JPS609863B2 - Method for manufacturing exhaust gas treatment catalyst - Google Patents

Method for manufacturing exhaust gas treatment catalyst

Info

Publication number
JPS609863B2
JPS609863B2 JP52083189A JP8318977A JPS609863B2 JP S609863 B2 JPS609863 B2 JP S609863B2 JP 52083189 A JP52083189 A JP 52083189A JP 8318977 A JP8318977 A JP 8318977A JP S609863 B2 JPS609863 B2 JP S609863B2
Authority
JP
Japan
Prior art keywords
catalyst
oxide
molded body
exhaust gas
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52083189A
Other languages
Japanese (ja)
Other versions
JPS5418491A (en
Inventor
成男 横山
浩 藤田
俊邦 世良
征人 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP52083189A priority Critical patent/JPS609863B2/en
Publication of JPS5418491A publication Critical patent/JPS5418491A/en
Publication of JPS609863B2 publication Critical patent/JPS609863B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は窒素酸化物含有ガスの処理触媒の製造方法に関
し特に重油焚きボィラ、石炭焚きボィラ、各種の化学装
置に付設する燃焼炉などから排出されるダストを多量に
含有する排ガス中の窒素酸化物(以下N○×と略称する
)を無害化除去するプロセスに適用しうる触媒に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a catalyst for treating nitrogen oxide-containing gas, which contains a large amount of dust emitted from heavy oil-fired boilers, coal-fired boilers, combustion furnaces attached to various chemical equipment, etc. The present invention relates to a catalyst that can be applied to a process for detoxifying and removing nitrogen oxides (hereinafter abbreviated as N○×) in exhaust gas.

排ガス中のN○×除去方法としては吸着法、酸化吸収法
、固体化補集法、接触還元法などがあるが、後処理不要
の接触還元法が経済的、技術的にも有利であるため各方
面で開発が試みられている。
There are adsorption methods, oxidation absorption methods, solidification collection methods, and catalytic reduction methods as methods for removing N○× from exhaust gas, but the catalytic reduction method, which does not require post-treatment, is economically and technically advantageous. Development efforts are being made in various areas.

接触還元反応も還元剤の選択により二種類の方法が考え
られるが、排ガス中の酸素の有無による影響を受けない
選択的接触還元法が経済的にも有利である。
There are two possible methods for the catalytic reduction reaction depending on the selection of the reducing agent, but the selective catalytic reduction method is economically advantageous as it is not affected by the presence or absence of oxygen in the exhaust gas.

本発明はこの反応に適用しうる触媒に関するものであり
特にN馬を還元剤とした場合が有利であるため以下この
方法によって更に本発明を詳述する。従来選択的接触還
元プロセスに適用する触媒の担体としてはアルミナ、チ
タニア、ジルコニア、シリカ、ケイソウ士、ゼオラィト
などの多孔性耐火物質を単独あるいは粗合せて使用して
いたが、いずれも造粒して使用するため高価となる上に
、活性賦与成分を担持させるため触媒製造コストが嵩む
という欠点があった。
The present invention relates to a catalyst that can be applied to this reaction, and since it is particularly advantageous to use nitrogen as a reducing agent, the present invention will be further detailed below using this method. Conventionally, porous refractory materials such as alumina, titania, zirconia, silica, diatomite, and zeolite have been used singly or in combination as carriers for catalysts applied to selective catalytic reduction processes, but none of them have been granulated. This method has disadvantages in that it is expensive to use, and the production cost of the catalyst increases because it supports an activation-imparting component.

ところで蒸留油やガス燃料(例えばLNG,LPG)か
らの排ガス中にはダストが皆無に近い状態であるため、
前述の担体を球状、円柱状などの任意の形状に造粒成形
し、触媒層へ垂直に排ガスを接触させることが可能であ
る。
By the way, there is almost no dust in the exhaust gas from distilled oil or gas fuels (e.g. LNG, LPG), so
It is possible to granulate the above-mentioned carrier into any shape such as spherical or cylindrical, and bring the exhaust gas into contact with the catalyst layer perpendicularly.

