JPS609876A - Device for producing thin film - Google Patents

Device for producing thin film

Info

Publication number
JPS609876A
JPS609876A JP11763083A JP11763083A JPS609876A JP S609876 A JPS609876 A JP S609876A JP 11763083 A JP11763083 A JP 11763083A JP 11763083 A JP11763083 A JP 11763083A JP S609876 A JPS609876 A JP S609876A
Authority
JP
Japan
Prior art keywords
nozzle
discharge
raw material
vacuum
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11763083A
Other languages
Japanese (ja)
Inventor
Shinichiro Ishihara
伸一郎 石原
Takashi Hirao
孝 平尾
Atsuo Nishikawa
西川 敦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11763083A priority Critical patent/JPS609876A/en
Publication of JPS609876A publication Critical patent/JPS609876A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent deposition of a-Si on the wall surface of a vacuum vessel and to produce efficiently a semiconductor element, etc. by providing means for evacuating the entire part of the vessel, ejecting a gaseous raw material through a nozzle and maintaining the degree of vacuum at which a local glow discharge is generated. CONSTITUTION:A nozzle 10 for a gaseous raw material in common use as an electrode for introducing discharge electric power is provided in a vacuum vessel 5 in production of a thin a-Si film, etc. The 3rd electrode 12 which impresses a bias voltage to prevent the generated discharge 11 from contacting with the nozzle 10 is installed near the nozzle 10. The inside of the vacuum 5 is evacuated to about <=5X10<-13>Torr and the gaseous raw material is introduced through the nozzle 10 into the vessel. Electric power is supplied to the nozzle 10 from a discharge power source 4 to generate the discharge and a DC bias is applied to the 3rd electrode 12 to prevent the discharge region 11 from contacting with the nozzle 10. the deposition of a-Si on the wall surface of the vessel 5 is obviated and the need for washing the vessel 5 is eliminated by the above-mentioned device.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非晶質シリコン(以下a−3iと略す)薄膜の
製造装置および製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus and method for manufacturing an amorphous silicon (hereinafter abbreviated as a-3i) thin film.

従来例の構成とその問題点 この種の薄膜の製造装置は第1図に示すとおりである。Conventional configuration and its problems An apparatus for manufacturing this type of thin film is shown in FIG.

1はステンレス板等の導電性基板、2は基板1を例えば
約200℃に昇温可能なヒータを含んだサンプルホルダ
、3は原料ガスを装置内に導入する導入口を兼ねた放電
電極、4は放電電極に電力を与える電源、5は真空槽で
ある。6は余分な原料ガス等を排気する排気口であり、
この後段にロータリーポンプおよび排ガス処理装置(図
示せず)がある。
1 is a conductive substrate such as a stainless steel plate; 2 is a sample holder including a heater capable of raising the temperature of the substrate 1 to, for example, about 200°C; 3 is a discharge electrode that also serves as an inlet for introducing source gas into the apparatus; 4 5 is a power source that supplies power to the discharge electrode, and 5 is a vacuum chamber. 6 is an exhaust port for exhausting excess raw material gas, etc.;
A rotary pump and an exhaust gas treatment device (not shown) are located at the subsequent stage.

以下にこの装置を用いてa−8ipinダイオードを作
成する方法を述べる。基板1を約200℃まで昇温し、
SiH4とB2H6を水素または不活3ページ 性気体等で希釈した原料ガスを導入07から真空槽5内
全体が約1TorrK′fX、る捷で導入する。電源4
から電力を与え、真空槽5内にグロー放電を発生させ、
S I H4およびB2H6を分解し、p型層を堆積さ
せる。次にS I H4のみを水素等で希釈し、i型層
を堆積させる。n型層は、5IH4にPH3を混合させ
る。
A method for producing an a-8ipin diode using this device will be described below. The temperature of the substrate 1 is raised to about 200°C,
A raw material gas prepared by diluting SiH4 and B2H6 with hydrogen or an inert gas is introduced from introduction 07 at a pressure of about 1 Torr K'fX throughout the vacuum chamber 5. power supply 4
to generate a glow discharge in the vacuum chamber 5,
Decompose S I H4 and B2H6 and deposit a p-type layer. Next, only S I H4 is diluted with hydrogen or the like, and an i-type layer is deposited. The n-type layer is a mixture of 5IH4 and PH3.

以上のようにしてa −S iのpinダイオードを作
成するが、前述したとおり、各層堆積時には、真空槽5
内全体をグロー放電が起こる約1 ’rorrにしなけ
ればならず、原料ガスが壁面に吸着する。
An a-Si pin diode is created as described above, but as mentioned above, when depositing each layer, the vacuum chamber 5
The entire interior must be kept at about 1'rorr for glow discharge to occur, and the raw material gas is adsorbed to the wall surface.

