JPS6110029A - Preparation of electrically conductive stannic oxide - Google Patents

Preparation of electrically conductive stannic oxide

Info

Publication number
JPS6110029A
JPS6110029A JP12934284A JP12934284A JPS6110029A JP S6110029 A JPS6110029 A JP S6110029A JP 12934284 A JP12934284 A JP 12934284A JP 12934284 A JP12934284 A JP 12934284A JP S6110029 A JPS6110029 A JP S6110029A
Authority
JP
Japan
Prior art keywords
tartaric acid
oxide
antimony
stannic oxide
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12934284A
Other languages
Japanese (ja)
Inventor
Hiroho Nishiyama
西山 潤歩
Akira Hamaoka
浜岡 明
Minoru Tanaka
実 田中
Takashi Sakata
阪田 喬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kagaku Sangyo Co Ltd
Original Assignee
Nihon Kagaku Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kagaku Sangyo Co Ltd filed Critical Nihon Kagaku Sangyo Co Ltd
Priority to JP12934284A priority Critical patent/JPS6110029A/en
Publication of JPS6110029A publication Critical patent/JPS6110029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain electrically conductive stannic oxide having excellent electrical conductivity and suitable as an antistatic agent for synthetic fiber, by dispersing antimony oxide in an aqueous solution of tartaric acid, mixing the dispersion with hydrated stannic oxide, and drying, pulverizing and calcining the mixture. CONSTITUTION:Antimony tartrate is produced by dispersing antimony oxide in an aqueous solution of tartaric acid. The amount of tartaric acid is >=0.01 equivalent per 1 equivalent of antimony. Hydrated stannic oxide is added to the dispersion, mixed thoroughly with a ball mill, etc., dried in a hot-air circulation drier, etc., pulverized with an impact pulverizer, and calcined with a calcination oven to obtain the objective electrically conductive stannic oxide wherein a part of Sn atoms of stannic oxide are substituted with Sb atoms. A product having excellent electrical conductivity can be produced without using the water-washing step, even at a calcination temperature of as low as <=1,000 deg.C, and accordingly, the compound can be obtained at a low cost with simple procedure.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は合成樹脂や合成繊維の帯電防止剤及び化学セン
サー素子、導電性ペーストに利用されている導電性酸化
第二錫の工業的製造法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides an industrial method for producing conductive tin oxide, which is used in antistatic agents for synthetic resins and fibers, chemical sensor elements, and conductive pastes. It is related to.

〈従来の技術〉 酸化第二錫のSn原子の一部をsb原子で置換すると導
電性が発現して導電性酸化第二錫になることは公知であ
るが、従来法は酸化第二錫及び酸化アンチモン(Sb、
03または5bzOs)を混合して、約1300℃に加
熱するか或いは塩化第二錫及び三塩化アンチモンのアル
コール混合溶液を中和して得られた共沈物を水洗した後
1000〜1300℃で熱分解させる製造法であった。
<Prior art> It is known that when some of the Sn atoms in tin oxide are replaced with sb atoms, conductivity develops and becomes conductive tin oxide. Antimony oxide (Sb,
03 or 5bzOs) and heated to about 1,300°C, or by neutralizing an alcohol mixed solution of tin chloride and antimony trichloride, the resulting coprecipitate was washed with water and then heated at 1,000 to 1,300°C. The production method involved decomposition.

〈発明が解決しようとする問題点〉 しかし、前者の製造法は粒子混合の領域で混合している
にすぎず、sb原子を酸化第二錫の結晶中に拡散させる
には、1300℃の高温を必要とする。
<Problems to be solved by the invention> However, the former manufacturing method only involves mixing in the particle mixing region, and in order to diffuse sb atoms into the stannic oxide crystal, a high temperature of 1300°C is required. Requires.

そして、混合不十分で酸化アンチモンが凝集して残った
場合、高温で溶融し冷却過程で粒子成長して粗粒子が生
成し易いという欠点があった。また、後者の製造法は中
和により生した塩類を除去する水洗に時間がかかり能率
的でない欠点があった。
If antimony oxide aggregates and remains due to insufficient mixing, there is a drawback that it is likely to melt at high temperatures and grow during the cooling process to form coarse particles. In addition, the latter production method has the disadvantage that washing with water to remove salts produced by neutralization is time consuming and inefficient.

しかるに、水洗不十分な場合には塩類の影響により粒径
が大きくなる懸念がある。
However, if washing with water is insufficient, there is a concern that the particle size may increase due to the influence of salts.

