JPH0356256B2 - - Google Patents

Info

Publication number
JPH0356256B2
JPH0356256B2 JP58205885A JP20588583A JPH0356256B2 JP H0356256 B2 JPH0356256 B2 JP H0356256B2 JP 58205885 A JP58205885 A JP 58205885A JP 20588583 A JP20588583 A JP 20588583A JP H0356256 B2 JPH0356256 B2 JP H0356256B2
Authority
JP
Japan
Prior art keywords
weight
resin
refractive index
composition
san
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58205885A
Other languages
Japanese (ja)
Other versions
JPS6099151A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20588583A priority Critical patent/JPS6099151A/en
Publication of JPS6099151A publication Critical patent/JPS6099151A/en
Publication of JPH0356256B2 publication Critical patent/JPH0356256B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/60Methods for processing data by generating or executing the game program
    • A63F2300/66Methods for processing data by generating or executing the game program for rendering three dimensional images
    • A63F2300/6615Methods for processing data by generating or executing the game program for rendering three dimensional images using models with different levels of detail [LOD]

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ガラス繊維強化熱可塑性樹脂組成物
に係る。更に詳細には、メチルメタクリレート
(以後、MMAと略称)系重合体(以後、PMMA
と略称)、スチレン(以後、Stと略称)−アクリロ
ニトリル(以後、ANと略称)系共重合体(以
後、SANと略称)、ガラス繊維(以後、GFと略
称)の3成分から基本的に成る組成物に係る。 PMMAは優れた光学特性、耐候性、表面硬さ、
加工性を有し、そのため多くの成形品の原料樹脂
として広く利用されている。一方、SANは硬く
透明で耐薬品性を優れ、更に、経済性にも優れた
熱可塑性樹脂である。 これらの樹脂の剛性と強度を更に向上させる手
段として、GFの添加は広く使用される手段であ
る。GFを添加した樹脂は、剛性、耐衝撃性、寸
法安定性に優れた家電部品、自動車部品、工業部
品等に広く使用されている。 しかるに、これ等のGF強化熱可塑性樹脂は、
PMMAあるいはSANを最大の特徴である透明性
を失なつている場合が多い。この理由は添加され
たGFの光屈折率と樹脂の光屈折率が一致しない
ことにより、樹脂中に透過した光が乱屈折するこ
とが主たる原因である。 この欠点を解決するため、すなわちGF強化樹
脂に透明性を付与させることを目的として、St−
MMA共重合体にGFを添加させる技術はよく知
られている。例えば、特開昭54−24993号公報に
も記載がある。これはポリスチレンの屈折率1.59
とPMMAの屈折率1.49の中間にガラスの屈折率
1.51〜1.56があることを利用したものである。す
なわち、St−MMAを共重合させる場合、互の量
を計算し得られた透明な共重合体の屈折率をガラ
スの屈折率に一致させたものである。こうして得
られた透明性を有するGF強化樹脂はセルキヤス
ト法によるシートとしても利用されている。 しかるに、St−MMA共重合体で代表される透
明GF強化スチレン系樹脂の欠点は、使用するガ
ラスの成分の変化に伴うガラスの屈折率の変動に
対して、その都度StとMMAの共重合比率を変更
させなければならないことにある。これは種々の
ガラスからなるGFを用いる場合において、それ
ぞれ対応する共重合比率を有するSt−MMA共重
合体を生産しなければならず工業的にいちじるし
く不利な事である。 もし、屈折率が1.59のポリスチレンと、屈折率
が1.49のPMMAが両溶融状態で機械的に混合さ
れ、均一に混り合い透明な樹脂が得られるなら
ば、屈折率1.51〜1.56を有するガラス繊維と混合
することにより、簡単に透明性を有するガラス繊
維強化スチレン系樹脂が得られるであろう。 しかし、実際にはポリスチレンとPMMAやポ
リスチレンとMMAを主体とした共重合物とは溶
融混合しても決して透明な樹脂を与えない。すな
わち、両樹脂の相溶性は不良であり、いかなる混
合手段を用いても不透明な樹脂しか得られない。
従つてこの手段を用いて透明性を有するGF強化
熱可塑性樹脂を得ることは不可能であつた。 本発明者らは鋭意研究を進めた結果、SANと
PMMAを両者溶融状態において機械的に混合す
ることにより、均一に混り合つた透明混合物を得
ること、さらにGFを添加する事により、透明性
が優れたGF強化熱可塑性樹脂組成物を得る事を
見い出した。 すなわち、PMMAは屈折率1.49付近であり、
SANの屈折率は1.56〜1.67であり、PMMAと
SANを均一に混合することにより、GFの屈折率
1.51〜1.56に合せることができ、透明なGF強化樹
脂組成物が得られることを発見した。 本発明は、 (A) MMAが84重量%以上であるMMAを主体と
したアクリル樹脂10〜80重量%(樹脂基準)と (B) St88〜73重量%、AN12〜27重量%から基本
的に成るSAN90〜20重量%(樹脂基準)と が均一に混合された透明な樹脂成分と、GF5〜60
重量%(全組成物基準)が溶融状態で混合される
ことにより得られる組成物であり、樹脂成分と
GFの屈折率が実質的に一致し、透明性を有する
GF強化樹脂組成物である。 本発明に述べるアクリル樹脂とは、MMAが84
重量%以上のMMAが主体の樹脂であり、共重合
できるモノマーとしては、エーテルアクリレート
(アルキル基がメチル、エチル、プロピル、ブチ
ル、2エチルヘキシル等)が良好に使用できる。
好ましくはMMAが90〜98重量%の共重合体であ
る。MMAが98重量%以上の重合体は成形中の熱
分解が起りやすく、90重量%以下の重合体は
PMMAの特性が現れにくい。 アクリル樹脂として、MMAとアルキルアクリ
レートの共重合体が一般に広く使用されており、
本発明に於ても、この共重合体が良好に使用でき
る。しかし、MMAに共重合できるモノマーとし
ては、アクリルアクレート以外のモノマーを加え
ることもでき、例えば、若干のアクリロニトリ
ル、スチレン、無水マレイン酸、アクリル酸、メ
タクリル酸、メタクリルアミド、アクリルアミド
等の一種あるいは二種以上を共重合させることが
できる。 本発明に使用できるSANはSt88〜73重量%
AN12〜27重量%から基本的に成るランダム共重
合体であり、この組成領域からはずれるとアクリ
ル樹脂と均一に相溶できなくなる。特に好ましい
SAN組成はSt78〜74重量%、AN22〜26重量%
から成る共重合体である。StにANを共重合して
ゆくと、ポリスチレンに対するSANの特性(耐
化学薬品性等)が現れてくるのはAN含有率が22
重量%以上であり、事実現在市販されている
SANに於てはAN含有率22〜30重量%のものが
