JPS6099151A - Transparent glass fiber-reinforced thermoplastic resin composition - Google Patents

Transparent glass fiber-reinforced thermoplastic resin composition

Info

Publication number
JPS6099151A
JPS6099151A JP20588583A JP20588583A JPS6099151A JP S6099151 A JPS6099151 A JP S6099151A JP 20588583 A JP20588583 A JP 20588583A JP 20588583 A JP20588583 A JP 20588583A JP S6099151 A JPS6099151 A JP S6099151A
Authority
JP
Japan
Prior art keywords
weight
resin
glass fiber
composition
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20588583A
Other languages
Japanese (ja)
Other versions
JPH0356256B2 (en
Inventor
Hiroshi Kataoka
片岡 紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP20588583A priority Critical patent/JPS6099151A/en
Publication of JPS6099151A publication Critical patent/JPS6099151A/en
Publication of JPH0356256B2 publication Critical patent/JPH0356256B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/60Methods for processing data by generating or executing the game program
    • A63F2300/66Methods for processing data by generating or executing the game program for rendering three dimensional images
    • A63F2300/6615Methods for processing data by generating or executing the game program for rendering three dimensional images using models with different levels of detail [LOD]

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the titled highly transparent composition by uniformly blending, in a molten state, glass fiber and a resin component consisting of styrene- acrylonitrile copolymer and acrylic resin constituted mainly by methyl methacrylate. CONSTITUTION:An uniformly blended transparent resin component made up of (A) 10-80wt% of acrylic resin containing >=84wt% of methyl methacrylate and (B) 90-20wt% of copolymer consisting essentially of (i) 88-73 (pref. 78- 74)wt% of styrene and (ii) 12-27 (pref. 22-26)wt% of acrylonitrile and (C) 5-60wt% based on the whole composition, of glass fiber is stirred in a molten state to obtain the objective composition with virtually identical refractive indices for said resin component and glass fiber (the difference falling within + or -0.01 pref. + or -0.005).

Description

【発明の詳細な説明】 本発明は、ガラス繊維強化熱可塑性樹脂組成物に係る。[Detailed description of the invention] The present invention relates to a glass fiber reinforced thermoplastic resin composition.

更に詳細には、メチルメタクリレート(以後、MMAと
略称)系重合体(以後、PMMAと略称)、スチレン(
以後、stと略称)−アクリロニトリル(以後、ANと
略称)系共重合体(以後、SANと略称)、ガラス繊維
(以後、GFと略称)の3成分から基本的に成る組成物
に係る。
More specifically, methyl methacrylate (hereinafter abbreviated as MMA)-based polymer (hereinafter abbreviated as PMMA), styrene (hereinafter abbreviated as PMMA),
The present invention relates to a composition basically consisting of three components: an acrylonitrile (hereinafter abbreviated as AN) copolymer (hereinafter abbreviated as SAN) and glass fiber (hereinafter abbreviated as GF).

P MMAは優れた光学特性、耐候性、表面硬さ、加工
性を有し、そのため多くの成形品の原料樹脂として広く
利用されている。一方、S’ANは硬く透明で耐薬品性
に優れ、更に、経済性にも優れた熱可塑性樹脂である。
PMMA has excellent optical properties, weather resistance, surface hardness, and processability, and is therefore widely used as a raw material resin for many molded products. On the other hand, S'AN is a thermoplastic resin that is hard, transparent, and has excellent chemical resistance, as well as excellent economic efficiency.

これらの樹脂の剛性と強度を更に向上させる手段として
、GFの添加は広く使用される手段である。GFを添加
した樹脂は、剛性、耐衝撃性、寸法安定性に優れ家電部
品、自動車部品、工業部品等に広く使用されている。
Addition of GF is a widely used means to further improve the stiffness and strength of these resins. Resins containing GF have excellent rigidity, impact resistance, and dimensional stability, and are widely used in home appliance parts, automobile parts, industrial parts, and the like.