一般的に焼成炉の材質は焼成温度1200℃以下ならば
安価な材質が使用出来るが、上記従来法では1’ 30
0℃を上限とするため高価な材質を使用しなければなら
ない。従って、焼成温度が1200℃以下、好ましくは
1000℃以下であり、比較的簡便な製造法が工業的に
望まれる。よって本発明は導電性能の優れた導電性酸化
第二錫の工業的製造法を捉供するものである。
In general, inexpensive materials can be used for the firing furnace if the firing temperature is below 1200°C, but in the conventional method described above,
Since the upper limit is 0°C, expensive materials must be used. Therefore, a comparatively simple manufacturing method in which the firing temperature is 1200° C. or lower, preferably 1000° C. or lower is desired industrially. Therefore, the present invention provides an industrial method for producing conductive tin oxide having excellent conductivity.

〈問題点を解決するための手段〉 即ち、本発明は酸化アンチモンを酒石酸水溶液に分散さ
せ、含水酸化第二t8を加え混合、乾燥、粉砕して得ら
れた粉体を焼成し、粉砕または混合して導電性酸化第二
錫を得ろ。本発明によろλq導電性酸化第二錫酒石酸を
使用し、ない場合より、同一条件下においては導電性が
優れている。
<Means for Solving the Problems> That is, the present invention involves dispersing antimony oxide in an aqueous tartaric acid solution, adding hydrous t8 oxide, mixing, drying, and pulverizing the resulting powder, which is then calcined, pulverized, or mixed. to obtain conductive tin oxide. According to the present invention, λq conductive stannic oxide tartaric acid is used, and the conductivity is better under the same conditions than without it.

上記含水酸化第二錫はSnO2・XH,Oで表される。The above hydrous stannic oxide is represented by SnO2.XH,O.

ただし、Xは0.02< X < 1.5である。X≧
1の場合、β−ti酸と言われることがある。狭義のβ
−錫酸はH,、SnO,である。一方、酸化アンチモン
はアンチモン酸化物及びアンチモン酸化物の水和物なら
ば組成を問わずいずれも使用出来る。
However, X satisfies 0.02<X<1.5. X≧
In the case of 1, it is sometimes referred to as β-ti acid. β in a narrow sense
-Stannic acid is H,,SnO,. On the other hand, as antimony oxide, any antimony oxide or antimony oxide hydrate can be used regardless of the composition.

〈作用〉 次に作用を説明する。酸化アンチモンを酒石酸水溶液に
分散させると、酸化アンチモンの粒子表面から溶解が始
まり酒石酸アンチモンが生成する。
<Operation> Next, the operation will be explained. When antimony oxide is dispersed in an aqueous tartaric acid solution, dissolution begins from the particle surface of the antimony oxide, producing antimony tartrate.

酒石酸アンチモン↓よ多数の組成式が知られている。Antimony tartrate↓ Many compositional formulas are known.

例えばS b (OH)(C4HsOa)x・2H20
、またはS b t O(C4Ha Ob ) t ’
 68 z O等が挙げられる。
For example, S b (OH) (C4HsOa) x 2H20
, or S b t O(C4Ha Ob ) t '
68 z O and the like.

酒石酸アンチモンはいずれも水に溶解するから酒石酸量
に比例した酒石酸アンチモン水溶液になる。
Since all antimony tartrate dissolves in water, an antimony tartrate aqueous solution is formed in proportion to the amount of tartaric acid.

上記酒石酸水溶液を高温にすると酒石酸アンチモンの生
成が速いので高温の方が望ましいが室温であってもかま
わない。
When the tartaric acid aqueous solution is heated to a high temperature, antimony tartrate is produced quickly, so a high temperature is preferable, but a room temperature is also acceptable.

上記酒石酸水溶液は酒石酸を水に溶解させる方法で容易
に作ることが出来る。酒石酸の重量はSb1当量に対し
て0.01当量以上、好ましくは0.05当量〜2.5
当量が望ましい。水の量は酸化アンチモン及び含水酸化
第二錫の混合物が湿潤する程度が望ましい。当該混合物
が高張る場合は、当然のことながら水を多く使用する。
The tartaric acid aqueous solution can be easily prepared by dissolving tartaric acid in water. The weight of tartaric acid is 0.01 equivalent or more, preferably 0.05 to 2.5 equivalents per equivalent of Sb.
Equivalence is preferred. The amount of water is preferably such that the mixture of antimony oxide and hydrated tin oxide is wetted. Naturally, if the mixture is hypertensive, use more water.