ほとんどである。従つてAN22〜30重量%の範囲
のSANとPMMAから均一に相溶した組成物が得
られることは、性能的にも経済的にも重要な意味
を持つものである。 MMA系重合体とSANの相溶性に関しては既
にいくつかの文献に紹介されている。例えば、
Journal of Applied Polymer Science,Vol.18,
(1974),P.449には、UCC社のM.T.ShawがSAN
中のAN成分が12〜18重量%の場合にMMA系樹
脂と相溶可能であると明記されている。 本発明者はMMA系重合体とSANを、工業的
に応用の容易な手段である溶融混合(混練)とい
う手法を用いて両者の組成物化の研究を進めた結
果、現在、一般に市場で使用されているAN含量
の高いSANそMMA系重合体と均一に相溶させ
ることができ、その混合割合を調節することによ
り、混合樹脂の屈折率を調節でき、GFの屈折率
と一致させることができることを発見し、本発明
に至つた。 PMMAとSANの混合比率は、該混合物の屈折
率がGFの屈折率と一致する比率であり、
PMMA/SAN=10〜80/90〜20の範囲から選定
される。この混合比率は、使用するGFの屈折率、
PMMAの組成、SANの組成により異り、その都
度決定される。 GFは一般にFRP、FRTPと云われているGF強
化樹脂に使用されるものである。 本発明に用いられるGFとしては、従来公知の
ものであり、形状は、ロービング、サーフエーシ
ング・マツト、チヨツプドストランドマツト、朱
子織、格子織、平織、目抜平織、綾織、ネツトな
ど、いずれかの形状でも可能であり、種類もE−
GF(無アルカリガラス繊維)、C−GF(含アルカ
リガラス繊維)など、いずれの種類でも可能であ
り、例えば、C−GF(含アルカリガラス繊維、屈
折率;1.51〜1.52)の屈折率と合わせるには
PMMA80〜60重量部、SAN20〜40重量部の組成
割合で混合することにより、屈折率をGFの屈折
率に合せることができ、透明なGF強化樹脂を得
ることができる。 GF添加量は5〜60重量%(全組成物基準)で、
この範囲で必要に応じて選択できる。5重量%以
下では添加効果がないし、60重量%以上は添加す
ることが困難になる。好ましくは10〜30重量%で
あり、この範囲の組成物が、性能、成形性等から
最も良好に使用できる。 GFは通常に使用される直径のものが使用でき、
5〜50μmの直径のGFが使用できる。GF直径が
小さい程、本発明のGF強化樹脂の透明性は良く
なり、5〜15μmのGFが特に好ましい。又、GF
は樹脂と密着している程、本発明のGF強化樹脂
の透明性は良くなり好ましい。GFと樹脂を密着
性を良くするめ、GF表面を、ビニルシラン、ア
ミノシラン、クロム化合物等の一般に使用される
表面処理剤で処理することは有効である。 本発明に述べる、樹脂成分とGFの屈折率が実
質的に一致するとは、透明性が確認できる範囲に
一致することを示し屈折率が±0.01の範囲、更に
好ましくは±0.005の範囲で一致することが好ま
しい。 本発明の組成物には透明性を保持できる範囲で
各種添加物を加えることができる。例えば、染顔
料、熱安定剤、紫外線吸収剤、可塑剤等は必要に
応じて添加される。 本発明の組成物は樹脂成分とGFを溶融状態で
機械的に混合して得られる。押出機で加熱混合す
る方法は最も一般的に使用できる。更に、GFに
樹脂分を付着させた後、圧縮成形する方法も使用
できる。GFが樹脂中に短繊維になつて均一に分
散する場合、GFが樹脂中に長繊維で分散する場
合、GFが織布として樹脂中に存在する場合、い
ずれも本発明では可能であり、それに応じた成形
法を選択できる。 本発明の組成物は、剛性、耐衝撃性、寸法安定
性(熱膨張係数、成形収縮率が小さいことにより
寸法安定性が向上)に優れ、工業部品、家電部品
自動車部品に使用でき、更にグレージング材にも
使用できる。 透明なGF強化樹脂を、一般に市販されて広く
使用されている2つの樹脂の混合により容易に製
造することができ、その経済的効果は大きい。 実施例 1 次のPMMA、SANとGFを用いて実験を行つ
た。 PMMA:MMA97重量%、メチルアクリレート
3重量%から成る共重合体 SAN:St75重量%、AN25重量%から成る共重
合体、 GF:屈折率が1.554のEガラスに、アミノシラン
で表面処理されている直径が5μmと13μmの
GFチヨツプ 上記PMMAとSANのペレツトを各種割合に押
出機で加熱溶融混合した。該ブレンド体を射出成
形によりテストピースを成形し、該成形品の性能
を測定した。又、PMMAとSANのブレンド体に
GFを混合して、同様に射出成形によりテストピ
ースを成形して性能を測定し、表1、表2、第1
図に結果を示した。PMMA−SANブレンドの屈
折率がGFの屈折率に一致する組成付近で、全光
線透過率、透視性共に最も良好になつた。GFを
配合することにより、引張強さ、曲げ弾性率、熱
変形温度が向上し、線膨張係数が小さくなつた。
The present invention relates to a glass fiber reinforced thermoplastic resin composition. More specifically, methyl methacrylate (hereinafter abbreviated as MMA)-based polymer (hereinafter referred to as PMMA)
It basically consists of three components: styrene (hereinafter abbreviated as St)-acrylonitrile (hereinafter abbreviated as AN) copolymer (hereinafter abbreviated as SAN), and glass fiber (hereinafter abbreviated as GF). It concerns a composition. PMMA has excellent optical properties, weather resistance, surface hardness,
It has processability and is therefore widely used as a raw material resin for many molded products. On the other hand, SAN is a thermoplastic resin that is hard, transparent, has excellent chemical resistance, and is also economical. Addition of GF is a widely used means to further improve the stiffness and strength of these resins. GF-added resins are widely used in home appliance parts, automobile parts, industrial parts, etc. due to their excellent rigidity, impact resistance, and dimensional stability. However, these GF-reinforced thermoplastic resins
In many cases, the most important feature of PMMA or SAN is the lack of transparency. The main reason for this is that the optical refractive index of the added GF and the optical refractive index of the resin do not match, so that the light transmitted through the resin is refracted irregularly. In order to solve this drawback, that is, to impart transparency to GF reinforced resin, St-
