JPS6098329A - Pressure detector of internal-combustion engine - Google Patents

Pressure detector of internal-combustion engine

Info

Publication number
JPS6098329A
JPS6098329A JP20475483A JP20475483A JPS6098329A JP S6098329 A JPS6098329 A JP S6098329A JP 20475483 A JP20475483 A JP 20475483A JP 20475483 A JP20475483 A JP 20475483A JP S6098329 A JPS6098329 A JP S6098329A
Authority
JP
Japan
Prior art keywords
pressure
intake
output
engine
atmospheric pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20475483A
Other languages
Japanese (ja)
Inventor
Hatsuo Nagaishi
初雄 永石
Takeshi Kitahara
剛 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP20475483A priority Critical patent/JPS6098329A/en
Publication of JPS6098329A publication Critical patent/JPS6098329A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/24Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid specially adapted for measuring pressure in inlet or exhaust ducts of internal-combustion engines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To reduce the cost without damaging the detection precision by operating an air pressure in accordance with the output of a pressure detecting means, which detects the pressure in an intake pipe, and the output of a full opening detecting means which detects that an intake throttle valve is opened to its full width approximately. CONSTITUTION:The full opening detecting means detects it on a basis of a degree of opening of the intake throttle valve or the like that the operation state of an engine is full opening approximately. When it is detected by the full opening detecting means that the engine is operated in the full opening state approximately, an air pressure operating means operates the air pressure on a basis of the output of the pressure detecting means which detects the pressure in the intake pipe. The output of this operating means and the output of the pressure detecting means are supplied to an engine control means.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、電子制御式内燃機関の空燃比、点火時期等の
制御の指標である空気流量信号をめる場合に使用する大
気圧力、吸入負圧を検出する装置に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for measuring atmospheric pressure and suction negative pressure, which is used to obtain an air flow signal that is an index for controlling the air-fuel ratio, ignition timing, etc. of an electronically controlled internal combustion engine. It relates to a device for detecting.

〈従来技術〉 従来の内燃機関の圧力検出装置としては、例えば、第1
図に示すようなものがある。これは、吸気管内圧力を検
出する吸入負圧センサlと大気圧力を検出する大気圧セ
ンサ2と、機関の回転速度を検出する回転センサ(図示
省略)との出力を演算装置3に供給して機関の吸入空気
流量を演算補正し、この演算装置3の出力を機関制御回
路4に出力し、例えば、噴射弁の燃料噴射量を制御する
等制御対象を制御するようにしていた(例えば、昭和4
8年9月、日産自動車■発行、電子制御ガソリン噴射装
置整備要領3等参照)。
<Prior art> As a conventional pressure detection device for an internal combustion engine, for example, a first
There is something like the one shown in the figure. This supplies the outputs of an intake negative pressure sensor l that detects the pressure inside the intake pipe, an atmospheric pressure sensor 2 that detects atmospheric pressure, and a rotation sensor (not shown) that detects the rotational speed of the engine to the calculation device 3. The intake air flow rate of the engine was calculated and corrected, and the output of this calculation device 3 was output to the engine control circuit 4 to control the control target, such as controlling the fuel injection amount of the injection valve (for example, in the Showa era). 4
(Refer to Electronically Controlled Gasoline Injection System Maintenance Guidelines 3, published by Nissan Motor Co., Ltd., September 1988).

しかしながら、このように2個の圧力センサを使用する
場合は、個々のセンサの誤差か累積するので得られた空
気流j−1の誤差が大きくなると共に、コスト高となる
欠点がある。
However, when two pressure sensors are used in this way, the errors of the individual sensors accumulate, resulting in a large error in the obtained air flow j-1 and a disadvantage that the cost is high.

又、吸気管内の絶対圧力を測定し、この測定値と機関の
回転速度とから吸入空気流量を演算するようにしたもの
もある。しかしながら、このように吸気管内圧力と回転
速度とによって吸入空気流量を演算するようにしたもの
では、大気圧が例えば760mmHgであるときAと6
08mmHgであるときBとでは第2図に示すように吸
気管内圧力が同一であっても空気温州に大きな誤差が生
じ、この誤差が十数パーセントにも及ぶので大気圧の変
動によって燃費、運転性、排気特性に悪影響を及ぼすこ
とがあった。
There is also a system in which the absolute pressure in the intake pipe is measured and the intake air flow rate is calculated from this measured value and the rotational speed of the engine. However, in a system in which the intake air flow rate is calculated based on the intake pipe internal pressure and rotational speed, when the atmospheric pressure is, for example, 760 mmHg, A and 6
As shown in Fig. 2, even if the pressure inside the intake pipe is the same, there will be a large error in the air temperature, and this error can reach more than ten percent, so changes in atmospheric pressure will affect fuel efficiency and drivability. , which could have an adverse effect on exhaust characteristics.