一方重油、石炭を燃料としたボィラ排ガス、ゴミ焼却炉
、コークス炉排ガスなどのダクトを多量に含有する排ガ
ス処理技術の開発にはダストの触媒層への蓄積防止の対
策を講じる必要がある。そのために触媒形状を円筒状、
ハニカム状などにしてダストの通過を容易にさせる方法
、粒状触媒を移動することにより付着ダストを飛散させ
る方法などが検討されているが、排ガスを触媒層に並行
流で流すことによりダストの付着を防止する方法も有望
でありト本発明者らもこの方式に適用しうる触媒の開発
に鋭意取り組んでいる。
On the other hand, in order to develop exhaust gas treatment technology that contains a large amount of ducts such as boiler exhaust gas fueled by heavy oil or coal, garbage incinerator exhaust gas, and coke oven exhaust gas, it is necessary to take measures to prevent dust from accumulating in the catalyst layer. For this purpose, the catalyst shape is cylindrical,
Methods of making it easier for dust to pass through, such as by creating a honeycomb shape, and scattering adhering dust by moving a granular catalyst are being considered. A method to prevent this is also promising, and the present inventors are also working hard to develop a catalyst that can be applied to this method.

この方式での最適の触媒形状は板状構造体であり前述の
多孔性耐火物質を大型の板に成形することは現状では困
難であるため、極めて安価に製造でき軽量でかなりの強
度を有し、いかなる形状にも成形加工が容易な材料とし
て珪酸カルシウム成形体の利用を検討してきた。本発明
の担体である珪酸カルシウム成形体は珪酸と石灰に必要
に応じて粘土、石綿、ガラス繊維などの無機添加物を混
合し、水に懸濁して得られるスラリー状の物質を5〜2
0k9′の程度の加圧下、200〜300q○で加熱蝿
拝しながら、あるいは一時櫨梓を中止して水熱合成反応
と結晶化を進めて得られる珪酸カルシウム結晶の活性ス
ラリーを成形乾燥することで製造される。
The optimal catalyst shape for this method is a plate-like structure, and since it is currently difficult to form the aforementioned porous refractory material into a large plate, it can be manufactured at an extremely low cost, is lightweight, and has considerable strength. We have investigated the use of calcium silicate molded bodies as a material that can be easily molded into any shape. The calcium silicate molded body, which is the carrier of the present invention, is made by mixing silicic acid and lime with inorganic additives such as clay, asbestos, glass fiber, etc. as necessary, and suspending the mixture in water.
Shaping and drying an activated slurry of calcium silicate crystals obtained by heating at 200 to 300 q○ under a pressure of about 0 k9' or by temporarily discontinuing the heating process and proceeding with the hydrothermal synthesis reaction and crystallization. Manufactured in

しかしこのようにして得られた珪酸カルシウム成形体に
は珪酸と結合せずに遊離した状態で酸化カルシウムが存
在しているため、触媒活性賦与成分の担特はアルミナ、
チタニア、ジルコニア等の多孔性物質への担特と比較し
て性能的に劣るものが多い。
However, in the calcium silicate molded body obtained in this way, calcium oxide exists in a free state without bonding with silicic acid, so the carrier of the catalytic activity imparting component is alumina,
Many of them are inferior in performance compared to those that support porous materials such as titania and zirconia.

そのため成型体を硫酸、硫酸アンモニウムなどで前処理
し、触媒作用を妨害する酸化カルシウムを硫酸カルシウ
ムに転化したり、成形体を単なる基材と考え、触媒成分
を塗着する方法が考えられる。本発明は後者に属するも
のであり、接着材として珪酸カルシウム中に含有される
珪酸質に類似した性質を有する無水珪酸の超微粒子を水
中に分散させたコロイド溶液を使用し、さらにその上に
触媒となる成分を塗着させる方法について既に特願昭5
2−1路74号(52.2.1乳付)で出願したが本発
明はこの改良に関するものである。特晒昭52−168
74号(特開昭53−102288号)ではバナジウム
の酸化物を成形体に担持させる時、焼成することにより
バナジウムの酸化物となるバナジウムを含有する化合物
を酸化チタンのスラリーに溶解する方法としてシュウ酸
を使用している。
Therefore, methods can be considered such as pre-treating the molded body with sulfuric acid, ammonium sulfate, etc. to convert calcium oxide that interferes with the catalytic action into calcium sulfate, or treating the molded body as a mere base material and applying catalyst components. The present invention belongs to the latter category, and uses a colloidal solution in which ultrafine particles of silicic anhydride having properties similar to the silicic acid contained in calcium silicate are dispersed in water as an adhesive, and furthermore, a catalyst is added on top of the colloidal solution. A patent application has already been filed in 1973 regarding the method of applying the ingredients.
Although the application was filed under No. 74 (52.2.1 Breast) of Road 2-1, the present invention relates to this improvement. Specially exposed Showa 52-168
No. 74 (Japanese Unexamined Patent Publication No. 53-102288) discloses a method for dissolving a vanadium-containing compound, which becomes a vanadium oxide by firing, in a titanium oxide slurry when supporting a vanadium oxide on a molded body. using acid.