The technique of adding GF to MMA copolymers is well known. For example, there is also a description in JP-A-54-24993. This is the refractive index of polystyrene, which is 1.59.
The refractive index of glass is between 1.49 and the refractive index of PMMA
This takes advantage of the fact that there are 1.51 to 1.56. That is, when copolymerizing St-MMA, the refractive index of the transparent copolymer obtained by calculating the amounts of each other is made to match the refractive index of glass. The transparent GF-reinforced resin thus obtained is also used as a sheet made by the cell cast method. However, the drawback of transparent GF-reinforced styrenic resins, such as St-MMA copolymers, is that the copolymerization ratio of St and MMA varies depending on the changes in the refractive index of the glass that occurs due to changes in the components of the glass used. The problem lies in the fact that we have to change. This is a significant industrial disadvantage when using GFs made of various glasses, as St-MMA copolymers having corresponding copolymerization ratios must be produced. If polystyrene with a refractive index of 1.59 and PMMA with a refractive index of 1.49 are mechanically mixed in both molten states and a transparent resin is obtained by uniformly mixing, then glass fiber with a refractive index of 1.51 to 1.56 can be obtained. By mixing with the glass fiber reinforced styrenic resin, a glass fiber reinforced styrenic resin having transparency can be easily obtained. However, in reality, even if polystyrene and PMMA or a copolymer mainly composed of polystyrene and MMA are melt-mixed, a transparent resin will never be obtained. That is, the compatibility of both resins is poor, and no matter what mixing means is used, only an opaque resin can be obtained.
Therefore, it has been impossible to obtain a transparent GF-reinforced thermoplastic resin using this method. As a result of intensive research, the inventors found that SAN and
By mechanically mixing both PMMA in a molten state, a uniformly mixed transparent mixture can be obtained, and by further adding GF, a GF-reinforced thermoplastic resin composition with excellent transparency can be obtained. I found it. In other words, PMMA has a refractive index of around 1.49,
The refractive index of SAN is 1.56-1.67, and PMMA and
By uniformly mixing SAN, the refractive index of GF
1.51 to 1.56, and it was discovered that a transparent GF reinforced resin composition could be obtained. The present invention basically consists of (A) 10 to 80 weight % MMA-based acrylic resin containing 84 weight % or more (resin standard) and (B) St 88 to 73 weight % and AN 12 to 27 weight %. A transparent resin component consisting of a uniform mixture of SAN90~20% by weight (resin standard) and GF5~60
It is a composition obtained by mixing % by weight (based on the total composition) in a molten state, and the resin component and
The refractive index of GF substantially matches and is transparent
It is a GF reinforced resin composition. The acrylic resin described in the present invention has an MMA of 84
The resin is mainly composed of MMA in an amount of % by weight or more, and ether acrylate (having an alkyl group such as methyl, ethyl, propyl, butyl, 2-ethylhexyl, etc.) can be favorably used as a copolymerizable monomer.
Preferably, it is a copolymer containing 90 to 98% by weight of MMA. Polymers with MMA content of 98% by weight or more are prone to thermal decomposition during molding, while polymers with MMA content of 90% by weight or less are prone to thermal decomposition during molding.
