JPS59221433A - Fuel injection controller for internal-combustion engine - Google Patents

Fuel injection controller for internal-combustion engine

Info

Publication number
JPS59221433A
JPS59221433A JP58093351A JP9335183A JPS59221433A JP S59221433 A JPS59221433 A JP S59221433A JP 58093351 A JP58093351 A JP 58093351A JP 9335183 A JP9335183 A JP 9335183A JP S59221433 A JPS59221433 A JP S59221433A
Authority
JP
Japan
Prior art keywords
combustion chamber
fuel injection
fuel
pressure
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58093351A
Other languages
Japanese (ja)
Inventor
Toshiyuki Takimoto
滝本 敏幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58093351A priority Critical patent/JPS59221433A/en
Publication of JPS59221433A publication Critical patent/JPS59221433A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To properly control the air-fuel ratio of an internal-combustion engine even when equipped with supercharger and also even during the acceleration period by calculating the amount of fuel to be injected on the basis of the internal pressure of the combustion chamber. CONSTITUTION:Output voltage proportional to the internal pressure of a combustion chamber is sent out by a pressure sensor 13 and put in an input port 25 after being converted into binary digits in an AD converter 28. On the basis of the internal pressure of the combustion chamber 3, obtained from output signal of the pressure sensor 13, the amount of fuel to be injected is determined. By determination of fuel injection amounts on the basis of the internal pressure of the combustion chamber, representing the amount of air actually supplied into the combustion chamber, air-fuel ratios can be properly controlled even when equipped with supercharger and also even during the supercharging period.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は内燃機関の燃料噴射制御装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to a fuel injection control device for an internal combustion engine.

従来技術 電子制御式内燃機関では通常、エアフローメータの出力
信号および機関回転数から燃料噴射量が計算される。し
かしながらエアフローメータではスロットル全開時に吸
気脈動の影響を受けて吸入空気量を正確に計測すること
ができず、また過給機を取り付けた場合には吸入空気量
の計測すべき範囲が広くなりすぎてエアフローメータで
は全範囲に亘って吸入空気量を正確に計測することがで
きず、低流量域および高流量域における吸入空気の計測
精度を落とさざるを得ない。その結果、過給機を取り付
けた場合には低流量域および高流量域において機関シ゛
リンダ内に供給される混合気の空燃比を予め定められた
空燃比に正確に一致させるのは困難となり、過給機を取
り付けていない場合であってもスロットル弁全開時には
機関シリンダ内に供給される混合気の空燃比を予め定め
られた空燃比に正確に一致させるのは困難である。
In conventional electronically controlled internal combustion engines, the amount of fuel to be injected is usually calculated from the output signal of an air flow meter and the engine speed. However, the air flow meter cannot accurately measure the amount of intake air due to the influence of intake pulsation when the throttle is fully open, and when a supercharger is installed, the range in which the amount of intake air should be measured becomes too wide. An air flow meter cannot accurately measure the amount of intake air over the entire range, and the accuracy of measuring intake air in low flow areas and high flow areas must be reduced. As a result, when a supercharger is installed, it is difficult to accurately match the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders to a predetermined air-fuel ratio in the low-flow region and high-flow region, and Even when a feeder is not attached, it is difficult to accurately match the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder to a predetermined air-fuel ratio when the throttle valve is fully open.

発明の目的 本発明はどのような内燃機関であっても、またどのよう
に吸入空気量が変化しても各気筒に供給される吸入空気
量を正確に計測することができ、斯くして機関シリンダ
内に供給される混合気の空燃比をどのような場合であっ
ても予め定められた空燃比に正確に一致せしめることの
できる内燃機関の燃料噴射装置を提供することにある。
Purpose of the Invention The present invention makes it possible to accurately measure the amount of intake air supplied to each cylinder no matter what kind of internal combustion engine there is or how the amount of intake air changes. An object of the present invention is to provide a fuel injection device for an internal combustion engine that can accurately match the air-fuel ratio of an air-fuel mixture supplied into a cylinder to a predetermined air-fuel ratio in any case.

発明の構成 本発明の構成は、機関燃焼室内の圧力を検出する圧力セ
ンサと、圧力センサの出力信号に基づいて燃料噴射弁か
ら噴射される燃料噴射量を計算する電子制御ユニットを
具備したことにある。
Configuration of the Invention The configuration of the present invention includes a pressure sensor that detects the pressure within an engine combustion chamber, and an electronic control unit that calculates the amount of fuel injected from the fuel injection valve based on the output signal of the pressure sensor. be.