通常、酸化アンチモン及び含水酸化第二錫の混合物を湿
潤させるのに必要な水の量は、酒石酸を溶かず水の最低
量を上回る。本発明によれば、酒石酸水溶液に酸化アン
チモンを加えるか、または酸化アンチモンに酒石酸水溶
液を注いで加え、よく混合分散させて酒石酸アンチモン
を生成させる。そして含水酸化第二錫を加え十分に混合
する。混合機としては万能混合撹拌機、ライカイ機、ま
たはボールミル等が有用である。このとき混合物の湿潤
状態を見ながら水を適宜追加してもかまわない。混合時
間は任意に選ぶことが出来る。混合後、酸化アンチモン
に対し未反応の酒石酸が存在する場合は、次工程におい
て含水酸化第二錫と反応するか或いは酒石酸として残留
することが考えられるが、後述の焼成工程において熱分
解するので導電性酸化第二錫中に残留する心配はない。
Typically, the amount of water required to wet the mixture of antimony oxide and hydrated tin oxide exceeds the minimum amount of water that will not dissolve the tartaric acid. According to the present invention, antimony oxide is added to an aqueous solution of tartaric acid, or the aqueous solution of tartaric acid is poured into the antimony oxide, and the mixture is thoroughly mixed and dispersed to produce antimony tartrate. Then, add hydrous stannic oxide and mix thoroughly. As a mixer, a universal mixer, a Raikai machine, a ball mill, etc. are useful. At this time, water may be added as appropriate while checking the wet state of the mixture. The mixing time can be selected arbitrarily. If there is unreacted tartaric acid with antimony oxide after mixing, it may react with hydrous stannic oxide in the next step or remain as tartaric acid. There is no worry that it will remain in the stannic oxide.

しかしながら酒石酸を過剰に使用する事は経済上好まし
くない。
However, it is economically undesirable to use too much tartaric acid.

上記混合物を乾燥するには通常の乾燥方法が利用出来る
。例えば乾燥機としては熱風循環式乾燥機、減圧乾燥機
等を使用する。乾燥した後粉砕する粉砕機としては、衝
撃式粉砕機、摩擦式粉砕機及びジェット粉砕機等を使用
する。粉砕すると淡黄色粉体が得られ、この淡黄色粉体
を焼成鉢に入れて焼成炉で焼成する。焼成炉としてはガ
ス焼成炉または電気炉等を使用する。焼成温度は600
〜1200℃、好ましくは800〜1000℃で行う。
Conventional drying methods can be used to dry the above mixture. For example, as the dryer, a hot air circulation dryer, a vacuum dryer, etc. are used. As the pulverizer for pulverizing after drying, an impact pulverizer, friction pulverizer, jet pulverizer, etc. are used. When crushed, a pale yellow powder is obtained, and this pale yellow powder is placed in a firing pot and fired in a firing furnace. As the firing furnace, a gas firing furnace or an electric furnace is used. Firing temperature is 600
It is carried out at a temperature of -1200°C, preferably 800-1000°C.

焼成時間は15分間以上、好ましくは30分間〜4時間
である。焼成物は灰青色の粉体となる。この焼成物を粉
砕または混合して導電性酸化第二錫を得る。
The firing time is 15 minutes or more, preferably 30 minutes to 4 hours. The fired product becomes a gray-blue powder. This fired product is pulverized or mixed to obtain conductive tin oxide.