The characteristics of PMMA are difficult to show. Copolymers of MMA and alkyl acrylate are generally widely used as acrylic resins.
This copolymer can also be favorably used in the present invention. However, as monomers that can be copolymerized with MMA, monomers other than acryl acrylate can be added, such as some acrylonitrile, styrene, maleic anhydride, acrylic acid, methacrylic acid, methacrylamide, acrylamide, etc. More than one species can be copolymerized. SAN that can be used in the present invention is St88-73% by weight
It is a random copolymer basically consisting of 12 to 27% by weight of AN, and if it deviates from this composition range, it will not be uniformly compatible with acrylic resin. particularly preferred
SAN composition is St78~74wt%, AN22~26wt%
It is a copolymer consisting of When AN is copolymerized with St, the characteristics of SAN (chemical resistance, etc.) compared to polystyrene appear when the AN content is 22.
% by weight or more, and in fact is currently commercially available.
Most SANs have an AN content of 22 to 30% by weight. Therefore, the ability to obtain a uniformly compatible composition of SAN and PMMA in the range of 22 to 30% by weight of AN has important meaning from both a performance and economical point of view. The compatibility of MMA-based polymers and SAN has already been introduced in several literatures. for example,
Journal of Applied Polymer Science, Vol.18,
(1974), p. 449, UCC's MTSaw is a SAN
It is specified that it is compatible with MMA resin when the AN component in it is 12 to 18% by weight. The present inventor has conducted research on creating a composition of MMA-based polymer and SAN using a method called melt mixing (kneading), which is a method that is easy to apply industrially. The refractive index of the mixed resin can be adjusted to match the refractive index of GF by adjusting the mixing ratio. This discovery led to the present invention. The mixing ratio of PMMA and SAN is such that the refractive index of the mixture matches the refractive index of GF,
PMMA/SAN=Selected from the range of 10~80/90~20. This mixing ratio is determined by the refractive index of the GF used,
It varies depending on the composition of PMMA and SAN, and is determined each time. GF is generally used in GF reinforced resins called FRP and FRTP. The GF used in the present invention is conventionally known, and its shapes include roving, surfacing mat, chopped strand mat, satin weave, lattice weave, plain weave, open plain weave, twill weave, and net. , any shape is possible, and the type is E-
Either type is possible, such as GF (alkali-free glass fiber), C-GF (alkali-containing glass fiber), etc. For example, it can be combined with the refractive index of C-GF (alkali-containing glass fiber, refractive index: 1.51 to 1.52). for
By mixing PMMA in a composition ratio of 80 to 60 parts by weight and SAN in a composition ratio of 20 to 40 parts by weight, the refractive index can be matched to that of GF, and a transparent GF reinforced resin can be obtained. The amount of GF added is 5 to 60% by weight (based on the entire composition),
You can select from this range as needed. If it is less than 5% by weight, there is no effect of adding it, and if it is more than 60% by weight, it becomes difficult to add it. The content is preferably 10 to 30% by weight, and compositions within this range can be used best in terms of performance, moldability, etc. GF can be used with commonly used diameters.