実施例 第1図を参照すると、■は機関本体、2はピストン、3
ば燃焼室、4は吸気弁、5は吸気ボート、6はザージタ
ンク、7は各気筒の吸気ボート5とザージタンク6とを
連結する枝管、8は吸気ダクト、9は吸気ダグ1〜8内
に配置されたスロ・ノトル弁、10ばエアクリーナ、目
は機関冷却水温を検出する水温センサ、12は枝管7に
取り付けられた燃焼室噴射弁を夫々示し、燃料は燃料噴
射弁12から対応する吸気ボート5内に向けて噴射され
る。また、燃焼室3内には燃焼室3内の圧力を検出する
圧力センサ13が配置される。
Referring to FIG. 1 of the embodiment, ■ is the engine body, 2 is the piston, and 3 is the engine body.
4 is an intake valve, 5 is an intake boat, 6 is a surge tank, 7 is a branch pipe connecting the intake boat 5 and the surge tank 6 of each cylinder, 8 is an intake duct, and 9 is inside the intake ducts 1 to 8. 10 indicates the air cleaner, 12 indicates the combustion chamber injection valve attached to the branch pipe 7, and fuel is supplied from the fuel injection valve 12 to the corresponding intake air. It is injected into the boat 5. Further, a pressure sensor 13 is arranged within the combustion chamber 3 to detect the pressure within the combustion chamber 3.

電子制御ユニソ1〜20ばディジタルコンピュータから
なり、双方向性バス21によって相互に接続されノこC
PII (マイクロプロセ・ノサ)22、ROM(リー
ドオンリメモリ)23、RAM (ランダムアクセスメ
モリ)24、入力ボート25および出力ポート26を具
備する。水温センサ11は機関冷却水温に比例した出力
電圧を発生し、この出力電圧はAD変換器27において
対応する2逓信号に変換された後、入力ポート25に入
力される。圧力センサ13は燃焼室内圧圧力に比例した
出力電圧を発生し1.この出力電圧がAD変換器28に
おいて2進数に変換された後、入力ポート25に入力さ
れる。クランク角度センサ29はクランク角にして5度
毎に出力パルス信号を発生し、この出力信号は入力ポー
ト25に入力される。クランク基準位置センサ30はピ
ストン2力青縮下死点にあるときに基準位置パルス信号
を発生し、従ってこの基準位置パルス信号はクランク角
にして720度毎に発生する。この基準位置信号は入力
ポート25に入力される。一方、出カポ−1〜26ば駆
動回路31 、32.33 、34を介して各気筒の燃
料噴射弁12に接続され、燃料が各燃料噴射弁12から
クランク角にして360度毎に同時に噴射される。
The electronic control units 1 to 20 consist of digital computers and are interconnected by a bidirectional bus 21.
It includes a PII (microprocessor) 22, a ROM (read only memory) 23, a RAM (random access memory) 24, an input port 25, and an output port 26. The water temperature sensor 11 generates an output voltage proportional to the engine cooling water temperature, and this output voltage is converted into a corresponding double signal by the AD converter 27 and then input to the input port 25. The pressure sensor 13 generates an output voltage proportional to the pressure inside the combustion chamber.1. After this output voltage is converted into a binary number by the AD converter 28, it is input to the input port 25. The crank angle sensor 29 generates an output pulse signal every 5 degrees of crank angle, and this output signal is input to the input port 25. The crank reference position sensor 30 generates a reference position pulse signal when the piston is at the bottom dead center, and therefore, this reference position pulse signal is generated every 720 degrees of crank angle. This reference position signal is input to the input port 25. On the other hand, the output capos 1 to 26 are connected to the fuel injection valves 12 of each cylinder via drive circuits 31, 32, 33, and 34, and fuel is simultaneously injected from each fuel injection valve 12 every 360 degrees of crank angle. be done.