しかしこのようにして製造した触媒は優れた脱硝性能を
示すものの、高温ではS02をS03に酸化する作用が
大のため、バナジウム以外の触媒成分例えばタングステ
ン、モリブデン、スズ、亜鉛、コバルトなどを添加して
改良する必要がある。これらの物質は主成分でなく、徴
量であるために触媒への均一な分散が必要であり、単に
添加するだけでは効果がない。しかしこれらの触媒成分
のうち特にS02の酸化0を抑制するに重要とされるタ
ングステン、モリブデンの原料になる化合物は水への溶
解力が極めて少なく、シュウ酸のような有機質の弱酸で
触媒に何ら影響を与えないものにはほとんど不溶であり
、これらの成分を溶解すると同時に触媒活性をタ効果的
にする物質を探索し本発明に至った。
However, although the catalyst produced in this way shows excellent denitrification performance, it has a strong effect of oxidizing S02 to S03 at high temperatures, so catalyst components other than vanadium, such as tungsten, molybdenum, tin, zinc, and cobalt, are added. need to be improved. Since these substances are not main components but components, they need to be uniformly dispersed in the catalyst, and simply adding them has no effect. However, among these catalyst components, the compounds that are the raw materials for tungsten and molybdenum, which are particularly important for suppressing the oxidation of S02, have extremely low solubility in water, and organic weak acids such as oxalic acid have no effect on the catalyst. Since it is almost insoluble in substances that do not affect the catalyst, we searched for a substance that dissolves these components and at the same time enhances the catalytic activity, leading to the present invention.

タングステン及びモリブデンの酸化物を得るにはタング
ステン酸、バラタングステン酸アンモニウム、隣タング
ステン酸、燐タングステン酸アンモニウム、モリブデン
酸、モリブデン酸アンモニウム、0燐モリブデン酸、燐
モリブデン酸アンモニウムなどを分解温度以上で焼成す
る方法がとられるが、酸化チタンのスラリーに均一に分
散させるには溶液にするのが望ましく、本発明者はその
溶解方法としてアミン化合物が有効なことを見出した。
アタミン化合物としては触媒化した時に被毒作用を及ぼ
さない物質例えばメチルアミン、ジメチルアミン、モノ
ェタノールアミンなどの脂肪族アミン類やアミノアルコ
ールが好ましい。又バナジウムを含有する化合物もこの
種のアミン化合物で加熱す0ることにより容易に溶解す
る。さらに性能向上させるには塩化スズ、硝酸亜鉛、硝
酸コバルトなどの水溶液をスラリ一物質に添加すれば良
い。このようにして調製したスラリーはアミン化合物が
添加されているためアルカリ性になっており、高活タ性
もさることながら成形体への接着性が向上するという波
及効果もある。アミン化合物が特に本発明の触媒活性成
分の溶媒として効果的な理由は、それ自体に粘性がある
ため、溶解したタングステン、モリブデン、バナ0ジウ
ムなどの化合物の触媒活性成分が、酸化チタンのスラリ
−に均一に分散しやすいこと、また、スラリー自体の粘
着性が増大することもあって、成形体への付着性が向上
する効果があることである。
To obtain oxides of tungsten and molybdenum, tungstic acid, ammonium baratungstate, phosphotungstic acid, ammonium phosphotungstate, molybdic acid, ammonium molybdate, phosphomolybdic acid, ammonium phosphomolybdate, etc. are calcined above the decomposition temperature. However, in order to uniformly disperse titanium oxide in the slurry of titanium oxide, it is desirable to form a solution, and the present inventors have found that an amine compound is effective as a method for dissolving it.
The atamine compound is preferably a substance that does not have a poisoning effect when catalyzed, such as aliphatic amines such as methylamine, dimethylamine, monoethanolamine, or amino alcohol. Compounds containing vanadium are also easily dissolved by heating with this type of amine compound. To further improve the performance, an aqueous solution of tin chloride, zinc nitrate, cobalt nitrate, etc. may be added to the slurry material. The slurry thus prepared is alkaline due to the addition of an amine compound, and has the ripple effect of not only high activity but also improved adhesion to molded objects. The reason why amine compounds are particularly effective as solvents for the catalytically active components of the present invention is that they are viscous, so that the catalytically active components of dissolved tungsten, molybdenum, vanadium, etc. It is easy to uniformly disperse the slurry, and the adhesiveness of the slurry itself increases, which has the effect of improving the adhesion to the molded body.