GFs with a diameter of 5-50 μm can be used. The smaller the GF diameter, the better the transparency of the GF-reinforced resin of the present invention, with GFs of 5 to 15 μm being particularly preferred. Also, GF
The closer the resin is in contact with the resin, the better the transparency of the GF reinforced resin of the present invention becomes. In order to improve the adhesion between GF and resin, it is effective to treat the GF surface with a commonly used surface treatment agent such as vinylsilane, aminosilane, or chromium compound. In the present invention, the term "the refractive indexes of the resin component and GF substantially match" means that they match within a range where transparency can be confirmed, and the refractive indexes match within a range of ±0.01, more preferably within a range of ±0.005. It is preferable. Various additives can be added to the composition of the present invention as long as transparency can be maintained. For example, dyes and pigments, heat stabilizers, ultraviolet absorbers, plasticizers, etc. are added as necessary. The composition of the present invention is obtained by mechanically mixing the resin component and GF in a molten state. The most commonly used method is heating and mixing using an extruder. Furthermore, it is also possible to use a method in which a resin component is attached to GF and then compression molded. If GF is uniformly dispersed in the resin as short fibers, if GF is dispersed in the resin as long fibers, or if GF is present in the resin as a woven fabric, all are possible in the present invention, and You can select the molding method that suits you. The composition of the present invention has excellent rigidity, impact resistance, and dimensional stability (dimensional stability is improved due to a small coefficient of thermal expansion and molding shrinkage), and can be used for industrial parts, home appliances, automobile parts, and even glazing. It can also be used for wood. A transparent GF-reinforced resin can be easily produced by mixing two generally commercially available and widely used resins, and its economical effects are large. Example 1 Experiments were conducted using the following PMMA, SAN and GF. PMMA: Copolymer consisting of 97% by weight of MMA and 3% by weight of methyl acrylate. SAN: Copolymer consisting of 75% by weight of St and 25% by weight of AN. GF: Diameter of E glass with a refractive index of 1.554 and surface treated with aminosilane. is 5μm and 13μm
GF Chip The above PMMA and SAN pellets were heated and melted and mixed in various proportions using an extruder. A test piece was molded from the blend by injection molding, and the performance of the molded product was measured. Also, a blend of PMMA and SAN
GF was mixed and a test piece was similarly molded by injection molding to measure the performance.Table 1, Table 2,
The results are shown in the figure. When the refractive index of the PMMA-SAN blend matched the refractive index of GF, both the total light transmittance and transparency were the best. By blending GF, the tensile strength, flexural modulus, and heat distortion temperature were improved, and the linear expansion coefficient was reduced.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、PMMA−SANブレンドの屈折率*
1と、PMMA−SAN−GF(20重量%)系組成物
の全光線透過率*2を示すグラフである。但し、
横軸はPMMA−SANの組成重量割合(%)を示
す。
Figure 1 shows the refractive index of PMMA-SAN blend*
1 and the total light transmittance *2 of PMMA-SAN-GF (20% by weight) based composition. however,
The horizontal axis shows the composition weight ratio (%) of PMMA-SAN.