吸着したガスは次の薄膜層を堆積させるときに徐々に壁
面から脱離して不純物として混入する。さらに放電電極
3全面および真空槽5の一切の壁面にはa−8iが堆積
し、堆積したa−3tからもガスが脱離し、堆積中のa
 −8iに不純物としてとり込まれていた。これを防ぐ
ために、p型、i型。
The adsorbed gas gradually desorbs from the wall surface and mixes in as impurities when the next thin film layer is deposited. Furthermore, a-8i is deposited on the entire surface of the discharge electrode 3 and on all the walls of the vacuum chamber 5, and gas is also desorbed from the deposited a-3t, resulting in a
-8i was incorporated as an impurity. To prevent this, p-type and i-type.

n型というように種類の異々る薄膜層を堆積させる際に
は、真空槽5を別にするという方法も従来あるが、製造
装置が高価になっていた。さらに、真空槽5の壁面にI
d a −S iが堆積するため、一定期間ごとに必ず
装置内の清掃する必要があった。
When depositing different types of thin film layers, such as n-type, there is a conventional method of using a separate vacuum chamber 5, but the manufacturing equipment becomes expensive. Furthermore, I
Because d a -S i accumulates, it is necessary to clean the inside of the device at regular intervals.

発明の目的 本発明は、上記従来の製造装置の欠点を軽減し、効率良
(a−8i薄膜を用いた半導体素子を製造する製造装置
 j″−を提供するもので ある。
OBJECTS OF THE INVENTION The present invention alleviates the drawbacks of the conventional manufacturing apparatuses described above and provides a manufacturing apparatus j''- for manufacturing semiconductor elements using an A-8i thin film with high efficiency.

発明の構成 本発明は、真空槽全体は、グロー放電の発生しない真空
度まで排気し、ノズルから原料ガスを噴出させ、局部的
なグロー放電の発生する真空度にすることにより、真空
槽壁面にはa−3iは堆積されないため真空槽の洗浄は
不要である。さらに真空槽は高真空に保たれているため
、原料ガスの壁面吸着量が少ないので脱離するガスも少
なく、不純物として膜中にとり込まれ難くなる。ノズル
を3本用いると、p型、i型、n型原料ガスに1本ずつ
あてると、真空槽内をパージすることなくガスの切り換
えだけでpinタイプの半導体素子を不純物の影響を与
えない状態で作成することが5ぺ一、ジ できる薄膜の製造装置である。
Structure of the Invention The present invention is capable of evacuating the entire vacuum chamber to a degree of vacuum at which glow discharge does not occur, and ejecting raw material gas from a nozzle to achieve a degree of vacuum at which local glow discharge occurs. Because a-3i is not deposited, cleaning of the vacuum chamber is not necessary. Furthermore, since the vacuum chamber is maintained at a high vacuum, the amount of raw material gas adsorbed on the wall is small, so there is less gas to be desorbed, making it difficult for it to be incorporated into the film as an impurity. When three nozzles are used, one each for p-type, i-type, and n-type raw material gases, pin-type semiconductor devices can be left unaffected by impurities by simply switching the gas without purging the inside of the vacuum chamber. This is a thin film manufacturing device that can produce up to 5 pages.

実施例の説明 以下、本発明の一実施例について第2図とともに説明す
る。第2図において第1図と共通する要素が多いので共
通素子には同一番号を付す。特に従来例と異なるのは、
放電電力導入電極を兼ねた原料ガスノズル1oが第1図
における電極3と代わっており、発生した放電11がノ
ズル10に接しないようにバイアス電圧をかける第3電
極12が、ノズル1oの付近に配されていることである
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. Since many elements in FIG. 2 are common to those in FIG. 1, the same numbers are given to common elements. In particular, what is different from the conventional example is that
The raw material gas nozzle 1o, which also serves as a discharge power introduction electrode, replaces the electrode 3 in FIG. This is what is being done.

13は第3電極12にDCバイアスを印加する電源であ
る。第3電極には支持体14により真空槽6に固定され
ている。14は導体15を容器6に貫通させるだめのシ
ールである。
13 is a power source that applies a DC bias to the third electrode 12. The third electrode is fixed to the vacuum chamber 6 by a support 14. 14 is a seal that allows the conductor 15 to penetrate into the container 6.