ここで無水珪酸の超微粒子を水中に分散させたコロイド
溶液を前述のスラリーに添加すれば触媒性能が若干低下
するものの接着性の向上には何らさしつかえない。
Here, if a colloidal solution in which ultrafine particles of silicic anhydride are dispersed in water is added to the above-mentioned slurry, the catalytic performance will be slightly lowered, but this will not impede the improvement of adhesion.

このようにして成形体にスラリーを接着後乾燥焼成する
ことで本触媒は得られる。
The present catalyst can be obtained by adhering the slurry to the molded body in this way and then drying and firing it.

〔実施例 1〕(成形体の製造) 珪砂(Si0293.2%,AI203 3.5%,F
e2030.6%,その他 2.7%)5碇都、生石灰
4碇部、石綿10部及び水10碇都を混合し、これを直
径25仇奴,深さ50仇肋の内容積24その蝿拝器付オ
ートクレープに入れ密閉後内圧を8k9/地に加圧、温
度を170℃にし100回/分の縄梓速度で5時間蝿洋
しながら反応させ、次に蝿拝を止めて以後放冷し、6び
分間でゆっくりと内圧を常圧で戻した。
[Example 1] (Manufacture of molded body) Silica sand (Si0293.2%, AI203 3.5%, F
e2030.6%, other 2.7%) 5 parts of quicklime, 4 parts of quicklime, 10 parts of asbestos, and 10 parts of water were mixed, and this was mixed into an inner volume of 24 parts with a diameter of 25 walls and a depth of 50 walls. After placing in an autoclave with a container and sealing it, the internal pressure was increased to 8k9/kg, the temperature was raised to 170°C, and the mixture was stirred at a speed of 100 times/min for 5 hours, and then the stirring was stopped and the air was released. After cooling, the internal pressure was slowly returned to normal pressure over 6 minutes.

オートクレープから反応物を取出し珪酸カルシウム結晶
の活性スラリーを自然硬化で成形し、100〜1200
0で1加時間乾燥して珪酸カルシウム成形体を得た。(
触媒の調整) 酸化チタン粉末90碇都‘こパラタングステン酸アンモ
ニウム9碇郡、メタバナジン酸アンモニウム23部をモ
ノェタノールアミン12碇部で加熱溶解した後、水を加
えて70碇郡とした水溶液を加えて均一なスラリーを得
る。
The reactant was taken out of the autoclave and an active slurry of calcium silicate crystals was formed by natural curing.
After drying at 0 for 1 hour, a calcium silicate molded body was obtained. (
Preparation of catalyst) After heating and dissolving titanium oxide powder, 90 parts of ammonium paratungstate and 23 parts of ammonium metavanadate in 12 parts of monoethanolamine, water was added to make an aqueous solution of 70 parts. Add to obtain a uniform slurry.

