z? 23 & connection ″″0・switch/;)p″f23
, + are connected to the connecting pipe 9.

切換バルブ22より下流に加熱装置21を設け、該加熱
装置21と切換バルブ22を流体供給管24で接続し、
さらに、加熱装置21と切換バルブ23が保温流体供給
管25で接続されている。
A heating device 21 is provided downstream from the switching valve 22, and the heating device 21 and the switching valve 22 are connected by a fluid supply pipe 24,
Furthermore, the heating device 21 and the switching valve 23 are connected by a heat-retaining fluid supply pipe 25.

この加熱装置21.切換バルブ22.23及びモータ1
2はタイマー17によって作動制御されて上記のように
作動される。
This heating device 21. Switching valve 22, 23 and motor 1
2 is controlled by the timer 17 and operated as described above.

保温流体を型本体1に供給するときは、コンプレッサ1
0から切換バルブ22.加熱装置21゜切換バルブ23
を通って接続パイプ9に流れる。
When supplying heat retaining fluid to the mold body 1, the compressor 1
0 to switching valve 22. Heating device 21° switching valve 23
through which it flows into the connecting pipe 9.

冷却流体を型本体lに供給するときは、コンプレッサ1
0から切換バルブ22.切換バルブ23を通って接続パ
イプ9に流れる。
When supplying cooling fluid to the mold body l, the compressor 1
0 to switching valve 22. It flows through the switching valve 23 to the connecting pipe 9.

尚、切換バルブ22.23は同時に作動して保温流体と
冷却流体とを切変えるものである。
Note that the switching valves 22 and 23 operate simultaneously to switch between the heat insulating fluid and the cooling fluid.

他の構成は、第1実施例と同じなので同一の符号をつけ
、説明を省略する。
The other configurations are the same as those in the first embodiment, so the same reference numerals are given and the explanation will be omitted.

以上1本発明の実施例を図面により詳述してきたが、具
体的な構成はこの実施例に限られるものではなく、本発
明の要旨を逸脱しない範囲における設計変更等があって
も本発明に含まれる。
Although one embodiment of the present invention has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and the present invention may be modified without departing from the gist of the present invention. included.

例えば、温調流体としては空気に限らず他の気体や液体
を用いてもよい。
For example, the temperature regulating fluid is not limited to air, and other gases or liquids may be used.

また、冷却流体や保温流体は型本体の成形型面付近を流
した方が離れた位置を流すより効果があるので型本体全
体に流さない場合は、成形型面付近を流すようにしても
よい。
Also, it is more effective to flow the cooling fluid or heat-retaining fluid near the mold surface of the mold body than to flow it at a distant position, so if you do not want to flow it over the entire mold body, you may flow it near the mold surface. .

また、外枠3は金属に限らず、樹脂やゴムや木材等を用
いてもよく、かつ、実施例のように厚みを有さずとも、
型本体1の外表面にコーティングさせたようなものでも
よい。
Further, the outer frame 3 is not limited to metal, but may also be made of resin, rubber, wood, etc., and even if it does not have a thickness as in the embodiment,
The outer surface of the mold body 1 may be coated.

また、第1実施例では流体流入路8にコンプレッサ10
を接続させたが、流体排出路13を空気排出装置と接続
させてもよい。
Further, in the first embodiment, a compressor 10 is provided in the fluid inflow path 8.
Although the fluid discharge path 13 may be connected to an air discharge device.

さらに、本発明に加え型本体lに冷却、又は保温用の管
を従来どうり配設して、併用してより効果を上げるよう
にしても良°い。
Furthermore, in addition to the present invention, cooling or heat-retaining tubes may be provided in the mold body 1 in the conventional manner, and used in combination to further increase the effect.

また、セラミックスの熱伝導性が悪いという問題点をカ
バーして保温流体の熱を成形品に効率よく伝えることが
できるので、成形面を鏡面状の光沢のある滑らかなもの
に加工するときに用いても効果がある。
In addition, it can overcome the problem of poor thermal conductivity of ceramics and efficiently transmit the heat of the heat-retaining fluid to the molded product, so it can be used when processing the molded surface into a mirror-like, glossy, smooth product. It is effective though.

従って、本発明は冷却に限られるものではなく本発明を
用いて保温流体のみを型本体1に流して保温に用いても
良い。
Therefore, the present invention is not limited to cooling, and the present invention may be used to flow only the heat-retaining fluid into the mold body 1 and use it for heat-retaining.

(発明の効果) 上述のように本発明によれば、冷却流体や保温流体等の
温調流体が型本体の微小孔を通って成形型面に達し、樹
脂を冷却または保温した後冷却することができるため、
樹脂の硬化時間が短縮され生産性が向上するという効果
が得られる。
(Effects of the Invention) As described above, according to the present invention, a temperature regulating fluid such as a cooling fluid or a heat insulating fluid passes through the micropores of the mold body to reach the mold surface, cools or heats the resin, and then cools the resin. Because it is possible to
The effect is that the curing time of the resin is shortened and productivity is improved.

また、冷却水管等の冷却部材を埋め込む必要がないので
その分子間が省けるという効果が得られる。
Furthermore, since there is no need to embed a cooling member such as a cooling water pipe, the effect that the space between the molecules can be omitted can be obtained.

また、上述の効果に加えて第1実施例にあっては、導風
板16を設けたために、冷却空気が成形型面2の近くを
流れ易く成形品Sの冷却を効率良く行うことができる。
In addition to the above-mentioned effects, in the first embodiment, since the air guide plate 16 is provided, the cooling air can easily flow near the mold surface 2, and the molded product S can be cooled efficiently. .

