JPS609859B2 - Catalyst that converts hydrogen sulfide to sulfur dioxide - Google Patents
Catalyst that converts hydrogen sulfide to sulfur dioxideInfo
- Publication number
- JPS609859B2 JPS609859B2 JP5121784A JP5121784A JPS609859B2 JP S609859 B2 JPS609859 B2 JP S609859B2 JP 5121784 A JP5121784 A JP 5121784A JP 5121784 A JP5121784 A JP 5121784A JP S609859 B2 JPS609859 B2 JP S609859B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- hydrogen sulfide
- sulfur dioxide
- titanium
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Catalysts (AREA)
Description
【発明の詳細な説明】
(発明の利用分野)
本発明は硫化水素を含有するガスを酸素とともに触媒に
接触させて二酸化硫黄に変換する方法に用いる触媒に関
する。DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a catalyst used in a method of converting a gas containing hydrogen sulfide into sulfur dioxide by contacting the gas with oxygen to the catalyst.
(発明の背景)
従来、硫化水素を二酸化硫黄に変換するための方法とし
ては、燃料を加えて高温で燃焼酸化する方法の他に、触
媒を用いて接触酸化する方法などが主に用いられてきた
。(Background of the Invention) Conventionally, as methods for converting hydrogen sulfide into sulfur dioxide, in addition to the method of adding fuel and combustion oxidation at high temperature, the method of catalytic oxidation using a catalyst has mainly been used. Ta.
高温で燃焼酸化する方法は装置は簡単ではあるが、燃料
を多量に消費するため経済的には好ましくなく、一方、
接触酸化法は比較的低温で硫化水素を二酸化硫黄に変換
できるので、好ましいものである。Although the method of combustion oxidation at high temperature is simple, it consumes a large amount of fuel and is not economically preferable.
Catalytic oxidation methods are preferred because they can convert hydrogen sulfide to sulfur dioxide at relatively low temperatures.
一般にこの反応用の触媒としては酸化鉄、ボーキサイト
、アルミナ、白金属系、ゼオラィト系(例えば特開昭5
0−68955)触媒などが知られている。しかし、こ
れら従来の触媒は活性が充分でなく、反応温度が200
00以下では硫化水素を完全に二酸化硫黄まで酸化でき
ず、硫黄もかなり生成する。さらに、アルミナ系および
アルミナ担体付の触媒では、長時間使用すると生成ガス
中の二酸化硫黄および酸素とアルミナとが反応し、硫酸
ァルミナを生成し、触媒活性が低下するという欠点があ
る。これは酸化鉄触媒でも同様であり、硫酸塩に変質し
て劣化していくことがわかった。(発明の目的)
本発明の目的は、上記した従釆技術の欠点をなくし、低
温で高い活性を示し、かつ二酸化硫黄により変質しない
耐久性の優れた、硫化水素を二酸化硫黄に変換する触媒
を提供することにある。In general, catalysts for this reaction include iron oxide, bauxite, alumina, platinum metals, and zeolites (for example,
0-68955) catalysts are known. However, these conventional catalysts do not have sufficient activity and the reaction temperature is 200°C.
00 or less, hydrogen sulfide cannot be completely oxidized to sulfur dioxide, and a considerable amount of sulfur is also produced. Furthermore, alumina-based catalysts and catalysts with an alumina support have the disadvantage that when used for a long time, sulfur dioxide and oxygen in the generated gas react with alumina, producing sulfuric acid alumina, and reducing catalyst activity. It was found that this is the same with iron oxide catalysts, which change into sulfates and deteriorate. (Objective of the Invention) The object of the present invention is to eliminate the drawbacks of the above-mentioned conventional techniques, and to provide a catalyst for converting hydrogen sulfide into sulfur dioxide, which exhibits high activity at low temperatures and is not altered by sulfur dioxide and has excellent durability. It is about providing.