本発明では酒石酸を使用した場合、アンチモンの分散性
が改善され焼成温度が低い場合でもアンチモンの良好な
拡散が起き、その結果として導電性能の優れた導電性酸
化第二錫が得られるものと推察される。本発明による導
電性酸化第二錫は酸化アンチモン及び含水酸化第二錫の
仕込量により導電性能が変化する。これはS b / 
S n比率に起因すると考えられるが、従来知られてい
たSb/Sn比率で満足すべき導電性能が得られた。更
に詳しく説明すれば、当量比S b / S nにおい
て0.05〜10%、好ましくは1.5〜5.0%の範
囲に入るように酸化アンチモン及び含水酸化第二錫を秤
量して仕込むのが望ましい。上記S b / S nが
0.05%以下の場合は導電性能が劣り、10%以上の
場合は導電性能の向上に寄与しないので無駄になる。し
かるに、含水酸化第二錫は分子量が確定しないのでSn
含量を分析にて求め、同様に酸化アンチモンもsb含量
を分析にて求め仕込量を決める。
In the present invention, when tartaric acid is used, it is assumed that the dispersibility of antimony is improved and good diffusion of antimony occurs even when the firing temperature is low, and as a result, conductive tin oxide with excellent conductive performance is obtained. be done. The conductive performance of the conductive stannic oxide according to the present invention changes depending on the amount of antimony oxide and hydrous stannic oxide. This is S b /
Although this is thought to be due to the Sn ratio, satisfactory conductive performance was obtained with the conventionally known Sb/Sn ratio. More specifically, antimony oxide and hydrous stannic oxide are weighed and prepared so that the equivalent ratio S b /S n is in the range of 0.05 to 10%, preferably 1.5 to 5.0%. is desirable. When the S b /S n is less than 0.05%, the conductive performance is poor, and when it is more than 10%, it is wasted because it does not contribute to improving the conductive performance. However, the molecular weight of hydrous stannic oxide is not determined, so Sn
The content is determined by analysis. Similarly, the sb content of antimony oxide is determined by analysis and the amount to be charged is determined.

導電性能は試料の加圧抵抗測定により、比抵抗を測定し
評価した。
The conductive performance was evaluated by measuring the specific resistance by measuring the pressurized resistance of the sample.

ただし、Rは抵抗値、tは加圧された粉体の厚さである
However, R is the resistance value, and t is the thickness of the pressurized powder.

〈実施例1> 酒石酸29gを水41に溶かした溶液に三酸化アンチモ
ン215gを加え2時間撹拌した後、β−錫酸8270
 gを加え充分混合した。ここでSbl当量に対する酒
石酸の当量比は0.131 (以下、酒石酸/sbと記
す。)であり、Snl当量に対するsbの当量比は0.
03H以下、S b / S nと記す。)である。そ
して100℃で乾燥して得られた乾燥ケーキを衝撃式粉
砕機で粉砕した。粉砕された粉体を焼成体に入れて電気
炉で800℃、2時間焼成した。
<Example 1> 215 g of antimony trioxide was added to a solution of 29 g of tartaric acid dissolved in 41 parts of water, and after stirring for 2 hours, 8270 g of β-stannic acid was dissolved.
g was added and mixed thoroughly. Here, the equivalent ratio of tartaric acid to Sbl equivalent is 0.131 (hereinafter referred to as tartaric acid/sb), and the equivalent ratio of sb to Snl equivalent is 0.131.
Below 03H, it is written as S b / S n. ). Then, the dried cake obtained by drying at 100° C. was pulverized using an impact pulverizer. The pulverized powder was put into a firing body and fired at 800°C for 2 hours in an electric furnace.

冷却後、混合機で混合して導電性酸化第二錫7359g
を得た。比抵抗は0.9Ω備であった。
After cooling, mix with a mixer to obtain 7359 g of conductive tin oxide.
I got it. The specific resistance was 0.9Ω.

〔比較例1〕 混合機にβ−錫酸7200 g、三酸化アンチモン18
7gを入れ2時間乾式混合した。混合粉体を焼成体に入
れ800℃、2時間焼成した。冷却後、混合機で混合し
て導電性酸化第二錫6520 gを得た。
[Comparative Example 1] 7200 g of β-stannic acid and 18 antimony trioxide were placed in a mixer.
7 g was added and dry mixed for 2 hours. The mixed powder was placed in a firing body and fired at 800°C for 2 hours. After cooling, the mixture was mixed in a mixer to obtain 6520 g of conductive tin oxide.

比抵抗は4.1Ω備であった。ただし、S b / S
 nは0.031である。
The specific resistance was 4.1Ω. However, S b / S
n is 0.031.

〔比較例2〕 水21に三酸化アンチモン93.5gを加え2時間撹拌
した後、β−錫酸3600 gを加えて充分混合した。
[Comparative Example 2] After adding 93.5 g of antimony trioxide to water 21 and stirring for 2 hours, 3600 g of β-stannic acid was added and thoroughly mixed.

S ty / S nは0.031である。以下実施例
1と同様にして導電性酸化第二錫3201 gを得た。
S ty /S n is 0.031. Thereafter, 3201 g of conductive tin oxide was obtained in the same manner as in Example 1.

比抵抗は2.4Ω口であった。The specific resistance was 2.4Ω.

実施例1は比較例と対比すると導電性能が優れているこ
とが明らかである。
It is clear that Example 1 has excellent conductive performance when compared with Comparative Example.