Claims (1)

【特許請求の範囲】 1 (A)メチルメタアクリレートが84重量%以上で
あるメチルメタアクリレートを主体としたアクリ
ル樹脂10〜80重量%(樹脂基準)と、(B)スチレン
88〜73重量%、アクリロニトリル12〜27重量%か
ら基本的に成る共重合体90〜20重量%(樹脂基
準)が均一に混合された透明な樹脂成分と、ガラ
ス繊維5〜60重量%(全組成物基準)が溶融状態
で混合されることにより得られる組成物であり、
樹脂成分とガラス繊維の屈折率が実質的に一致
し、透明性を有するガラス繊維強化熱可塑性樹脂
組成物。 2 スチレン78〜74重量%、アクリロニトリル22
〜26重量%から基本的に成る共重合体を用いる特
許請求の範囲第1項記載の組成物。
[Scope of Claims] 1 (A) 10 to 80% by weight (resin basis) of an acrylic resin mainly composed of methyl methacrylate, which contains 84% by weight or more of methyl methacrylate, and (B) styrene.
A transparent resin component in which 90-20% by weight (resin basis) of a copolymer basically consisting of 88-73% by weight and 12-27% by weight of acrylonitrile is uniformly mixed, and 5-60% by weight of glass fiber (total A composition obtained by mixing (composition standard) in a molten state,
A glass fiber-reinforced thermoplastic resin composition in which the refractive index of the resin component and the glass fiber substantially match, and which has transparency. 2 Styrene 78-74% by weight, acrylonitrile 22
2. A composition according to claim 1, comprising a copolymer consisting essentially of ~26% by weight.
JP20588583A 1983-11-04 1983-11-04 Transparent glass fiber-reinforced thermoplastic resin composition Granted JPS6099151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20588583A JPS6099151A (en) 1983-11-04 1983-11-04 Transparent glass fiber-reinforced thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20588583A JPS6099151A (en) 1983-11-04 1983-11-04 Transparent glass fiber-reinforced thermoplastic resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23071592A Division JPH0694523B2 (en) 1992-08-31 1992-08-31 Method for producing glass fiber reinforced thermoplastic resin composition having transparency