本発明によれば第1図に示されるように燃焼室3内の圧
力を圧力センサ13により検出し、この圧カセツテ13
の出力信号により燃料噴射量を制御するようにしている
。このよう燃焼室3内の圧力を基にして燃料噴射量を決
定すると機関の運転状態にかかわらずに予め定められた
空燃比の混合気を當時燃焼室3内に供給することができ
る。次にその理由について第2図および第3図を参照し
て説明する。第2図は吸入空気i(g)を一定としたと
きの圧縮行程から膨張行程までの燃焼室3内の圧力変化
を示すもので、実線はファイヤリング時におりる圧力変
化を、破線はモータリング時における圧力変化を夫々示
している。第2図からクランク角がクランク角Cに達す
るまではファイヤリング時であってもモータリング時で
あっても同じ圧力変化を示すことがわかる。このクラン
ク角Cばおよそ上死点前40度である。一方、第3図は
第2図のクランク角Cにおける燃焼室3内の圧力Pと吸
入空気量Gafglとの関係を示しており、第3図から
圧力Pと吸入空気量Gaは1次式で表されることがわか
る。第3図に示す関係ばモークリング時に得られたもの
であるが吸入空気量Gaを一定とした場合には第2図に
示されるようにクランク角Cにおいてモータリング時で
あってもファイヤリング時であっても圧力Pは等しいの
で、第3図に示す関係はファイヤリング時においても成
立する。このように成る定められたクランク角Cにおい
て燃焼室3内の圧力を計測すれば燃焼室3内に実際に吸
入された吸入空気量Gaがわかり、従って燃焼室3内の
圧力に基づいて燃料噴射量を決定すれば吸入空気量Ga
に比例した燃料を供給することができる。本発明はこの
ような点に着目してなされたものであり、以下第4図か
ら第6図を参照して本発明による燃料噴射制御方法を説
明する。
According to the present invention, the pressure inside the combustion chamber 3 is detected by the pressure sensor 13 as shown in FIG.
The fuel injection amount is controlled by the output signal. When the fuel injection amount is determined based on the pressure within the combustion chamber 3 in this manner, a mixture having a predetermined air-fuel ratio can be supplied into the combustion chamber 3 at any given time regardless of the operating state of the engine. Next, the reason will be explained with reference to FIGS. 2 and 3. Figure 2 shows the pressure change in the combustion chamber 3 from the compression stroke to the expansion stroke when the intake air i (g) is constant.The solid line shows the pressure change during firing, and the broken line shows the pressure change during motoring. The pressure changes over time are shown respectively. From FIG. 2, it can be seen that until the crank angle reaches crank angle C, the pressure changes are the same whether during firing or motoring. This crank angle C is approximately 40 degrees before top dead center. On the other hand, Fig. 3 shows the relationship between the pressure P in the combustion chamber 3 and the intake air amount Gafgl at the crank angle C in Fig. 2, and from Fig. 3, the pressure P and the intake air amount Ga are expressed by a linear equation. It can be seen that it is expressed. The relationship shown in Fig. 3 is obtained when motoring, but when the intake air amount Ga is constant, as shown in Fig. 2, even when motoring at crank angle C, there is a difference during firing. However, since the pressure P is the same, the relationship shown in FIG. 3 also holds true during firing. By measuring the pressure inside the combustion chamber 3 at the determined crank angle C as described above, the amount of intake air Ga actually taken into the combustion chamber 3 can be determined, and therefore fuel injection is performed based on the pressure inside the combustion chamber 3. If the amount is determined, the intake air amount Ga
It is possible to supply fuel proportional to The present invention has been made with attention to such points, and the fuel injection control method according to the present invention will be explained below with reference to FIGS. 4 to 6.

第4図は制御タイミングを示しており、第4図において
CBはクランク基準位置センサ30が発する基準位置パ
ルス信号、Cはクランク角度センサ29がクランク角に
して5度毎に発する出力パルス信号、CLは後述するク
ランク角カウンクの内容、Pは燃料噴射量の計算の基礎
となる燃焼室内圧力、Tは燃料噴射期間、CAはクラン
ク角を夫々示す。
FIG. 4 shows the control timing, and in FIG. 4, CB is a reference position pulse signal emitted by the crank reference position sensor 30, C is an output pulse signal emitted by the crank angle sensor 29 every 5 degrees of crank angle, and CL is the contents of a crank angle count which will be described later, P is the combustion chamber pressure which is the basis for calculating the fuel injection amount, T is the fuel injection period, and CA is the crank angle.

次に第4図を参照しつつ第5図により燃料噴射制御方法
について説明する。第5図を参照するとまず始めにステ
ップ40においてクランク角基準位置センサ30が基準
位置パルス信号を発しているか否か、即ち例えば1番気
筒のピストン2が圧縮下死点にあるか否かを判別する。
Next, the fuel injection control method will be explained with reference to FIG. 5 while referring to FIG. 4. Referring to FIG. 5, first, in step 40, it is determined whether or not the crank angle reference position sensor 30 is emitting a reference position pulse signal, that is, for example, whether or not the piston 2 of the No. 1 cylinder is at the compression bottom dead center. do.