〈実施例2〉 酒石酸20gを水IIlに溶かした溶液に三酸化アンチ
モン58gを加え2時間撹拌した。そしてβ−錫酸22
42 gを加え充分混合した後、100℃で乾燥した。
<Example 2> 58 g of antimony trioxide was added to a solution of 20 g of tartaric acid dissolved in water IIl, and the mixture was stirred for 2 hours. and β-stannic acid 22
After adding 42 g and thoroughly mixing, it was dried at 100°C.

ここで酒石酸/Sbは0.334でありSb/Snは0
.031である。得られた乾燥ケーキを衝撃式粉砕機で
粉砕した後、焼成体に入れ電気炉で800℃、2時間焼
成した。冷却後、混合機で混合して導電性酸化第二錫2
023 gを得た。比抵抗は1.0Ω備であった。
Here, tartaric acid/Sb is 0.334 and Sb/Sn is 0.
.. It is 031. The obtained dry cake was pulverized using an impact pulverizer, then placed in a sintered body and sintered at 800° C. for 2 hours in an electric furnace. After cooling, conductive tin oxide 2 is mixed with a mixer.
023 g was obtained. The specific resistance was 1.0Ω.

〈実施例3〉 酒石#160gを水51に入れ約50℃に加熱して溶か
した溶液に三酸化アンチモン156 gを加え3時間撹
拌した。そしてβ−錫酸6000 gを加え充分混合し
た後100℃で乾燥した。ここで酒石酸/Sbは0.9
96でありS b / S nは0.031である。以
下実施例2と同様にして導電性酸化第二錫5350 g
を得た。比抵抗は0.5Ωlであった。
<Example 3> 156 g of antimony trioxide was added to a solution in which 160 g of Tartar #1 was heated to about 50°C and dissolved in 51 parts of water, and the mixture was stirred for 3 hours. Then, 6000 g of β-stannic acid was added and thoroughly mixed, followed by drying at 100°C. Here, tartaric acid/Sb is 0.9
96 and S b /S n is 0.031. Hereinafter, 5350 g of conductive tin oxide was prepared in the same manner as in Example 2.
I got it. The specific resistance was 0.5Ωl.

〈実施例4〉 β−錫酸5120gを焼成体に入れ電気炉で600℃1
時間焼成して得た含水酸化第二錫4500 gを1.5
g/Nの酒石酸水溶液3e及び三酸化アンチモン85g
から成る混合液に加え充分混合した。ここで酒石酸/S
bは0.051でありS b / S nは0.02で
ある。次に100℃で乾燥して粉砕した後、800℃で
2時間焼成した。冷却後、粉砕して導電性酸化第二錫4
535 gを得た。比抵抗は65Ω1であった。
<Example 4> 5120g of β-stannic acid was placed in a fired body and heated at 600℃1 in an electric furnace.
4500 g of hydrous tin oxide obtained by baking for 1.5 hours
g/N tartaric acid aqueous solution 3e and antimony trioxide 85g
and mixed thoroughly. Here tartaric acid/S
b is 0.051 and S b /S n is 0.02. Next, it was dried at 100°C, crushed, and then fired at 800°C for 2 hours. After cooling, pulverize to form conductive tin oxide 4
535 g was obtained. The specific resistance was 65Ω1.

尚、β−錫酸の代わりに600℃に焼成された含水酸化
第二錫を用いると比抵抗が高くなる傾向にあるが酒石酸
の効果は認められた。
Incidentally, when hydrous stannic oxide calcined at 600° C. was used instead of β-stannic acid, the specific resistance tended to increase, but the effect of tartaric acid was observed.

〈実施例5〉 酒石酸14gを水2Ilに溶かした溶液に四酸化アンチ
モン112gを加え2時間撹拌した。そしてβ−錫酸4
200 gを加えて混合した。ここで酒石酸/sbは0
.255でありS b / S nは0.015である
<Example 5> 112 g of antimony tetroxide was added to a solution of 14 g of tartaric acid dissolved in 2 Il of water, and the mixture was stirred for 2 hours. and β-stannic acid 4
200 g was added and mixed. Here tartaric acid/sb is 0
.. 255, and S b /S n is 0.015.

次に100℃で乾燥して粉砕した後1000℃2時間焼
成した。冷却後粉砕して導電性酸化第二錫3825 g
を得た。比抵抗は1.7Ω口であった。
Next, it was dried at 100°C, crushed, and then fired at 1000°C for 2 hours. 3825 g of conductive tin oxide after cooling and crushing
I got it. The specific resistance was 1.7Ω.