しかるに、これ等のGF強化熱可塑性樹脂は、PMMA
あるいはSANの最大の特徴である透[ILl性を失な
っている場合が多い。この理由は添加されたGFの光屈
折率と樹脂の光屈折率が一致しないことにより、樹脂中
に透過した光が乱屈折することが主たる原因である。
However, these GF-reinforced thermoplastic resins are PMMA
Or, in many cases, the most important feature of a SAN, transparency, has been lost. The main reason for this is that the optical refractive index of the added GF and the optical refractive index of the resin do not match, so that light transmitted through the resin is refracted irregularly.

この欠点を解決するため、すなわちCF強化樹脂に透明
性を付与させることを目的として、、St−M M A
共重合体KGFを添加させる技術はよく知られている。
In order to solve this drawback, that is, for the purpose of imparting transparency to CF reinforced resin, St-M MA
Techniques for adding copolymer KGF are well known.

例えば、特開昭54−24993号公報にも記載がある
。これはポリスチレンの屈折率1.59とPMMAの屈
折率1.49の中間にガラスの屈折率1.51〜1.5
6があることを利用したものである。すなわち、St−
MMAを共重合させる場合、互の量を計算し得られた透
明な共重合体の屈折率をガラスの屈折率に一致させたも
のである。こうして得られた透明性を有するGF強化樹
脂はセルキャスト法によるシートとしても利用されてい
る。
For example, there is also a description in JP-A-54-24993. This is between the refractive index of polystyrene of 1.59 and the refractive index of PMMA of 1.49, and the refractive index of glass of 1.51 to 1.5.
This takes advantage of the fact that there are 6. That is, St-
When MMA is copolymerized, the refractive index of the transparent copolymer obtained by calculating the amounts of each other is made to match the refractive index of glass. The transparent GF reinforced resin thus obtained is also used as a sheet made by cell casting.

しかるに、’st−MMA共重合体で代表される透明G
F強化スチレン系樹脂の欠点は、使用するガラスの成分
の変化に伴うガラスの屈折率の変動に対して、その都度
StとMMAの共重合比率を変更させなければならない
ことにある。これは種々のガラスからなるCFを用いる
場合において、それぞれ対応する共重合比率を不するS
t−MMA共重合体を生産しなければならず工業的にい
ちじるしく不利な事である。
However, transparent G represented by 'st-MMA copolymer
A disadvantage of F-reinforced styrene resins is that the copolymerization ratio of St and MMA must be changed each time the refractive index of the glass changes due to changes in the components of the glass used. This means that when using CFs made of various glasses, S.
This is a significant industrial disadvantage since t-MMA copolymers must be produced.

もし、屈折率が1.59のポリスチレンと、屈折率が1
.49のPMMAが両溶融状態で機械的に混合され、均
一に混9合い透明な樹脂が得られるならは、屈折率1.
51〜1.56を有するガラス繊維と混合することによ
シ、簡単に透明性を有するガラス繊維強化スチレン系樹
脂が得られるであろう。
If polystyrene has a refractive index of 1.59 and polystyrene has a refractive index of 1.
.. If 49 PMMA is mechanically mixed in both molten states and mixed uniformly to obtain a transparent resin, the refractive index will be 1.
By mixing with glass fibers having a molecular weight of 51 to 1.56, transparent glass fiber-reinforced styrenic resins can be easily obtained.

しかし、実際にはポリスチレンとPMMAやポリスチレ
ンとMMAを主体とした共重合物とは溶融混合しても決
して透明な樹脂を与えない。すなわち、両樹脂の相溶性
は不良であり、いかなる温合手段を用いても不透明な樹
脂しか得られない。従ってこの手段を用いて透明性を有
するGF強化熱可塑性樹脂を得ることは不可能であった
However, in reality, even when polystyrene and PMMA or a copolymer mainly composed of polystyrene and MMA are melt-mixed, a transparent resin is never obtained. That is, the compatibility of both resins is poor, and no matter what heating means is used, only an opaque resin can be obtained. Therefore, it has been impossible to obtain a transparent GF-reinforced thermoplastic resin using this method.

本発明者らは鋭意研究を進めた結果、SAN とPMM
Aを両者溶融状態において機械的に混合することによシ
、均一に混9合った透明混合物を得ること、さらにGF
を添加する事によシ、透明性が優れたGF強化熱可塑性
樹脂組成物を得る事を見い出した。
As a result of intensive research, the inventors found that SAN and PMM
By mechanically mixing both A in a molten state, a uniformly mixed transparent mixture can be obtained, and further GF
It was discovered that a GF-reinforced thermoplastic resin composition with excellent transparency can be obtained by adding .