ピストン2が圧縮下死点にある場合にはステップ41に
てクランク角カウンタCLをリセットした後、ステップ
42に進む。ステップ42では圧力センサ13の出力信
号から燃焼室3内の圧力を計算し、ピストン2が圧縮下
死点にあるときの圧力をPm1nとしてRAM 24に
記憶する。この圧力Pm1nは燃焼室3内の圧力Pを計
算するときの基準となる。
If the piston 2 is at the compression bottom dead center, the crank angle counter CL is reset in step 41, and then the process proceeds to step 42. In step 42, the pressure in the combustion chamber 3 is calculated from the output signal of the pressure sensor 13, and the pressure when the piston 2 is at the compression bottom dead center is stored in the RAM 24 as Pm1n. This pressure Pm1n serves as a reference when calculating the pressure P in the combustion chamber 3.

一方、ステップ60においてクランク基準位置センザ3
0が基準位置パルス信号を発生していないときにはステ
ップ43に進んでクランク角カウンタCLを1だけカウ
ントアツプし、次いでステップ44において現在燃焼室
3内の圧力を計測すべきクランク角(上列前40度)で
あるが否が、即ちクランク角カウンタCLが14015
であるが否かが判別される。現在燃焼室3内の圧力を計
測すべきクランク角であるときにはステップ45におい
て圧カセンサエ3の出力信号から現在の燃焼室3内の圧
力Poを・読み込み、この圧力Poがら圧縮下死点にお
ける圧力Pm1nを減産して減産結果を圧力Pとする。
Meanwhile, in step 60, the crank reference position sensor 3
0 is not generating the reference position pulse signal, the process proceeds to step 43, where the crank angle counter CL is counted up by 1, and then, in step 44, the crank angle at which the current pressure in the combustion chamber 3 is to be measured (upper row front 40 degree) or not, that is, the crank angle counter CL is 14015
It is determined whether or not. When the current pressure in the combustion chamber 3 is at the crank angle at which it should be measured, in step 45, the current pressure Po in the combustion chamber 3 is read from the output signal of the pressure sensor 3, and from this pressure Po, the pressure at the compression bottom dead center Pm1n The production is reduced and the result of the production reduction is defined as pressure P.

次いでステップ46において噴射量演算要求フラグをセ
ントする。このフラグがセットされると後述するように
燃料噴射時間の演算が行われるがこれについては後述す
る。
Next, in step 46, the injection amount calculation request flag is set. When this flag is set, the fuel injection time is calculated as will be described later.

ステップ44においてNOと判別されたときはステップ
45に進んで燃料噴射時期であるか否がが判別され、燃
料噴射4期であれば全燃料噴射弁12から同時に燃料が
噴射される。即ちステップ45においてクランク角カウ
ンタCLが30015(クランク角が圧縮下死点から3
00度)であると判別されたとき、或いはステップ46
においてクランク角カウンタCLが66015  (ク
ランク角が圧縮下死点から660度)であると2判別さ
れたときにはステップ47に進み、後述するようにして
計算された燃料噴射時間TAUを表すデータをRAM 
24からCPU 22に読み込んで燃料噴射時間tに変
換する。次いでステップ48においてこの燃料噴射時間
tに基づいて燃料噴射が行われる。
When the determination in step 44 is NO, the process proceeds to step 45, where it is determined whether or not it is fuel injection timing, and if it is the fourth fuel injection period, fuel is injected from all fuel injection valves 12 at the same time. That is, in step 45, the crank angle counter CL is 30015 (the crank angle is 3 from the compression bottom dead center).
00 degrees), or in step 46
When it is determined that the crank angle counter CL is 66015 (the crank angle is 660 degrees from the compression bottom dead center), the process proceeds to step 47, and data representing the fuel injection time TAU calculated as described later is stored in the RAM.
24 to the CPU 22 and converts it into a fuel injection time t. Next, in step 48, fuel injection is performed based on this fuel injection time t.