また、タイマー17を設けたため、成形工程と硬化工程
との切換えをスムーズに行うことができる。
Further, since the timer 17 is provided, switching between the molding process and the curing process can be performed smoothly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明第1実施例の成形型を示す断面図、第2
図は本発明第2実施例の成形型を示す断面図、第3図は
本発明第3実施例を示す断面図、第4図は本発明第4実
施例を示す断面図、第5図は従来例を示す断面図、であ
る。 l・・・型本体 2・・・成形型面 3・・・外枠 4・・・真空吸出口 8・・・流体流入路 13・・・流体排出路 S・・・成形品 特  許  出  願  人 日産車体株式会社 第2図 第3図
FIG. 1 is a sectional view showing a mold according to the first embodiment of the present invention, and FIG.
The figure is a cross-sectional view showing a molding die according to a second embodiment of the present invention, FIG. 3 is a cross-sectional view showing a third embodiment of the present invention, FIG. 4 is a cross-sectional view showing a fourth embodiment of the present invention, and FIG. FIG. 3 is a sectional view showing a conventional example. l...Mold body 2...Mold surface 3...Outer frame 4...Vacuum suction port 8...Fluid inflow channel 13...Fluid discharge channel S...Molded product patent application Nissan Shatai Co., Ltd. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)連通した微小孔を有する多孔性セラミックスにより
形成され、成形型面を有する型本体と、該型本体の前記
成形型面を除く外表面に被覆される外枠と、該外枠に開
設された真空吸出口と、を備えた成形型において、前記
外枠から微小孔を経過して型本体に温調流体を導かせる
と共に、該温調流体を外枠から排出させるように前記外
枠に流体流入路及び流体排出路を設けたことを特徴とす
る成形型。
1) A mold body formed of porous ceramics having communicating micropores and having a mold surface, an outer frame covering the outer surface of the mold body other than the mold surface, and a In the mold, the mold is equipped with a vacuum suction port, the outer frame is configured to guide a temperature regulating fluid from the outer frame to the mold body through the microholes, and to discharge the temperature regulating fluid from the outer frame. A molding die characterized by being provided with a fluid inflow channel and a fluid discharge channel.
JP22345684A 1984-10-24 1984-10-24 Hold Granted JPS61100418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22345684A JPS61100418A (en) 1984-10-24 1984-10-24 Hold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22345684A JPS61100418A (en) 1984-10-24 1984-10-24 Hold

Publications (2)

Publication Number Publication Date
JPS61100418A true JPS61100418A (en) 1986-05-19
JPH0214182B2 JPH0214182B2 (en) 1990-04-06

Family

ID=16798432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22345684A Granted JPS61100418A (en) 1984-10-24 1984-10-24 Hold

Country Status (1)

Country Link
JP (1) JPS61100418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176530A (en) * 1988-01-06 1989-07-12 Dainippon Printing Co Ltd Preparation of in-mold decorative molding
US5196151A (en) * 1990-09-11 1993-03-23 Toyoda Gosei Co., Ltd. Method for producing foam base material product with securing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107212U (en) * 1982-12-30 1984-07-19 盟和産業株式会社 vacuum forming mold

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107212U (en) * 1982-12-30 1984-07-19 盟和産業株式会社 vacuum forming mold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176530A (en) * 1988-01-06 1989-07-12 Dainippon Printing Co Ltd Preparation of in-mold decorative molding
US5196151A (en) * 1990-09-11 1993-03-23 Toyoda Gosei Co., Ltd. Method for producing foam base material product with securing device

Also Published As

Publication number Publication date
JPH0214182B2 (en) 1990-04-06

Similar Documents

Publication Publication Date Title
JP4926156B2 (en) Mold temperature control circuit for injection molding apparatus and heat medium discharge method
KR100538129B1 (en) Composite product molding machine
US7159836B2 (en) Flow through molding apparatus and method
JP2001018229A (en) Mold for molding synthetic resin, mold temperature regulating device, and method for regulating mold temperature
TWI511858B (en) Molding system and method for directly gas-cooling a molding object
JP4142674B2 (en) Mold apparatus and method for producing molded body using the same
US20160263790A1 (en) Manufacturing System for Molding a Foaming Product
US4390486A (en) Method and apparatus for heating a mold cavity uniformly
JPS61100418A (en) Hold
JPS6322969B2 (en)
US3999928A (en) Apparatus for shaping synthetic resin material
JPH0112655B2 (en)
US20020056929A1 (en) Method and apparatus for applying lens sheet forming resin
TWI330584B (en) In-mold decorating method
JP2004155099A (en) Heating and cooling system for mold
JPS611442A (en) Method and device for producing shell mold
JPH0542560A (en) Mold for simultaneous molding and transferring
CN214266554U (en) Mold temperature controller for injection mold
JP2562388B2 (en) Blow molding method and molding apparatus
CN215472897U (en) Automobile ornaments processing is with no trace injection mold&#39;s of highlight temperature control mechanism
JP2003053740A (en) Steam vulcanization apparatus
JPH01310932A (en) Mold apparatus for molding hollow double structure product and method for controlling temperature thereof
JPS6054828A (en) Injection molding method
JP4624606B2 (en) Steam vulcanizer
JPH0810189Y2 (en) Heat block structure of wire bonding equipment