先に得らた成形体を無水珪酸20〜21%酸化ナトリウ
ム0.04%以下を含有するコロイド溶液(pH3〜4
)に浸潰し続いて先に調整したスラリ−に浸潰して成形
体表面に均一に付着後、風乾し120℃で肌時間乾燥次
に550『0で3時間焼成して酸化チタン91%,酸化
タングステン7%,酸化バナジウム2%を含有する触媒
1を得た。
The previously obtained molded body was dissolved in a colloidal solution (pH 3-4) containing 20-21% silicic anhydride and 0.04% or less sodium oxide.
), then soaked in the slurry prepared earlier to adhere uniformly to the surface of the molded body, air-dried at 120°C for an hour, then fired at 550°C for 3 hours to obtain 91% titanium oxide, 91% titanium oxide, Catalyst 1 containing 7% tungsten and 2% vanadium oxide was obtained.

〔比較例〕[Comparative example]

アンモニア水(28%)10礎轍こパラタングステン酸
アンモニウム9碇部、メタバナジン酸アンモニウム23
部を加え加熱熔解した後、水700部を加えた。
Ammonia water (28%) 10 parts, ammonium paratungstate 9 parts, ammonium metavanadate 23 parts
After heating and melting, 700 parts of water was added.

次に酸化チタン粉末90戊部を加え、涜梓混合し均一な
スラリーを得た。先に得られた成形体を無水珪酸20〜
21%,酸化ナトリウム0.04%以下を含有するコロ
イド溶液(pH3〜4)に浸潰し、続いて先に調整した
スラリーに浸潰して成形体表面に均一に付着後風乾し1
2000で1碗時間乾燥、次に550qoで3時間焼成
したところ本触媒は成形体への付着力が弱く基材の露出
部が見られた。〔実施例 2〕 実施例1の成形体を用いて「実施例1の方法により酸化
チタン、パラタングステン酸アンモニウム、メタバナジ
ン酸アンモニウム、モリブデン酸アンモニウム、塩化ス
ズ、硝酸亜鉛、硝酸コバルトを用いて、担持触媒成分を
チタン、タングステン、バナジウム、モリブデン、スズ
、亜鉛、コバルトと種々組合せた表1に示す触媒2〜8
を得た。
Next, 90 parts of titanium oxide powder was added and mixed to obtain a uniform slurry. The previously obtained molded body is mixed with silicic anhydride 20~
It was soaked in a colloidal solution (pH 3 to 4) containing 21% and 0.04% or less of sodium oxide, and then soaked in the slurry prepared earlier to uniformly adhere to the surface of the molded object, and then air-dried.
When the catalyst was dried for 1 hour at 2000 qo and then calcined for 3 hours at 550 qo, the adhesion of the catalyst to the molded body was weak and exposed parts of the base material were observed. [Example 2] Using the molded product of Example 1, "supporting was performed using titanium oxide, ammonium paratungstate, ammonium metavanadate, ammonium molybdate, tin chloride, zinc nitrate, and cobalt nitrate by the method of Example 1. Catalysts 2 to 8 shown in Table 1, which have various combinations of catalyst components with titanium, tungsten, vanadium, molybdenum, tin, zinc, and cobalt.
I got it.

表 1 〔実施例 3〕 触媒1〜8の性能を評価するために22肌?のステンレ
ス製の反応管に20の【充填しうるように3〜4側少に
触媒を破砕し表2の試験条件で活性試験を行い、表3に
示す結果を得た。
Table 1 [Example 3] 22 samples were used to evaluate the performance of catalysts 1 to 8. The catalyst was crushed into small pieces on 3 to 4 sides so that it could be filled into a stainless steel reaction tube of 20 mm, and an activity test was conducted under the test conditions shown in Table 2, and the results shown in Table 3 were obtained.

表 2 表 3Table 2 Table 3

Claims (1)