次に第6図を参照して燃料噴射時間の計算について説明
する。ステップ50において噴射量演算フラグ(第5図
のステップ46を参照)がセ・ノドされていると判別さ
れたときにはステップ51に進んでGa −(P −k
2) / k+なる関係から吸入空気lGafglを計
算する。ここでPは第5図のステップ45において求め
られた圧力である。また、(P−に2)/に、は第3図
に示す関係を表しており、k、、に2は実験により求め
られた定数である。次いでステップ52において吸入空
気量Gaと要求空関係から基本燃料噴射時間τを計算す
る。ここでγjは燃料の比重量であり、kinjは燃料
噴射12の流量係数である。次にステップ54において
1回の燃料噴射時間TAUがTAU =τ×f/2なる
関係より求められる。ここでfは例えば機関冷却水温に
応じて燃料噴射量を増量するための補正係数であり、τ
×fを2で割算するのはクランク角が720度の範囲で
360度毎に2回噴射が行われるからである。斯くし・
て得られたTAllは燃料噴射時間を表すデータとして
RAM 24に記憶される。次いでステップ55におい
て噴射量演算要求フラグをリセットした後、ステップ5
6においてその他必要な処理を行う。
Next, calculation of the fuel injection time will be explained with reference to FIG. If it is determined in step 50 that the injection amount calculation flag (see step 46 in FIG. 5) is set, the process proceeds to step 51 and Ga
2) Calculate the intake air lGafgl from the relationship: /k+. Here, P is the pressure determined in step 45 of FIG. Further, (P-2)/2 represents the relationship shown in FIG. 3, and k, , and 2 are constants determined by experiment. Next, in step 52, the basic fuel injection time τ is calculated from the intake air amount Ga and the required airflow relationship. Here, γj is the specific weight of the fuel, and kinj is the flow coefficient of the fuel injection 12. Next, in step 54, one fuel injection time TAU is determined from the relationship TAU=τ×f/2. Here, f is a correction coefficient for increasing the fuel injection amount according to the engine cooling water temperature, and τ
The reason why xf is divided by 2 is that injection is performed twice every 360 degrees within a crank angle range of 720 degrees. This way...
The obtained TAll is stored in the RAM 24 as data representing the fuel injection time. Next, in step 55, the injection amount calculation request flag is reset, and then step 5
In step 6, other necessary processing is performed.

発明の効果 実際に燃焼室内に供給された吸入空気量を表す燃焼室内
の圧力に基づいて燃料噴射時間を決定することにより燃
焼室に供給される混合気の空燃比を常時予め定められた
空燃比に正確に一致せしめることができる。従って過給
機を取り付けた場合であっても所望の空燃比に設定でき
ることばもとより、加速運転時のような過渡運転時にお
いても所望の空燃比に設定することができる。
Effects of the Invention By determining the fuel injection time based on the pressure inside the combustion chamber representing the amount of intake air actually supplied into the combustion chamber, the air-fuel ratio of the air-fuel mixture supplied to the combustion chamber can be maintained at a constant predetermined air-fuel ratio. can be exactly matched. Therefore, even when a supercharger is installed, the desired air-fuel ratio can be set.In addition, the desired air-fuel ratio can be set even during transient operation such as during acceleration operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は内燃機関の側面断面図、第2図は燃焼室内の圧
力変化を示す図、第3図は燃焼室内の圧力と吸入空気量
との関係を示す図、第4図は制御タイミングを示すタイ
ミングチャート、第5図はフローチャート、第6図はフ
ローチャー)・である。 3・・・燃焼室、1・2・・・燃料噴射弁、13・・・
圧カセン号、20・・・電子制御ユニット。 特許出願人 トヨタ自動軍株式会社 特許出願代理人 弁理士 青 木   朗 弁理士西舘和之 弁理土中山恭介 弁理士 山 口 昭 之 第2図 し 第 3図 Ga(g) 第4図 BDCTDC 第5図
Figure 1 is a side sectional view of the internal combustion engine, Figure 2 is a diagram showing pressure changes in the combustion chamber, Figure 3 is a diagram showing the relationship between the pressure in the combustion chamber and the amount of intake air, and Figure 4 is a diagram showing the control timing. 5 is a flowchart, and FIG. 6 is a flowchart. 3... Combustion chamber, 1.2... Fuel injection valve, 13...
Pressure Kasen No. 20...Electronic control unit. Patent Applicant: Toyota Motor Corporation Patent Application Agent Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Kyosuke Donakayama Patent Attorney Akira Yamaguchi Figure 2 Figure 3 Ga (g) Figure 4 BDCTDC Figure 5

Claims (1)