〈発明の目的〉 本発明は、このような実状に鑑みてなされたものであり
、その目的とするところは、吸気管内圧力を検出する圧
力検出手段を大気圧力の検出にも有効利用して検出精度
を向−ヒさせつつ装置を簡素化してそのコストを低減さ
せることにある。
<Object of the Invention> The present invention has been made in view of the above-mentioned circumstances, and its purpose is to effectively utilize the pressure detection means for detecting the pressure inside the intake pipe to detect atmospheric pressure. The objective is to simplify the device and reduce its cost while improving accuracy.

〈発明の構成〉 1−記の如き目的を達成するために本発明では、第3図
に示すように、吸気絞り弁の開度等から機関の運転状態
が全開近傍であることを検出する全開検出手段と、この
全開検出手段を介して機関が全開近傍で運転されている
ことを検出したときに吸気管内の圧力PMを検出する圧
力検出手段の出力に基づいて大気圧力PAを演算する手
段とを設け、この演算手段の出力PAと前記圧力検出手
段の出力PMとを機関制御手段に供給することにより、
高価な圧力センサの数を減少させつつ検出精度を高く維
持して制御対象を高精度に制御できるようにしている。
<Structure of the Invention> In order to achieve the objects as described in 1-1, the present invention provides a full-open control system that detects that the operating state of the engine is near full-open from the opening degree of the intake throttle valve, etc., as shown in FIG. a detection means, and means for calculating atmospheric pressure PA based on the output of the pressure detection means that detects the pressure PM in the intake pipe when it is detected through the full open detection means that the engine is being operated near full open. and supplying the output PA of the calculation means and the output PM of the pressure detection means to the engine control means,
The number of expensive pressure sensors is reduced while maintaining high detection accuracy, making it possible to control the controlled object with high precision.

〈実施例〉 以下に本発明の詳細な説明する。<Example> The present invention will be explained in detail below.

第4図は本発明の−・実施例を示すブロックダイアグラ
ムであり、内燃機関10の吸気マニフォールド11の圧
力(吸気絞り弁下流の圧力)を検出する圧力検出手段と
して設けた絶対圧力センサ12の出力PMを大気圧演算
装置古13と機関制御装置14とに供給している。又、
前記吸気マニフォールド11に接続したスロットルチャ
ンバ15には吸気絞り弁16が全開伺近にあるか否かを
検出する全開検出手段として設けた全開スイッチ17を
設け、この全開スイッチ17の出力をも前記大気圧演算
装置13に供給している。尚、前記した機関制御装置1
4には、図示しないセンサから機関回転速度N、機関冷
却水温Tw、吸気温度TA等の各種信号が供給され、こ
れらの信号によって燃料噴射弁18に供給される制御信
号及び図示しない点火装置に供給される点火信号をそれ
ぞれ最適制御するように構成している。
FIG. 4 is a block diagram showing an embodiment of the present invention, in which the output of an absolute pressure sensor 12 provided as pressure detection means for detecting the pressure in the intake manifold 11 of the internal combustion engine 10 (pressure downstream of the intake throttle valve) is shown in FIG. PM is supplied to the atmospheric pressure calculation device 13 and the engine control device 14. or,
A full-open switch 17 is provided in the throttle chamber 15 connected to the intake manifold 11 as a full-open detection means for detecting whether or not the intake throttle valve 16 is close to fully open. It is supplied to the atmospheric pressure calculation device 13. Incidentally, the engine control device 1 described above
4 is supplied with various signals such as engine rotational speed N, engine cooling water temperature Tw, and intake air temperature TA from a sensor (not shown), and these signals are used as control signals to be supplied to the fuel injection valve 18 and to an ignition device (not shown). It is configured to optimally control each ignition signal.