次に第2図に示した薄膜の製造装置を用いたa−3iの
製造方法について述べる。基板1が2oo℃程度になる
まで基板ホルダ2中のヒータ(図示せず)によって昇温
し、排気口6から、5×1O−3Torr以下の真空度
まで排気する。ノズル10から原料ガスを導入するが、
真空槽6内の真空度は6 パ。
Next, a method for manufacturing a-3i using the thin film manufacturing apparatus shown in FIG. 2 will be described. The temperature of the substrate 1 is raised to about 20° C. by a heater (not shown) in the substrate holder 2, and the temperature is evacuated from the exhaust port 6 to a degree of vacuum of 5×1 O −3 Torr or less. The raw material gas is introduced from the nozzle 10,
The degree of vacuum in the vacuum chamber 6 is 6 Pa.

5x10 Torr 以下になるよう排気条件および原
料ガス導入条件を設定する。放電電源4からノズル10
に電力を供給し放電を発生させる。放電領域11がノズ
ル10に接しないよう第3電極12にDCバイアスを加
える。
The exhaust conditions and raw material gas introduction conditions are set to be 5x10 Torr or less. From discharge power source 4 to nozzle 10
supplies power to generate a discharge. A DC bias is applied to the third electrode 12 so that the discharge region 11 does not come into contact with the nozzle 10.

原料ガスの種類を変えるときは、1本のノズルで行なっ
ても良いが種類ごとに変える方がガス間相互の汚染が少
なくなる。また、大面積の基板に薄膜を堆積させる場合
は、ノズルを何本か並べれば良い。何本か並んだノズル
から出るガス量が、ばらつかないように、ノズルの口を
ガス流出量に対して十分コンダクタンスを小さくするよ
うに設計すれば良い。ノズルから出るガスを短時間で切
り換え、脱離ガスによる不純物汚染を少なくするには、
ノズルの口にノズルの内側からニードルを押し込む方式
で可能である。
When changing the type of raw material gas, it may be done using one nozzle, but mutual contamination between gases is reduced if the type is changed for each type. Furthermore, when depositing a thin film on a large-area substrate, it is sufficient to line up several nozzles. In order to prevent variations in the amount of gas emitted from several nozzles arranged in a row, the nozzle openings may be designed to have conductance sufficiently small relative to the amount of gas flowing out. To switch the gas coming out of the nozzle in a short time and reduce impurity contamination due to desorption gas,
This can be done by pushing the needle into the nozzle mouth from inside the nozzle.

発明の効果 本発明によれば、前述のように真空槽の一部しかグロー
放電の発生する真空度にならないため、真空槽壁面にa
 −S iが堆積されないため真空槽7ベー=ジ の洗浄が不要であること、真空槽内はグロー放電領域以
外は5×1O−3Torr 以下の高真空であるため原
料ガス等の壁面への吸着が少なく、これらの脱離による
汚染が少なくなる。
Effects of the Invention According to the present invention, as described above, only a part of the vacuum chamber has a degree of vacuum at which glow discharge occurs.
- There is no need to clean the vacuum chamber 7 base as Si is not deposited, and the inside of the vacuum chamber is at a high vacuum of 5×1O-3 Torr or less except for the glow discharge area, so material gas etc. are not adsorbed to the wall surface. This reduces contamination due to these desorptions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一実施例の薄膜製造装置の構成図、第2
図は本発明の一実施例の薄膜製造装置の構成図である。 1・・・・・・基板、2・・・・・・基板ホルダ、3・
・・・・・ガス導入口兼放電電力供給電極、4・・・・
・・放電電源、6・・・・・・真空槽、6・・・・・・
排気口、10・・・・・・原料ガス導入ノズル、11・
・・・・・放電領域、12・・・・・・DCバイアス印
加第3電極、13・・・・・・DC電源。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
Figure 1 is a configuration diagram of a conventional thin film manufacturing apparatus, and Figure 2
The figure is a configuration diagram of a thin film manufacturing apparatus according to an embodiment of the present invention. 1... Board, 2... Board holder, 3.
...Gas inlet and discharge power supply electrode, 4...
...Discharge power supply, 6...Vacuum chamber, 6...
Exhaust port, 10... Raw material gas introduction nozzle, 11.
...Discharge region, 12...DC bias application third electrode, 13...DC power supply. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (3)