Publications (2)

Publication Number Publication Date
JPS6099151A JPS6099151A (en) 1985-06-03
JPH0356256B2 true JPH0356256B2 (en) 1991-08-27

Family

ID=16514337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20588583A Granted JPS6099151A (en) 1983-11-04 1983-11-04 Transparent glass fiber-reinforced thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS6099151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072472A (en) * 2008-09-19 2010-04-02 Panasonic Electric Works Co Ltd Photoelectric composite substrate and method of manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4240784A1 (en) * 1992-12-04 1994-06-09 Hoechst Ag Glass fiber reinforced cycloolefin polymer material and process for its manufacture
DE10352829A1 (en) * 2003-11-12 2005-06-23 Hilti Ag Commutator for commutator motors has supporting body consisting glass, e.g. transparent, bright glass, with electrically conductive segments on external peripheral surface; supporting body can be section of glass tube
JP2005200466A (en) * 2004-01-13 2005-07-28 Bando Chem Ind Ltd Acrylic resin film and method for producing the same
JP5008915B2 (en) * 2005-08-19 2012-08-22 旭化成ケミカルズ株式会社 High rigidity decorative extrusion sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855088B2 (en) * 1978-09-26 1983-12-08 インタ−ナシヨナル・スタンダ−ド・エレクトリツク・コ−ポレイシヨン glass composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855088U (en) * 1981-10-08 1983-04-14 株式会社資生堂 Pressure-resistant containers in aerosol sprayers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855088B2 (en) * 1978-09-26 1983-12-08 インタ−ナシヨナル・スタンダ−ド・エレクトリツク・コ−ポレイシヨン glass composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072472A (en) * 2008-09-19 2010-04-02 Panasonic Electric Works Co Ltd Photoelectric composite substrate and method of manufacturing the same

Also Published As

Publication number Publication date
JPS6099151A (en) 1985-06-03

Similar Documents

Publication Publication Date Title
WO2008032907A1 (en) Transparent abs resin composition having excellent impact strength and flowability
JP3119457B2 (en) Transparent film
JPS631964B2 (en)
EP0094056A1 (en) Optical materials
KR102378654B1 (en) Light Scattering Polymeric Compositions Having Improved Scattering Efficiency and Improved Mechanical Properties
JPH0356256B2 (en)
JPH05331335A (en) Preparation of transparent glass-fiber-reinforced thermoplastic resin composition
JPWO2005070978A1 (en) Optical resin material and optical prism or lens obtained therefrom
JP3216179B2 (en) Transparent resin composition
JPH061903A (en) Polymer composition
JPH0129220B2 (en)
CN108456371A (en) A kind of modified AS resin composite materials
JPS60245661A (en) Organic-inorganic composite composition
JPH04227613A (en) Production of methacrylic resin excellent in heat-resistance, colorlessness and transparency
JP5385518B2 (en) Fluidity modifier, thermoplastic resin composition and molded article
KR100511056B1 (en) Composition for Artificial Marble Having Excellent Mechanical Properties
JPH0768311B2 (en) Methacrylic resin for optical elements
JPH0122864B2 (en)
CN105462094A (en) Antibacterial AS composition and preparation method thereof
JPS6015414A (en) New copolymer, its production and use
JPS58217537A (en) Heat-resistant resin composition
JPH04145149A (en) Heat-resistant methacrylic resin composition
JPS5887104A (en) Methacrylic resin excellent in heat resistance
JPH03126082A (en) Keyboard material
JPS63199209A (en) Thermoplastic resin for optical lens