このように構成された圧力検出装置においては、例えば
第5図に示すフローチャートのように、まず全開スイッ
チ17の状態によって大気圧の演算を行なうか否かを判
別する。このとき、全開スイッチ17がオフであるとき
は、吸気絞り弁16が全開近傍ではないと判断して大気
圧の演算を行なわず、大気圧力PAと吸気管内圧力PM
との圧力比PRを計算する。又同様に、機関回転速度N
が例えば3000rpm以上であれば吸気流量が大とな
って吸気管内圧力PMが吸気管内の大きな圧力損失を生
じ、吸気管内圧力PMから大気圧を演算するに誤差が大
きくなることを懸念して同様に圧力比PRの計算に向う
In the pressure detection device configured in this way, first, it is determined whether or not to calculate the atmospheric pressure based on the state of the fully open switch 17, as shown in the flowchart shown in FIG. 5, for example. At this time, when the full open switch 17 is off, it is determined that the intake throttle valve 16 is not near full open, and the atmospheric pressure is not calculated, and the atmospheric pressure PA and the intake pipe internal pressure PM are
Calculate the pressure ratio PR between Similarly, the engine rotation speed N
For example, if it is more than 3000 rpm, the intake flow rate becomes large and the intake pipe internal pressure PM causes a large pressure loss in the intake pipe, and the error in calculating atmospheric pressure from the intake pipe internal pressure PM becomes large. Let's move on to calculating the pressure ratio PR.

一方、全開スイッチ17がオンであるときは吸気絞り弁
16が全開近傍であるので、この場合は機関回転速度N
が300Orpm以下であることを条件に大気圧力PA
の演算を行なう。この大気圧力PAの演算に際しては、
まず圧力損失補止定数Iを回転速度Nに基づいてテーブ
ルルックアップしてめる。
On the other hand, when the full open switch 17 is on, the intake throttle valve 16 is close to fully open, so in this case, the engine rotation speed N
Atmospheric pressure PA on the condition that it is 300 Orpm or less
Perform the calculation. When calculating this atmospheric pressure PA,
First, the pressure loss correction constant I is determined by table lookup based on the rotational speed N.

第6図は圧力損失補正定数Iのテーブル値の一例である
FIG. 6 is an example of table values of the pressure loss correction constant I.

次に、絶対圧力センサ12から出力された吸気管内の絶
対圧力PMと上記のようにしてめた圧力損失補正定数I
とから大気圧力PAを次式%式% でめることにより、 1/64の重みで新データと旧デ
ータとの平均をとる。尚、このような大気圧力PAの演
算に際しては、吸入サイクルごとに吸気管内圧力PMが
大きく変動するので平滑化処理を行なうことが望まれる
Next, the absolute pressure PM in the intake pipe output from the absolute pressure sensor 12 and the pressure loss correction constant I determined as above
By calculating the atmospheric pressure PA from the following formula, %, the new data and old data are averaged with a weight of 1/64. Note that when calculating the atmospheric pressure PA, it is desirable to perform smoothing processing because the intake pipe internal pressure PM fluctuates greatly with each intake cycle.

]−記のようにして大気圧力PAをめた後に、この値を
ランダムアクセスメモリに記憶させておき、圧力比PR
=PM/PAを計算する。尚、この圧力比PRは、大気
圧力に対する吸気圧力の比率であり、機関の1回転当り
の吸入空気mQを演算する際に使用される。
] - After determining the atmospheric pressure PA as described above, store this value in the random access memory and calculate the pressure ratio PR.
Calculate = PM/PA. Note that this pressure ratio PR is the ratio of intake pressure to atmospheric pressure, and is used when calculating intake air mQ per revolution of the engine.

又、1回転当りの吸入空気量Qの演算は、」二記のよう
にしてめられた圧力比PRと機関回転速度Nとからテー
ブルルックアップで行なう。第7図にそのテーブルマツ
プを例示する。
Further, the intake air amount Q per rotation is calculated by table lookup from the pressure ratio PR and the engine rotational speed N determined as described in section 2 above. FIG. 7 shows an example of the table map.