(発明の概要)本発明の特徴は、硫化水素を二酸化硫黄
に変換するための触媒として、チタンとモリブデンの酸
化物を活性成分とする触媒を用いることにある。(Summary of the Invention) The present invention is characterized in that a catalyst containing titanium and molybdenum oxides as active components is used as a catalyst for converting hydrogen sulfide into sulfur dioxide.
本発明の触媒は、硫化水素を亜硫酸ガスに転換する工程
に一般的に使用できるが「一例を挙げればクラゥス硫黄
回収装置における硫化水素の酸化、クラウス硫黄回収装
置からの排ガス中の硫化水素の酸化、クラゥス硫黄回収
装置のティルガス処理装置からの排ガス中に含まれる徴
量硫化水素の酸化、あるいはパルプ工場排ガストし尿処
理排ガス、含硫黄有機物の燃焼排ガスなどに含まれる硫
化水素(およびメルカプタン)を酸化して悪臭を除去す
るのに適用することができる。本発明の触媒を「従来の
各種の触媒と比較して活性を試験したところ、特に低温
活性が優れていることが見し、出された。The catalyst of the present invention can be generally used in the process of converting hydrogen sulfide into sulfur dioxide gas. , oxidation of collected hydrogen sulfide contained in the exhaust gas from the till gas treatment equipment of Krauss sulfur recovery equipment, or oxidation of hydrogen sulfide (and mercaptans) contained in pulp factory exhaust gas, human waste treatment exhaust gas, combustion exhaust gas of sulfur-containing organic materials, etc. The catalyst of the present invention was tested for activity in comparison with various conventional catalysts, and was found to have excellent low-temperature activity. .
また本触媒は酸化チタンと酸化モリブデンという硫酸塩
化いこくい物質を触媒成分としているため、アルミナ担
体付触媒と比較して格段に耐久性が優れていることがわ
かった。本発明の触媒を用いて硫化水素を接触酸化する
ときには酸素の量に応じて次の(1’,(2}式の反応
が主に起こる。In addition, since this catalyst contains sulfated solid substances such as titanium oxide and molybdenum oxide as catalyst components, it was found that it has much better durability than an alumina-supported catalyst. When hydrogen sulfide is catalytically oxidized using the catalyst of the present invention, reactions of the following formulas (1', (2)) mainly occur depending on the amount of oxygen.
日2S+ヂ2=S他。Day 2S + Di2=S and others.
(1)日2S十や2=S。(1) Day 2S ten and 2 = S.
2十日20(2}
酸素の量に応じて{2l式の反応はきわめて選択的に起
きるので「二酸化硫黄を生成するためには酸素を硫化水
素の1.5モル倍以上存在させる。20th 20 (2) The reaction of {2l type} occurs extremely selectively depending on the amount of oxygen, so ``In order to generate sulfur dioxide, oxygen must be present in an amount 1.5 times more than hydrogen sulfide.
本発明になる触媒を用いて硫化水素を二酸化硫黄に変換
する場合、反応温度は、触媒活性および耐熱性などの面
から100〜60000が好ましく特に120〜500
00が好ましい。またガスの空間速度(標準状態換算)
は、経済的な触媒の使用量および硫化水素の二酸化硫黄
への変換率の面から200〜5000oh‐1が好まし
く、特に200〜20000h−,が好ましい。When converting hydrogen sulfide into sulfur dioxide using the catalyst of the present invention, the reaction temperature is preferably 100 to 60,000, particularly 120 to 500, from the viewpoint of catalyst activity and heat resistance.
00 is preferred. Also, the space velocity of gas (converted to standard conditions)
is preferably 200 to 5,000 oh-1, particularly preferably 200 to 20,000 oh-1, from the viewpoint of economical catalyst usage and conversion rate of hydrogen sulfide to sulfur dioxide.