すなわち、PMMAは屈折率1.49付近であシ、SA
Nの屈折率は1.56〜1.57であり、PIVIM:
AとSANを均一に混合することにより、GFの屈折率
1.51〜1.56に合せることができ、透明なGF強
化樹脂組成物が得られることを発見した。
That is, PMMA has a refractive index of around 1.49, and SA
The refractive index of N is 1.56-1.57, and PIVIM:
It has been discovered that by uniformly mixing A and SAN, the refractive index of GF can be adjusted to 1.51 to 1.56, and a transparent GF-reinforced resin composition can be obtained.

本発明は、 (5)、MMAが84重量%以上であるMMAを主体と
したアクリル樹脂10〜5oxis(樹脂基準)と (B)、St 88〜73重量%、AN 12〜27重
量%から基本的に成るSAN 90〜20重量%(樹脂
基準)と が均一に混合された透明な樹脂成分と、GF5〜60重
量%(全組成物基準)が溶融状態で混合されることによ
シ得られる組成物であり、樹脂成分とGFの屈折率が実
質的に一致し、透明性を有するGF強化樹脂組成物であ
る。
The present invention is based on (5) an acrylic resin based on MMA of 84% by weight or more (resin standard) and (B) 88-73% by weight of St and 12-27% by weight of AN. It is obtained by mixing a transparent resin component uniformly mixed with 90 to 20% by weight of SAN (based on the resin), which is a target, and 5 to 60% by weight of GF (based on the total composition) in a molten state. It is a transparent GF-reinforced resin composition in which the refractive index of the resin component and GF substantially match.

本発明に述べるアクリル樹脂とは、MMAが84重量%
以上のM IVI Aが主体の樹脂であり、共重合でき
るモノマーとしては、アルキルアクリレート(アルキル
基がメチル、エチル、プロピル、ブチル、2エチルヘキ
シル等)が良好に使用できる。好まし、くけMMAが9
0〜98沖量チの共重合体である。M M Aが98重
量係以上の重合体は成形中に熱分解が起シやすく、90
重量%以下の重合体はPMMAの特性が現れにくい。
The acrylic resin described in the present invention contains 84% by weight of MMA.
The above-mentioned M IVI A is the main resin, and as the copolymerizable monomer, alkyl acrylate (where the alkyl group is methyl, ethyl, propyl, butyl, 2-ethylhexyl, etc.) can be favorably used. Preferably, Kuke MMA is 9
It is a copolymer with a weight of 0 to 98 ohms. Polymers with M M A of 98 weight coefficient or higher tend to undergo thermal decomposition during molding, and
If the amount of the polymer is less than % by weight, the characteristics of PMMA will hardly appear.

アフリルミt月b゛として、MMAとアルキルアクリレ
ートの共重合体が一般に広く使用されており、不発明に
於ても、この共重合体が良好に使用できる。しかし、M
MAに共重合できるモノマーとしては、アクリルアクレ
ート以外のモノマーを加えることもでき、例えば、若干
のアクリロニトリル、スチレン、無水マレイン酸、アク
リル酸、メタクリル酸、メタクリルアミド、アクリルア
ミド等の一種あるいは二種以上を共重合させることがで
きる。
A copolymer of MMA and alkyl acrylate is generally widely used as an acryl resin, and this copolymer can be used satisfactorily in the invention. However, M
As monomers that can be copolymerized with MA, monomers other than acryl acrylate can be added, such as one or more of acrylonitrile, styrene, maleic anhydride, acrylic acid, methacrylic acid, methacrylamide, acrylamide, etc. can be copolymerized.