尚、本発明者らは、実験によって前記圧力比PRと1回
転当りの吸入空気量Qとの間に第7図のような相関関係
があることを確認した。つまり、定性的に考えると、気
筒には吸気管内圧力PMと気筒内圧力との差圧で吸気が
導入されるわけであるから、吸気管内圧力PMが大きい
程吸気充填効率が増大するわけであり、また、吸気管内
圧力PMと大気圧力PAとの比PRが大きい程吸気絞り
効果が小となって吸入空気量Qが増大することになるか
ら、前記圧力比PRは大気圧力PAに応じた機関回転当
りの吸入空気量Q相当の値を示すことになるのであ関回
転数に応じて変化することによる。
The inventors of the present invention have confirmed through experiments that there is a correlation between the pressure ratio PR and the intake air amount Q per revolution as shown in FIG. In other words, qualitatively speaking, intake air is introduced into the cylinder at the differential pressure between the intake pipe internal pressure PM and the cylinder internal pressure, so the higher the intake pipe internal pressure PM, the higher the intake air filling efficiency. In addition, as the ratio PR between the intake pipe internal pressure PM and the atmospheric pressure PA becomes larger, the intake throttling effect becomes smaller and the intake air amount Q increases. This is because it shows a value equivalent to the amount of intake air Q per rotation, and therefore changes depending on the engine rotation speed.

次に、図示しない温度センサから出力yれた吸気温度T
Aに基づいて吸気温度補正係数KTAをテーブルルック
アップによってめる。fftJ8図にそのテーブルマツ
プを例示する。
Next, the intake air temperature T output from a temperature sensor (not shown)
Based on A, the intake air temperature correction coefficient KTA is determined by table lookup. An example of the table map is shown in Figure fftJ8.

そして、吸気温度補正係数KTAと吸入空気量Qと大気
圧力PAとに基づいて燃料の基本噴射量TPを次式 %式% で計算する。ここに、Qは体積であるので空気の質量は
QX空気密度(温度依存)であり、空気温度が例えば4
0°Cであるとすれば、空気密度は次式1式%) し、 1.128/760 X I/目標空燃比(A/
F)をKとすることにより、基本噴射量TPを次式1式
% でめることができる。その後、機関の冷却水温Twによ
る補正、機関回転速度Nと圧力比PRとにより全開増量
補正等の各種補IFが行なわれて制御信号となり、噴射
弁18に供給される。
Then, the basic injection amount TP of fuel is calculated based on the intake air temperature correction coefficient KTA, the intake air amount Q, and the atmospheric pressure PA using the following formula %. Here, since Q is the volume, the mass of air is QX air density (temperature dependent), and if the air temperature is, for example, 4
Assuming that the temperature is 0°C, the air density is expressed by the following formula (%) and 1.128/760 X I/target air-fuel ratio (A/
By setting F) to K, the basic injection amount TP can be determined by the following equation 1. Thereafter, various supplementary IFs such as a correction based on the engine cooling water temperature Tw and a full-open increase correction based on the engine rotational speed N and pressure ratio PR are performed to form a control signal, which is supplied to the injection valve 18.

実施例では全開検出−L段どして全開スイ・ンチ17を
使用しているが、吸気絞リブrlGの1−下流間の圧力
差で作動する負圧スイッチあるいは、大気圧と吸入負圧
とで作動する負圧スイ・ンチを使用することができる。
In the embodiment, the full open switch 17 is used with the full open detection - L stage, but a negative pressure switch that operates based on the pressure difference between the first and downstream of the intake throttle rib rlG, or a negative pressure switch that operates between the atmospheric pressure and the negative intake pressure. A negative pressure switch that operates with

又、このj↓1合は、吸入負圧で例えば5 mmHg程
度で作動するスイッチがよく、第9因に示すように、チ
ェック弁18とオリフィス20とを組み込んだ負圧スイ
ッチ21を使用することで吸気脈動によるスイッチ信号
の断続ゾーンを狭くすることもできる。22はダイアフ
ラム、23はスプリング、24はスイッチである。
In addition, in this case of j↓1, it is better to use a switch that operates at a suction negative pressure of, for example, about 5 mmHg, and as shown in factor 9, a negative pressure switch 21 incorporating a check valve 18 and an orifice 20 should be used. It is also possible to narrow the intermittent zone of the switch signal due to intake pulsation. 22 is a diaphragm, 23 is a spring, and 24 is a switch.

又、大気圧演算装置13に回転速度Nを供給することに
より、大気圧力PAの算出粘度をより高くすることがで
きることは詳述するまでもない。
Furthermore, it is needless to mention in detail that by supplying the rotational speed N to the atmospheric pressure calculating device 13, the calculated viscosity of the atmospheric pressure PA can be made higher.