本発明の硫化水素を二酸化硫黄に変換する触媒は、チタ
ンとモリブデンの酸化物を活性成分とするが「 これら
活性成分の割合は触媒活性および触媒強度などの面から
、チタンとモリブデンの原子比が99:1〜50:50
の範囲が好ましく、特にチタン、モリブデンが98:1
〜70:30の範囲が特に好ましい。The catalyst for converting hydrogen sulfide to sulfur dioxide of the present invention uses oxides of titanium and molybdenum as active components. 99:1~50:50
is preferably in the range of 98:1, especially titanium and molybdenum.
A range of 70:30 is particularly preferred.
本発明になる触媒を調製する場合のチタン原料としては
各種の酸化チタン、また加熱することにより酸化チタン
を生成するチタン酸「四塩化チタン、硫酸チタン、硫酸
チタニルなどを用いることができる。As titanium raw materials for preparing the catalyst of the present invention, various titanium oxides and titanic acids such as titanium tetrachloride, titanium sulfate, titanyl sulfate, etc., which produce titanium oxide when heated, can be used.
あるいは四塩化チタン、硫酸チタンなどの水溶液をアン
モニア水、カー性アルカリ、炭酸アルカリ、尿素などで
中和して沈澱を生成せしめ、それを加熱分解して酸化物
を得るのも好ましい方法である。またモリブデンの原料
としては、酸化モリブデン、モリブデン酸、あるいは各
種のモリブデン酸塩が使用できる。本発明になる触媒の
調製には、通常の製造に利用される沈澱法、混練法など
いずれも使用することができ、特に限定されない。Alternatively, a preferable method is to neutralize an aqueous solution of titanium tetrachloride, titanium sulfate, etc. with aqueous ammonia, carbon alkali, alkali carbonate, urea, etc. to form a precipitate, and then thermally decompose the precipitate to obtain an oxide. Further, as a raw material for molybdenum, molybdenum oxide, molybdic acid, or various molybdate salts can be used. For the preparation of the catalyst of the present invention, any of the precipitation methods, kneading methods, etc. used in normal production can be used, and is not particularly limited.
また最終的な触媒の成型法としても通常の打錠成型法、
押出し成型法「転勤造粒法など目的に応じて任意の方法
を採用することができる。さらに、チタン酸化物をさき
に成形しておき、これにモリブデンを含浸させることに
よっても、また、耐熱性のセラミックス担体に活性成分
を担特せしめることによっても形成することができる。
触媒の使用方法は固定床、流動床など通常の触媒の使用
方法でよい。In addition, the final catalyst molding method is the usual tablet molding method.
Any method can be used depending on the purpose, such as extrusion molding or transfer granulation method.Furthermore, titanium oxide can be molded first and then impregnated with molybdenum. It can also be formed by specifically loading the active ingredient on a ceramic carrier.
The catalyst may be used in a conventional manner such as fixed bed or fluidized bed.
(発明の実施例)
以下、本発明を実施例にもとづいてさらに詳細に説明す
る。(Examples of the Invention) Hereinafter, the present invention will be described in more detail based on Examples.
実施例 1
酸化チタンとして約55重量%を含有するメタチタン酸
スラリー800夕とバラモリブデン酸アンモニウム10
8夕をとり、ニーダーにて充分に混線する。Example 1 Metatitanic acid slurry containing about 55% by weight as titanium oxide 800 g and ammonium rosemolybdate 10 g
It took 8 nights and the wires were thoroughly mixed in the kneader.
得られたペースト状の混合物を120℃で1昼夜乾燥後
「粉砕する。グラフアィトを15夕加え、成型圧力50
0kg/ので直径6側、厚さ6伽の円柱状に打錠成型す
る。得られた成形品を50000で4時間焼成する。か
くして得られた触媒は原子比でTi:Mo=9:1の組
成を有する。触媒の性能試験は次のように行った。The resulting paste-like mixture was dried at 120°C for one day and then crushed. Graphite was added for 15 minutes, and the molding pressure was 50°C.
Since the weight is 0 kg, it is compressed into a cylindrical tablet with a diameter of 6 sides and a thickness of 6 cm. The obtained molded article is fired at 50,000 ℃ for 4 hours. The catalyst thus obtained has an atomic ratio of Ti:Mo=9:1. The catalyst performance test was conducted as follows.