本発明に使用できるSANはSt 88〜73重量%A
N 12〜27重量%から基本的に成るランダム共重合
体であり、この組成領域からはずれるとアクリル樹脂と
均一に相溶できなくなる。特に好ましいSAN組成はS
t 78〜74重量%、AN 22〜26重量%から成
る共重合体である。St K ANを共重合してゆくと
、ポリスチレンに対するSANの特性(耐化学薬品性等
)が現れてくるのはAN含有率が22重量%以上であシ
、事実現在市販されている5ANK於てはANN含有率
2御〜30のがほとんどである。従ってAN22〜3o
重ffi%の範囲のSANとPMMAから均一に相溶し
た組成物が得られることは、性能的にも経済的にも重要
な意味を持つものである。
SAN that can be used in the present invention is St 88-73% by weight A
It is a random copolymer basically consisting of 12 to 27% by weight of N, and if it deviates from this composition range, it will not be uniformly compatible with the acrylic resin. A particularly preferable SAN composition is S
It is a copolymer consisting of 78-74% by weight of t and 22-26% by weight of AN. As St K AN is copolymerized, the characteristics of SAN (chemical resistance, etc.) compared to polystyrene only appear when the AN content is 22% by weight or more. Most of them have an ANN content of 2 to 30. Therefore AN22~3o
The ability to obtain a uniformly compatible composition of SAN and PMMA in the weight ffi% range has important implications from both a performance and economic standpoint.

MMA系重合体とSANの相溶性に関しては既にいくつ
かの文献に紹介されている。例えば、Journal 
of Applied Polymer 5cienc
e * Vol. IL (1974)。
The compatibility of MMA-based polymers and SAN has already been introduced in several documents. For example, Journal
of Applied Polymer 5cienc
e * Vol. IL (1974).

P.449には、U3O社のM. T 、 Shawが
SAN中のAN成分が12〜18重量%の場合にMMA
系樹脂と相溶可能であると明記されている。
P. 449, U3O's M. T, Shaw is MMA when the AN component in SAN is 12 to 18% by weight
It is clearly stated that it is compatible with the system resin.

本発明者はMMA系重合体とSANを、工業的に応用の
容易な手段である溶融混合(混練)という手法を用いて
両者の組成物化の研究を進めた結果、現在、一般に市場
で使用されているAN含量の高いSANもMMA系重合
体と均一に相溶させることができ、その混合割合を調節
することによシ、温合樹脂の屈折率を調節でき、GFの
屈折率と一致させることができることを発見し、本発明
に至った。
The present inventor has conducted research on creating a composition of MMA-based polymer and SAN using a method of melt mixing (kneading), which is a method that is easy to apply industrially. SAN with a high AN content can also be uniformly mixed with the MMA-based polymer, and by adjusting the mixing ratio, the refractive index of the heated resin can be adjusted to match the refractive index of GF. We have discovered that it is possible to do this, leading to the present invention.

1)MMAとSANの混合比率は、該混合物の屈折率が
CFの屈折率と一致する比率であ,9、PMMA/5A
N=io〜8θ/90〜20 の範囲から選定される。
1) The mixing ratio of MMA and SAN is such that the refractive index of the mixture matches the refractive index of CF: 9, PMMA/5A
N=io~8θ/90~20.

この混合比率は、使用するGFL:/)屈折率、PMM
Aの組成、SANの組成により異り、その都度決定され
る。
This mixing ratio is the GFL used: /) refractive index, PMM
It varies depending on the composition of A and the composition of SAN, and is determined each time.

GFは一般にFRP,FRTPと云われているGF強化
靭脂に使用されるものである。
GF is generally used in GF-reinforced toughness called FRP and FRTP.

本発明に用いられるQFとしては、従来公知のものでア
シ、形状は、ロービング、サーフェーシング・マット、
チョツプドストランドマット、朱子織、格子織、平織、
目抜平織、綾織、ネットなど、いずれの形状でも可能で
あり、種類もE−GF(無アルカリガラス繊維)、C−
GF(含アルカリガラス繊維)など、いずれの種類でも
可能であり、例えば、C−CF (含アルカリガラス繊
維、屈折率。
The QF used in the present invention is a conventionally known QF with reeds, shapes such as roving, surfacing, mat,
Chopped strand mat, satin weave, lattice weave, plain weave,
It can be made in any shape such as plain weave, twill weave, or net, and the types include E-GF (alkali-free glass fiber) and C-GF.
Any type can be used, such as GF (alkali-containing glass fiber), for example, C-CF (alkali-containing glass fiber, refractive index).