〈発明の効果〉 以上説明したように本発明によれば、吸気管内圧力を検
出する圧力検出手段の出力と、吸気絞り方か全開近傍に
あることを検出する全開検出手段の出力とによって大気
圧力を演算するようにしているために、従来のように高
価な吸気管内圧力センサと大気圧センサとの2個のセン
サを使用する必要性がなくなり、圧力の検出精度を損な
うことなくそのコストを低減できる。又、従来の吸気管
内圧力を用いて内燃機関の制御対象を制御していたもの
のように大気圧の影響によって測定精度が変動するおそ
れもないため、本発明の圧力検出装置を電子制御式内燃
機関に適用すれば、空燃比、点火時期等の制御対象を高
精度に制御して空燃比、運転性、排気特性等を良好に保
持できる。
<Effects of the Invention> As explained above, according to the present invention, the atmospheric pressure is determined by the output of the pressure detection means for detecting the pressure inside the intake pipe and the output of the full open detection means for detecting whether the intake air is throttled or close to fully open. This eliminates the need to use two conventionally expensive sensors, the intake pipe internal pressure sensor and the atmospheric pressure sensor, reducing costs without compromising pressure detection accuracy. can. In addition, there is no risk that the measurement accuracy will fluctuate due to the influence of atmospheric pressure, unlike in conventional systems in which the control target of an internal combustion engine is controlled using the pressure inside the intake pipe. If applied to the system, it is possible to control objects to be controlled such as the air-fuel ratio and ignition timing with high precision, and maintain good air-fuel ratio, drivability, exhaust characteristics, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の略示ブロックダイアグラム、9f、2
図は他の従来例の圧力検出値と空気がEffiとの関係
を示す特性図、第3図は本発明の構成を示すブロックダ
イアゲラl1、第4図は本発明の一実施例のブロックダ
イアクラム、第5図は同しくフローチャート、第6図乃
至第8図は第5図のフを示す断面図である。 10・・・内燃機関 II・・・吸気マニフォールト1
2・・・絶対圧力センサ(圧力検出手段)13・・・大
気圧演算装置(大気圧Qi(算P段)14・・・機関制
御装置 16・・・吸気絞り弁17・・・全開スイッチ
(全開検出手段)18・・・燃料噴射弁 特許出願人 1−1産自動市株式会社 代理人 ゴ1′理1: 笹 島 冨二どIdl第3図 第4図 第6図 第7図 N (rpm) 第8図 TA(’C) 第9図 4
FIG. 1 is a schematic block diagram of a conventional example, 9f, 2
The figure is a characteristic diagram showing the relationship between pressure detection value and air Effi of another conventional example, Figure 3 is a block diagram showing the configuration of the present invention, and Figure 4 is a block diagram of an embodiment of the present invention. Similarly, FIG. 5 is a flowchart, and FIGS. 6 to 8 are sectional views showing the steps in FIG. 5. 10... Internal combustion engine II... Intake manifold 1
2...Absolute pressure sensor (pressure detection means) 13...Atmospheric pressure calculation device (atmospheric pressure Qi (calculation P stage) 14...Engine control device 16...Intake throttle valve 17...Full open switch ( Fully open detection means) 18...Fuel injection valve patent applicant 1-1 San Jidoichi Co., Ltd. agent Go1'ri 1: Sasashima Fujido Idl Fig. 3 Fig. 4 Fig. 6 Fig. 7 N ( rpm) Fig. 8 TA('C) Fig. 9 4

Claims (1)

【特許請求の範囲】[Claims] 内燃機関の吸気管内圧力を検出する圧力検出手段と、吸
気絞り弁が全開近傍であることを検出する全開検出手段
と、該全開検出手段の出力に応じて吸気絞り弁全開近傍
における吸気管内圧力を読み取って大気圧力を演算する
大気圧演算手段と、を備えてなる内燃機関の圧力検出装
置。。
A pressure detection means for detecting the pressure in the intake pipe of an internal combustion engine, a fully open detection means for detecting that the intake throttle valve is near full open, and a pressure detection means for detecting the pressure in the intake pipe near the full open intake throttle valve according to the output of the full open detection means. A pressure detection device for an internal combustion engine, comprising: atmospheric pressure calculation means for reading and calculating atmospheric pressure. .
JP20475483A 1983-11-02 1983-11-02 Pressure detector of internal-combustion engine Pending JPS6098329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20475483A JPS6098329A (en) 1983-11-02 1983-11-02 Pressure detector of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20475483A JPS6098329A (en) 1983-11-02 1983-11-02 Pressure detector of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6098329A true JPS6098329A (en) 1985-06-01