反応管は内径17肌の石英製で、外部より電気炉により
加熱される。反応管の中央部に10〜20メッシュに破
砕された触媒を約40M充填し、下記組成のガスを80
夕/h(空間速度20000h‐1)で流した。ガス組
成日2S O.
5%02 1.8±
0.2%N2
残なお生成物の分析はガスクロマトグラフ法によつた。The reaction tube is made of quartz with an inner diameter of 17 mm and is heated from the outside by an electric furnace. Approximately 40M of catalyst crushed to 10 to 20 mesh was packed in the center of the reaction tube, and 80M of a gas having the following composition was charged.
It ran at evening/h (space velocity 20,000 h-1). Gas composition date 2SO.
5%02 1.8±
0.2%N2
The remaining products were analyzed by gas chromatography.
馬S転化率、S02生成率はそれ以下の式により求めた
。The horse S conversion rate and S02 production rate were determined using the following formulas.
墨s転化率=入口日2S濃度−出口&S濃度入口日ぶ濃
度×100(%)※
S。Black S conversion rate = Inlet day 2S concentration - Outlet & S concentration Inlet day concentration x 100 (%) *S.
2生成率=英目轟き麓産×・〇。2 generation rate = Eime Todoroki Fumoto production x 〇.
(%)得られた結果を第1表に示す。硫化水素はきわめ
て高い転換率で二酸化硫黄になっている。比較例 1水
酸化アルミニウム2009とパラモリブデン酸アンモニ
ウム50夕をとり、水約100奴を加えてよく混練する
。(%) The results obtained are shown in Table 1. Hydrogen sulfide is converted to sulfur dioxide at a very high conversion rate. Comparative Example 1 Take 50 g of aluminum hydroxide 2009 and ammonium paramolybdate, add about 100 g of water, and mix well.
以下、実施例一1に示したのと同様の方法で山203−
Moo3触媒を調製した。得られた触媒の性能を実施例
−1に示したのと同様の実験条件で測定して、第1表に
示す結果を得た。第1表実施例 2
酸化チタンと酸化モリブデンの割合を変化させた以外は
、実施列−1と同様の調製法でTi:Mo=98:2,
80:20,60:40,40:60の割合で含有する
触媒を製造した。Hereinafter, the mountain 203-
A Moo3 catalyst was prepared. The performance of the obtained catalyst was measured under the same experimental conditions as shown in Example-1, and the results shown in Table 1 were obtained. Table 1 Example 2 Ti:Mo=98:2, by the same preparation method as Example 1 except that the ratio of titanium oxide and molybdenum oxide was changed.
Catalysts were produced containing the following ratios: 80:20, 60:40, and 40:60.
これら触媒の性能を実施例一1に示したのと同様の実験
条件で測定し、第2表に示す結果を得た。第2表
実施例 3
本実施例では触媒の長時間寿命試験を行なった結果につ
いて述べる。The performance of these catalysts was measured under the same experimental conditions as shown in Example 1, and the results shown in Table 2 were obtained. Table 2 Example 3 This example describes the results of a long-term life test of a catalyst.
実施例−1および比較例−1に示した触媒を用い、反応
温度をそれぞれ150oo、および30000空間速度
をそれぞれ1000血‐1、および500血‐1で下記
組成のガスを用いて300hの連続試験を行った。Using the catalysts shown in Example-1 and Comparative Example-1, a continuous test for 300 hours was carried out using a gas having the following composition at a reaction temperature of 150 oo and a space velocity of 30,000 and 1,000 blood-1 and 500 blood-1, respectively. I did it.