【特許請求の範囲】[Claims] (1)原料ガスを噴出するノズルと、前記ノズルに電力
を供給されるように配された放電電源と、基板をある一
定温度まで昇温可能な基板ホルダおよび、これらを5X
10 Torr 以下の真空度まで排気可能な真空槽を
少なくとも構成要素とし、前記ノズルから噴出された原
料ガスが前記基板表面上でグロー放電が発生する真空度
領域になるように配置されていることを特徴とする薄膜
製造装置。
(1) A nozzle that spouts raw material gas, a discharge power source arranged to supply power to the nozzle, a substrate holder that can heat the substrate to a certain temperature, and a 5X
At least a vacuum chamber that can be evacuated to a vacuum level of 10 Torr or less is included, and the source gas ejected from the nozzle is arranged in a vacuum range where glow discharge occurs on the surface of the substrate. Features of thin film manufacturing equipment.
(2)ノズルの出口付近にグロー放電が発生しないよう
に直流バイアスの印加可能な電極が配されていることを
特徴とする特許請求の範囲第1項記載の薄膜製造装置。
(2) The thin film manufacturing apparatus according to claim 1, wherein an electrode to which a direct current bias can be applied is arranged near the exit of the nozzle to prevent glow discharge from occurring.
(3)少なくともノズルが3本あり、1本が不純物を混
入させない原料ガスを噴出させるクズ111本がp型の
導電型を示す不純物を含む原料ガス用のノズル、もう1
本がn型の導電型を示す不純物2 ・・ を含む原料ガスのノズルであることを%像とする台記特
許請求の範囲第1項または第2項記載の薄膜製造装置。
(3) There are at least three nozzles, one is a nozzle for spouting a raw material gas that does not contain impurities, and the other is a nozzle for raw material gas containing impurities that exhibits p-type conductivity.
3. The thin film manufacturing apparatus according to claim 1 or 2, wherein the material is a nozzle for a source gas containing impurities 2... exhibiting n-type conductivity.
JP11763083A 1983-06-29 1983-06-29 Device for producing thin film Pending JPS609876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11763083A JPS609876A (en) 1983-06-29 1983-06-29 Device for producing thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11763083A JPS609876A (en) 1983-06-29 1983-06-29 Device for producing thin film

Publications (1)

Publication Number Publication Date
JPS609876A true JPS609876A (en) 1985-01-18

Family

ID=14716471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11763083A Pending JPS609876A (en) 1983-06-29 1983-06-29 Device for producing thin film

Country Status (1)

Country Link
JP (1) JPS609876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001044539A1 (en) * 1999-12-14 2001-06-21 Robert Bosch Gmbh Coating method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192258A (en) * 1981-05-19 1982-11-26 Oki Electric Ind Co Ltd Film forming apparatus using glow discharge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192258A (en) * 1981-05-19 1982-11-26 Oki Electric Ind Co Ltd Film forming apparatus using glow discharge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001044539A1 (en) * 1999-12-14 2001-06-21 Robert Bosch Gmbh Coating method

Similar Documents

Publication Publication Date Title
US4832981A (en) Method and apparatus for forming non-single crystal layer
US7011866B1 (en) Method and apparatus for film deposition
US6930041B2 (en) Photo-assisted method for semiconductor fabrication
US5133986A (en) Plasma enhanced chemical vapor processing system using hollow cathode effect
US6649545B2 (en) Photo-assisted remote plasma apparatus and method
US6758224B2 (en) Method of cleaning CVD device
US20030143410A1 (en) Method for reduction of contaminants in amorphous-silicon film
US5556474A (en) Plasma processing apparatus
US20050281951A1 (en) Dielectric barrier discharge method for depositing film on substrates
US6271498B1 (en) Apparatus for vaporizing liquid raw material and method of cleaning CVD apparatus
KR101976559B1 (en) Methods for cleaning a surface of a substrate using a hot wire chemical vapor deposition (hwcvd) chamber
JP2005317958A (en) Design of gas diffusion shower head for large-area plasma-enhanced chemical vapor deposition
Burger et al. An optimized in situ argon sputter cleaning process for device quality low‐temperature (T≤ 800° C) epitaxial silicon: Bipolar transistor and pn junction characterization
JPS6043819A (en) Method for vapor-phase reaction
JPH0541705B2 (en)
KR100254364B1 (en) Method for manufacturing resistor
KR100652908B1 (en) In situ growth of oxide and silicon layers
EP0388957A2 (en) Process for depositing tantalum oxide film and chemical vapor deposition system used therefore
JPH1154441A (en) Catalytic chemical evaporation device
JPH0576172B2 (en)
JPS609876A (en) Device for producing thin film
US6796313B2 (en) Methods of cleaning vaporization surfaces
JPH07142401A (en) Fabrication of semiconductor device and film deposition equipment therefor
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
US20060174835A1 (en) Vacuum processing apparatus and method of using the same