1、51〜1.52 )の屈折率と合わせるにはPMy
LA80〜60重量部、5AN20〜40重量部の組成
割合で混合することにより、屈折率をGFの屈折率に合
せることができ、透明なGF強化樹脂を得ることができ
る。
PMy to match the refractive index of 1,51~1.52)
By mixing at a composition ratio of 80 to 60 parts by weight of LA and 20 to 40 parts by weight of 5AN, the refractive index can be matched to that of GF, and a transparent GF reinforced resin can be obtained.

GF添加量は5〜60重量%(全組成物基準)で、この
範囲で必要に応じて選択できる。5重量−以下では添加
効果がないし、60重量%以上は添加することが困難に
なる。好ましくは10〜30重量%であり、この範囲の
組成物が、性能、成形性等から最も良好に使用できる。
The amount of GF added is 5 to 60% by weight (based on the entire composition), and can be selected as needed within this range. If it is less than 5% by weight, there is no effect of addition, and if it is more than 60% by weight, it becomes difficult to add it. The content is preferably 10 to 30% by weight, and compositions within this range can best be used in terms of performance, moldability, etc.

GFは通常に使用される直径のものが使用でき、5〜5
0μ乳の直径のGFが使用できる。GF直径が小さい程
、本発明のGF強化樹脂の透明性は良くなシ、5〜15
8m のGFが特に好ましい。
GF can be used with commonly used diameters, 5 to 5
GF with a diameter of 0μ milk can be used. The smaller the GF diameter, the better the transparency of the GF reinforced resin of the present invention, 5-15
A GF of 8 m is particularly preferred.

又、GFは樹脂と密着している程、本発明のCF強化樹
脂の透明性は良くなり好ましい。GFと樹脂を密着性を
良くするため、CF衣表面、ビニルシラン、アミノシラ
ン、クロム化合物等の一般に使用される表面処理剤で処
理することば肴効である0 本発明に述べる、樹脂成分とGFの屈折率が実質的に一
致するとは、透明性が確認できる範囲に一致することを
示し屈折率が±0.01の範囲、更に好ましくは±0.
005の範囲で一致することが好ましい。
Further, the closer the GF is in contact with the resin, the better the transparency of the CF reinforced resin of the present invention becomes, which is preferable. In order to improve the adhesion between GF and resin, the surface of the CF coating is treated with a commonly used surface treatment agent such as vinyl silane, aminosilane, chromium compound, etc. "Substantially matching" means that the refractive index matches within a range where transparency can be confirmed, and the refractive index is within a range of ±0.01, more preferably ±0.01.
It is preferable that they match within the range of 005.

本発明の組成物には透明性を保持できる範囲で各種添加
物を加えることができる。例えば、染顔料、熱安定剤、
紫外線吸収剤、可塑剤等は必要に応じて添加される。
Various additives can be added to the composition of the present invention as long as transparency can be maintained. For example, dyes and pigments, heat stabilizers,
Ultraviolet absorbers, plasticizers, etc. are added as necessary.

本発明の組成物は樹脂成分とGFを溶融状態で機械的に
混合して得られる。押出機で加熱混合する方法は最も一
般的に使用てきる。更に、GFに樹脂成分を付着させた
後、圧縮成形する方法も使用できる。GFが樹脂中に短
繊維になって均一に分散する場合、GFが樹脂中に長繊
維で分散する場合、GFが織布として樹脂中に存在する
場合、いずれも本発明では可能であり、それに応じた成
形法を選択できる。
The composition of the present invention is obtained by mechanically mixing a resin component and GF in a molten state. The most commonly used method is heating and mixing using an extruder. Furthermore, it is also possible to use a method in which a resin component is attached to GF and then compression molded. If GF is uniformly dispersed in the resin as short fibers, if GF is dispersed in the resin as long fibers, or if GF is present in the resin as a woven fabric, all are possible in the present invention, and You can select the molding method that suits you.

本発明の組成物は、剛性、耐衝撃性、寸法安定性(熱膨
張係数、成形収縮率が小さいこと、により寸法安定性が
向上)に優れ、工業部品、家電部品自動車部品に使用で
き、更にグレージング材にも使用できる。
The composition of the present invention has excellent rigidity, impact resistance, and dimensional stability (dimensional stability is improved due to a small coefficient of thermal expansion and molding shrinkage), and can be used for industrial parts, household appliances, automobile parts, and more. It can also be used as a glazing material.