【特許請求の範囲】[Claims] 1 珪酸カルシウムを主成分とする成形体に、酸化チタ
ン及び酸化バナジウムと、タングステン又はモリブデン
のうちの一種類の酸化物と、更に任意にスズ、亜鉛、コ
バルトのうち1種類の酸化物とを触媒活性成分として担
持するに当り、無水珪酸を水中に分散させたコロイド溶
液に該成形体を浸漬し、次いでアミン化合物で上記の担
持すべき金属の酸化物又はその原料の化合物を溶解した
スラリー状物質に浸漬することを特徴とするアンモニア
を還元剤とする窒素酸化物含有ガス処理用触媒の製造方
法。
1 A molded body mainly composed of calcium silicate is catalyzed with titanium oxide, vanadium oxide, one type of oxide among tungsten or molybdenum, and optionally one type of oxide among tin, zinc, and cobalt. In order to support the active ingredient, the molded body is immersed in a colloidal solution in which silicic anhydride is dispersed in water, and then the metal oxide to be supported or its raw material compound is dissolved in an amine compound to form a slurry-like material. 1. A method for producing a catalyst for treating a nitrogen oxide-containing gas using ammonia as a reducing agent, the method comprising immersing the catalyst in a gas containing ammonia.
JP52083189A 1977-07-12 1977-07-12 Method for manufacturing exhaust gas treatment catalyst Expired JPS609863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52083189A JPS609863B2 (en) 1977-07-12 1977-07-12 Method for manufacturing exhaust gas treatment catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52083189A JPS609863B2 (en) 1977-07-12 1977-07-12 Method for manufacturing exhaust gas treatment catalyst

Publications (2)

Publication Number Publication Date
JPS5418491A JPS5418491A (en) 1979-02-10
JPS609863B2 true JPS609863B2 (en) 1985-03-13

Family

ID=13795368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52083189A Expired JPS609863B2 (en) 1977-07-12 1977-07-12 Method for manufacturing exhaust gas treatment catalyst

Country Status (1)

Country Link
JP (1) JPS609863B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101248A (en) * 1984-10-22 1986-05-20 Matsushita Electric Ind Co Ltd Preparation of catalyst
JPS61101249A (en) * 1984-10-22 1986-05-20 Matsushita Electric Ind Co Ltd Preparation of catalyst
CN104307577A (en) * 2014-10-08 2015-01-28 天河(保定)环境工程有限公司 Active impregnation solution and preparation method thereof
JP6906420B2 (en) * 2017-10-16 2021-07-21 株式会社日本触媒 Manufacturing method of inorganic composite oxide and exhaust gas treatment method using this

Also Published As

Publication number Publication date
JPS5418491A (en) 1979-02-10

Similar Documents

Publication Publication Date Title
US4186109A (en) Catalyst for selectively reducing nitrogen oxides from oxygen-containing exhaust gases
JP4860076B2 (en) Process for producing a catalyst for selective catalytic reduction of nitrogen oxides
CN101347722B (en) Catalyst for denitration by SCR method with low cost and preparation method thereof
CN101850243B (en) Carrier of silver catalyst for producing ethylene oxide, preparation method thereof, silver catalyst prepared by using same and application thereof in producing ethylene oxide
JPH02194819A (en) Reducing method of nitrogen oxide present in waste gas containing oxygen
TW200918166A (en) Method for regenerating catalyst
CN106732537A (en) It is a kind of to add attapulgite modified low-temperature SCR catalyst and preparation method thereof
CN114832829B (en) High-temperature denitration catalyst for gas exhaust and preparation method thereof
JPH0242536B2 (en)
CN106824174A (en) A kind of coccoid catalyst of high-efficient purification nitrogen oxides and preparation method thereof
WO1994021373A1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
JPH01130720A (en) Method for removing nitrogen oxides and catalyst to be used in same method
JPS609863B2 (en) Method for manufacturing exhaust gas treatment catalyst
CN108311136A (en) A kind of Ce-Mn load complex carriers and preparation method thereof containing low-temperature denitration catalyst
US4225462A (en) Catalyst for reducing nitrogen oxides and process for producing the same
CN107349935A (en) A kind of low-temperature denitration catalyst and its preparation method and application
WO2002034388A1 (en) Exhaust gas purifying catalyst compound, catalyst comprising said compound and method for preparing the compound
JP2004523349A (en) Catalyst for selective catalytic reduction of nitrogen oxides and method for producing the same.
JPS5810135B2 (en) High Gas Jiyou Kayoshiyoku Baitai
JPH0620559B2 (en) Catalyst for catalytic combustion reaction and method for producing the same
CN106563508A (en) Preparation method of iron-cerium-based porous catalyst used for removing organic sulfur
JPS6244975B2 (en)
KR20060099611A (en) Catalyst for nitrogen oxides reduction using activated carbon and method for preparing the same
JPS606695B2 (en) Exhaust gas purification catalyst
JPH03122010A (en) Catalytic oxidative degradation of ammonia