Family

ID=16495784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20475483A Pending JPS6098329A (en) 1983-11-02 1983-11-02 Pressure detector of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6098329A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312847A (en) * 1986-07-02 1988-01-20 Yamaha Motor Co Ltd Pressure detecting device for internal combustion engine
JPH01116265A (en) * 1987-10-29 1989-05-09 Suzuki Motor Co Ltd Fuel injection height correcting device for internal combustion engine
JPH01125536A (en) * 1987-11-11 1989-05-18 Fuji Heavy Ind Ltd Fuel injection controller for internal combustion engine
JPH01280652A (en) * 1988-05-06 1989-11-10 Mikuni Corp Idling control device for engine
WO2003006808A1 (en) * 2001-07-12 2003-01-23 Yamaha Hatsudoki Kabushiki Kaisha 4-stroke engine control device and control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865950A (en) * 1981-10-14 1983-04-19 Nippon Denso Co Ltd Method of controlling internal-combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865950A (en) * 1981-10-14 1983-04-19 Nippon Denso Co Ltd Method of controlling internal-combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312847A (en) * 1986-07-02 1988-01-20 Yamaha Motor Co Ltd Pressure detecting device for internal combustion engine
JPH01116265A (en) * 1987-10-29 1989-05-09 Suzuki Motor Co Ltd Fuel injection height correcting device for internal combustion engine
JPH01125536A (en) * 1987-11-11 1989-05-18 Fuji Heavy Ind Ltd Fuel injection controller for internal combustion engine
JPH01280652A (en) * 1988-05-06 1989-11-10 Mikuni Corp Idling control device for engine
WO2003006808A1 (en) * 2001-07-12 2003-01-23 Yamaha Hatsudoki Kabushiki Kaisha 4-stroke engine control device and control method
US6810855B2 (en) 2001-07-12 2004-11-02 Yamaha Hatsudoki Kabushiki Kaisha 4-Stroke engine control device and control method
CN100357581C (en) * 2001-07-12 2007-12-26 雅马哈发动机株式会社 Four-stroked engine control device and control method

Similar Documents

Publication Publication Date Title
US7565236B2 (en) Airflow estimation method and apparatus for internal combustion engine
US4571990A (en) Method and apparatus for measuring the rate of air flow in the intake tube of an internal combustion engine
US8521405B2 (en) Air-fuel ratio diagnostic device for internal combustion engine
JPS63215848A (en) Fuel injection amount control method and device for internal combustion engine
JPH01244138A (en) Fuel injection control device for engine for automobile
US5123391A (en) Electronic control fuel injection device a for an internal combustion engine
JPS59221433A (en) Fuel injection controller for internal-combustion engine
JPH02227532A (en) Fuel injection control device
TW559640B (en) Device and method for detection of atmospheric pressure of engine
JP2006343136A (en) Partial pressure detector of steam, suction flow rate detector of engine and internal pressure detector of collector
JPS6098329A (en) Pressure detector of internal-combustion engine
JP2001073789A (en) Supercharging pressure control system for internal combustion engine
WO2002042627A1 (en) Method for measuring intake air volume in internal combustion engine
JPH0323347A (en) Deterioration detecting means for airflow meter
JP2008002833A (en) Device for correcting intake flow rate
KR100428343B1 (en) Method of controlling air flow for gasoline vehicles
JPH09317568A (en) Abnormality detecting device for diesel engine
JP2503200B2 (en) Method for determining fuel injection amount of internal combustion engine
JP2001153702A (en) Method for correcting measuring error of heat generating resistor type air flow measuring apparatus
JPS61116051A (en) Method for processing engine control signal
JPH10280995A (en) Fuel injection controlling device of internal combustion engine
JPH034768Y2 (en)
JPS63134845A (en) Exhaust gas recirculation control device
JP2789005B2 (en) Control device for internal combustion engine
JPH09228899A (en) Egr device for diesel engine