透明なOF強化樹脂を、一般に市販されて広く使用され
ている2つの樹脂の混合にょシ容易に製造することがで
き、その経済的効果は太きい。
A transparent OF-reinforced resin can be easily produced by mixing two generally commercially available and widely used resins, and its economical effects are significant.

実施例1 次のPMMA、SANとCFを用いて実験を行った。Example 1 Experiments were conducted using the following PMMA, SAN and CF.

PMMA:MMA97重量係、重量段アクリt/−ト3
重量%から成る共重合体 SAN : St 75重量%、AN 2s重景係から
成る共重合体、 GF:屈折率が1.5540Eガラスに、アミノシラン
で表面処理されている直径が5μmと13μm のGF
チョップ 上記PMMAとSANのベレットを各種割合に押出機で
加熱浴融混合した。該ブレンド体を射出成形によりテス
トピースを成形し、該成形品の性能を測定した。又、P
MMAとSANのブレンド体にGFを混合して、同様に
射出成形によりテストピースを成形して性能を測定し、
表1、表2、第1図に結果を示した。PMMA−8AN
ブレンドの屈折率がGFの屈折率に一致す゛る組成付近
で、全光線透過率、透視性共に最も良好になった。GF
を配合することによシ、引張強さ、曲げ弾性率、熱変形
温度が向上し、線膨張係数が小さくなった。
PMMA: MMA97 weight section, weight stage acryt/-t3
Copolymer consisting of % by weight SAN: Copolymer consisting of 75% by weight St, AN 2s, GF: GF with a diameter of 5 μm and 13 μm surface treated with aminosilane on 5540E glass with a refractive index of 1.5
Chop The pellets of PMMA and SAN described above were mixed in various proportions in a heated bath using an extruder. A test piece was molded from the blend by injection molding, and the performance of the molded product was measured. Also, P
GF was mixed into a blend of MMA and SAN, and a test piece was similarly molded by injection molding to measure the performance.
The results are shown in Table 1, Table 2, and Figure 1. PMMA-8AN
Both the total light transmittance and transparency were the best near the composition where the refractive index of the blend matched the refractive index of GF. GF
By adding , the tensile strength, flexural modulus, and thermal deformation temperature were improved, and the coefficient of linear expansion was reduced.

以下余白Margin below

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] 1、 (4)メチルメタアクリレートが84重量0%以
上であるメチルメタアクリレートを主体としたアクリル
樹脂10〜80重量Lfb(樹脂基準)と、(J3)ス
チレン88〜73重量%、アクリロニトリル12〜27
重量渠から基本的に成る共重合体90〜20重量係(樹
脂基準)が均一に混合された透明な樹脂成分と、ガラス
繊維5〜60重量%(全組成物基準)が溶融状態で混合
されることにより得られる組成物であり、樹脂成分とガ
ラス繊維の屈折率が実質的に一致し、透明性を有するガ
ラス繊維強化熱可塑性樹脂組成物2 スチレン78〜7
4重量%、アクリロニトリル22〜26重量%から基本
的に成る共重合体を用いる特許請求の範囲第1項記載の
組成物
1. (4) Acrylic resin 10 to 80 weight Lfb (resin basis) mainly composed of methyl methacrylate with 84 weight % or more of methyl methacrylate, and (J3) Styrene 88 to 73 weight %, acrylonitrile 12 to 27
A transparent resin component in which 90-20% by weight (resin basis) of a copolymer basically consisting of a copolymer is mixed uniformly with 5-60% by weight glass fiber (based on the total composition) in a molten state. Glass fiber-reinforced thermoplastic resin composition 2, which has transparency and whose refractive indexes of the resin component and glass fiber substantially match, Styrene 78-7
4% by weight of acrylonitrile and 22-26% by weight of acrylonitrile.
JP20588583A 1983-11-04 1983-11-04 Transparent glass fiber-reinforced thermoplastic resin composition Granted JPS6099151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20588583A JPS6099151A (en) 1983-11-04 1983-11-04 Transparent glass fiber-reinforced thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20588583A JPS6099151A (en) 1983-11-04 1983-11-04 Transparent glass fiber-reinforced thermoplastic resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23071592A Division JPH0694523B2 (en) 1992-08-31 1992-08-31 Method for producing glass fiber reinforced thermoplastic resin composition having transparency