比SおよびS02の分析には、TCD付およびFPD(
FlamePhotometricDetector、
日立製)付のガスクロマトグラフを用いた。ガス組成日
2S O.1%02
3.0%N2
残第3表
本願の触媒は30脚持間の連続使用によってもまったく
その性能は低下せず、また、外観上も変化せず、耐久性
の高いことが判った。For analysis of ratio S and S02, TCD equipped and FPD (
Flame Photometric Detector,
A gas chromatograph (manufactured by Hitachi) was used. Gas composition date 2SO. 1%02
3.0%N2
Remaining Table 3 It was found that the catalyst of the present invention had high durability, with no deterioration in performance or change in appearance even after continuous use for 30 cycles.
Claims (1)
り、両者の割合はチタンとモリブデンの原子比として9
9:1ないし50:50の範囲にある硫化水素を二酸化
硫黄に変換する触媒。1 The catalytic active component consists of oxides of titanium and molybdenum, and the ratio of the two is 9 as an atomic ratio of titanium and molybdenum.
A catalyst that converts hydrogen sulfide to sulfur dioxide in the range of 9:1 to 50:50.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5121784A JPS609859B2 (en) | 1984-03-19 | 1984-03-19 | Catalyst that converts hydrogen sulfide to sulfur dioxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5121784A JPS609859B2 (en) | 1984-03-19 | 1984-03-19 | Catalyst that converts hydrogen sulfide to sulfur dioxide |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51031332A Division JPS5930643B2 (en) | 1976-03-24 | 1976-03-24 | How to convert hydrogen sulfide to sulfur dioxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59186642A JPS59186642A (en) | 1984-10-23 |
JPS609859B2 true JPS609859B2 (en) | 1985-03-13 |
Family
ID=12880749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5121784A Expired JPS609859B2 (en) | 1984-03-19 | 1984-03-19 | Catalyst that converts hydrogen sulfide to sulfur dioxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS609859B2 (en) |
-
1984
- 1984-03-19 JP JP5121784A patent/JPS609859B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS59186642A (en) | 1984-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4532119A (en) | Catalytic desulfurization of industrial waste gases | |
EP0107358B1 (en) | High activity transition metal catalysts and methods for making them | |
KR890005057B1 (en) | Production process of chlorine | |
CN105435806B (en) | A kind of deoxidation and Organic sulfur hydro-conversion bifunctional catalyst and its preparation and application | |
US4138469A (en) | Process for catalytically treating exhaust gas containing NOx in the presence of ammonia gas | |
CA2115723A1 (en) | Catalytic converter for converting reactants of a gas mixture | |
CZ343796A3 (en) | Catalyst for reducing amount of nitrogen oxides in flowing media and process for preparing thereof | |
EP0635298B1 (en) | Catalyst and method for the removal of nitrogen oxides | |
US5106607A (en) | Multilobar catalysts for the conversion of sulfur containing gaseous effluents | |
JPH02107341A (en) | Catalyst and method for treating gas effluent | |
RU2735774C2 (en) | Hydrolysis catalyst with high metal content for catalytic reduction of sulfur in gas stream | |
CN1126595C (en) | Double-function sulphur recovering catalyst and its prepn | |
JPS609859B2 (en) | Catalyst that converts hydrogen sulfide to sulfur dioxide | |
US4148760A (en) | Catalyst for oxidizing sulfur or sulfur compounds | |
JPS5930643B2 (en) | How to convert hydrogen sulfide to sulfur dioxide | |
US4432960A (en) | Thermochemical method for producing hydrogen from hydrogen sulfide | |
JPS6018211B2 (en) | Catalyst that oxidizes hydrogen sulfide to sulfur dioxide | |
JPS6341843B2 (en) | ||
JPS5929285B2 (en) | Sulfur recovery equipment tail gas purification method | |
JPS5951482B2 (en) | Method for oxidizing hydrogen sulfides to sulfur dioxide | |
JPS5824172B2 (en) | Ammonia Osankabunkaisuruhouhou | |
JPS62191403A (en) | Production of chlorine | |
US4296046A (en) | Process for the manufacture of acrylonitrile | |
JPS5813217B2 (en) | catalyst composition | |
JPH01297143A (en) | Manufacture of desulfurizing agent |