〈発明の効果〉 上述した如く本発明はSbl当量に対して0.01当量
以上の酒石酸を使用するが、酒石酸を使用しない場合と
比較して、導電性能の優れた導電性酸化第二錫が得られ
る。また、本発明は水洗工程が無く、焼成温度が100
0℃以下の場合でも導電性能が良いので工程が比較的簡
便であり、安価に製造することが出来る。従って本発明
は工業的に利用価値が大きいものである。
<Effects of the Invention> As described above, the present invention uses tartaric acid in an amount of 0.01 equivalent or more relative to the Sbl equivalent, but compared to the case where tartaric acid is not used, conductive tin oxide with excellent conductive performance is can get. In addition, the present invention does not require a water washing process, and the firing temperature is 100%.
Since the conductive performance is good even when the temperature is 0° C. or lower, the process is relatively simple and it can be manufactured at low cost. Therefore, the present invention has great industrial utility value.

Claims (1)

【特許請求の範囲】[Claims] Sb1当量に対して0.01当量以上の酒石酸を使用し
て、酒石酸水溶液に酸化アンチモンを分散させたのち、
含水酸化第二錫を加えて混合し、乾燥、粉砕、焼成する
ことを特徴とする導電性酸化第二錫の製造法。
After dispersing antimony oxide in an aqueous tartaric acid solution using 0.01 equivalent or more of tartaric acid per equivalent of Sb,
A method for producing conductive tin oxide, which comprises adding and mixing hydrous tin oxide, drying, pulverizing, and firing.
JP12934284A 1984-06-25 1984-06-25 Preparation of electrically conductive stannic oxide Pending JPS6110029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12934284A JPS6110029A (en) 1984-06-25 1984-06-25 Preparation of electrically conductive stannic oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12934284A JPS6110029A (en) 1984-06-25 1984-06-25 Preparation of electrically conductive stannic oxide

Publications (1)

Publication Number Publication Date
JPS6110029A true JPS6110029A (en) 1986-01-17

Family

ID=15007239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12934284A Pending JPS6110029A (en) 1984-06-25 1984-06-25 Preparation of electrically conductive stannic oxide

Country Status (1)

Country Link
JP (1) JPS6110029A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102030519A (en) * 2010-11-30 2011-04-27 广东特地陶瓷有限公司 Anti-static ceramic brick and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102030519A (en) * 2010-11-30 2011-04-27 广东特地陶瓷有限公司 Anti-static ceramic brick and production method thereof

Similar Documents

Publication Publication Date Title
CN101134597B (en) ITO powder and method for manufacturing same, coating material for electroconductive ITO film, and transparent electroconductive film
JP3221132B2 (en) Conductive particles and method for producing the same
CN106587180A (en) Method for preparing ruthenium dioxide for resistance paste
JPS6110029A (en) Preparation of electrically conductive stannic oxide
CN110951281B (en) Copper-chromium black toner prepared by solid-phase sintering method promoted by molybdenum oxide and zinc oxide and preparation method thereof
CN109824085B (en) Preparation method of pure perovskite phase calcium zirconate nano-micro powder
JPH06256013A (en) Production of zinc borate
CN107403657A (en) A kind of UV conductive silver pastes formula and preparation method thereof
JPS621574B2 (en)
JP2690982B2 (en) Thermally expandable graphite and method for producing the same
JPS63277511A (en) Production of magnesium hydroxide and surface-treated magnesium hydroxide
JP2733266B2 (en) Antistatic chlorine-containing polymer composition and antistatic agent
JPS62256724A (en) Conductive inorganic powder and its production
CN108559013A (en) A kind of titanium dioxide doping polythiophene additives for battery and preparation method thereof
US3810864A (en) Translucent polyvinylchloride plastic composition and method for preparing same
US2298679A (en) Method of making resistors and resistance materials
US3104248A (en) Acetatozirconyl halides
CN106147137A (en) A kind of heat insulation new material for boiler and preparation method thereof
JPS58185441A (en) Preparation of colored glass
JP3149467B2 (en) Method for producing fine powder for semiconductor porcelain
JP2782768B2 (en) Manufacturing method of conductive white powder
US2273825A (en) Lead aluminate pigments and paints and method of making same
JPS58194305A (en) Manufacture of oxide permanent magnet
US2423212A (en) Vitreous enamel opacifier
US2277063A (en) Lead aluminate pigment and paint and method of making same