Publications (2)

Publication Number Publication Date
JPS6099151A true JPS6099151A (en) 1985-06-03
JPH0356256B2 JPH0356256B2 (en) 1991-08-27

Family

ID=16514337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20588583A Granted JPS6099151A (en) 1983-11-04 1983-11-04 Transparent glass fiber-reinforced thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS6099151A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601456A1 (en) * 1992-12-04 1994-06-15 Hoechst Aktiengesellschaft Glass-fibre reinforced cyclo-olefin polymer material and process for its preparation
JP2005200466A (en) * 2004-01-13 2005-07-28 Bando Chem Ind Ltd Acrylic resin film and method for producing the same
US7045927B2 (en) * 2003-11-12 2006-05-16 Hilti Aktiengesellschaft Commutator
JP2007077385A (en) * 2005-08-19 2007-03-29 Asahi Kasei Chemicals Corp High-rigidity decorated extruded sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5399671B2 (en) * 2008-09-19 2014-01-29 パナソニック株式会社 Photoelectric composite substrate and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855088U (en) * 1981-10-08 1983-04-14 株式会社資生堂 Pressure-resistant containers in aerosol sprayers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2030559B (en) * 1978-09-26 1983-06-15 Standard Telephones Cables Ltd Zinc oxide glass composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855088U (en) * 1981-10-08 1983-04-14 株式会社資生堂 Pressure-resistant containers in aerosol sprayers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601456A1 (en) * 1992-12-04 1994-06-15 Hoechst Aktiengesellschaft Glass-fibre reinforced cyclo-olefin polymer material and process for its preparation
US7045927B2 (en) * 2003-11-12 2006-05-16 Hilti Aktiengesellschaft Commutator
JP2005200466A (en) * 2004-01-13 2005-07-28 Bando Chem Ind Ltd Acrylic resin film and method for producing the same
JP2007077385A (en) * 2005-08-19 2007-03-29 Asahi Kasei Chemicals Corp High-rigidity decorated extruded sheet

Also Published As

Publication number Publication date
JPH0356256B2 (en) 1991-08-27

Similar Documents

Publication Publication Date Title
CA1174396A (en) Thermoplastic molding composition including polycarbonate, a copolymer of acrylonitrile, butadiene and alkenyl aromatic compound and an interpolymer of acrylate and methacrylate
EP0483717A2 (en) Polymer blends
EP0094056B1 (en) Optical materials
KR101429801B1 (en) Impact modifier for polymethylmetacrylate resin having excellent impact strength and transparency and method of preparing the same
JP3119457B2 (en) Transparent film
JPS6099151A (en) Transparent glass fiber-reinforced thermoplastic resin composition
CA1328145C (en) Thermoplastic copolymer
JPS61258813A (en) Heat-resistant sheath polymer
JPH0694523B2 (en) Method for producing glass fiber reinforced thermoplastic resin composition having transparency
JPS634564B2 (en)
JPH061903A (en) Polymer composition
JPH0328463B2 (en)
JP3216179B2 (en) Transparent resin composition
JPS6327516A (en) Highly weather-and impact-resistant acrylic resin granular composite material
CA1186838A (en) Blends of an acrylic polymer and impact resistant interpolymer
KR101201832B1 (en) Glass fiber-reinforced polyester resin composition
JPH03205407A (en) Transparent heat-resistant copolymer
JPH0129220B2 (en)
CN108456371A (en) A kind of modified AS resin composite materials
JPH0380135A (en) Sizing agent and glass fiber coated with the agent
JP3208810B2 (en) Transparent resin composition
JPH07149819A (en) Production of clear and heat-resistant resin
CN105462094A (en) Antibacterial AS composition and preparation method thereof
JP5385518B2 (en) Fluidity modifier, thermoplastic resin composition and molded article
JPS60245661A (en) Organic-inorganic composite composition