【特許請求の範囲】[Claims] 燃料噴射弁を具えた内燃機関において、機関燃焼室内の
圧力を検出する圧力センサと、該圧力センサの出力信号
に基づいて燃料噴射弁から噴射される燃料噴射量を計算
する電子制御ユニットを具備した内燃機関の燃料噴射制
御装置。
An internal combustion engine equipped with a fuel injection valve, which is equipped with a pressure sensor that detects the pressure within the combustion chamber of the engine, and an electronic control unit that calculates the amount of fuel injected from the fuel injection valve based on the output signal of the pressure sensor. Fuel injection control device for internal combustion engines.
JP58093351A 1983-05-28 1983-05-28 Fuel injection controller for internal-combustion engine Pending JPS59221433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58093351A JPS59221433A (en) 1983-05-28 1983-05-28 Fuel injection controller for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093351A JPS59221433A (en) 1983-05-28 1983-05-28 Fuel injection controller for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS59221433A true JPS59221433A (en) 1984-12-13

Family

ID=14079846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093351A Pending JPS59221433A (en) 1983-05-28 1983-05-28 Fuel injection controller for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59221433A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375326A (en) * 1986-09-19 1988-04-05 Japan Electronic Control Syst Co Ltd Electronic control fuel injection device for internal combustion engine
DE4005597A1 (en) * 1989-02-20 1990-08-30 Mitsubishi Electric Corp Mixture control system for engine - has processor control monitoring dynamic changes to compute optimum fuel input and mixture
DE4007557A1 (en) * 1989-03-10 1990-09-20 Mitsubishi Electric Corp FUEL REGULATOR FOR COMBUSTION ENGINE
US4995351A (en) * 1989-11-21 1991-02-26 Mitsubishi Denki Kabushiki Kaisha Valve timing control apparatus for an internal combustion engine
DE4112908A1 (en) * 1990-04-19 1991-10-31 Mitsubishi Electric Corp FUEL CONTROL UNIT FOR A COMBUSTION ENGINE
US5107816A (en) * 1990-03-23 1992-04-28 Hitachi, Ltd. Air-fuel ratio control apparatus
US5123391A (en) * 1990-09-12 1992-06-23 Satoru Ohkubo Electronic control fuel injection device a for an internal combustion engine
DE4221091A1 (en) * 1991-06-26 1993-01-14 Fuji Heavy Ind Ltd SYSTEM FOR CONTROLLING FUEL INJECTION IN AN INTERNAL COMBUSTION ENGINE
US5245969A (en) * 1991-11-06 1993-09-21 Mitsubishi Denki K.K. Engine control device and control method thereof
US5474045A (en) * 1993-06-28 1995-12-12 Mitsubishi Denki Kabushiki Kaisha Engine control device
WO2004048761A1 (en) * 2002-11-27 2004-06-10 Ricardo Uk Limited Improved engine management
EP1705352A1 (en) * 2005-03-04 2006-09-27 STMicroelectronics S.r.l. Method and relative device for sensing the air/fuel ratio of an internal combustion engine
US7251990B2 (en) 2005-03-04 2007-08-07 Stmicroelectronics S.R.L. Method and a relative device for diagnosing misfire or partial combustion conditions in an internal combustion engine
US7287525B2 (en) 2005-03-04 2007-10-30 Stmicroelectronics S.R.L. Method of feedforward controlling a multi-cylinder internal combustion engine and associated feedforward fuel injection control system
US7299123B2 (en) 2005-03-04 2007-11-20 Stmicroelectronics S.R.L. Method and device for estimating the inlet air flow in a combustion chamber of a cylinder of an internal combustion engine
JP2018096293A (en) * 2016-12-14 2018-06-21 いすゞ自動車株式会社 Controller of internal combustion engine

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375326A (en) * 1986-09-19 1988-04-05 Japan Electronic Control Syst Co Ltd Electronic control fuel injection device for internal combustion engine
DE4005597A1 (en) * 1989-02-20 1990-08-30 Mitsubishi Electric Corp Mixture control system for engine - has processor control monitoring dynamic changes to compute optimum fuel input and mixture
US4996960A (en) * 1989-02-20 1991-03-05 Mitsubishi Denki Kabushiki Kaisha Air-fuel ratio control system for an internal combustion engine
DE4007557A1 (en) * 1989-03-10 1990-09-20 Mitsubishi Electric Corp FUEL REGULATOR FOR COMBUSTION ENGINE
US4971009A (en) * 1989-03-10 1990-11-20 Mitsubishi Denki Kabushiki Kaisha Fuel control apparatus for internal combustion engine
US4995351A (en) * 1989-11-21 1991-02-26 Mitsubishi Denki Kabushiki Kaisha Valve timing control apparatus for an internal combustion engine
US5107816A (en) * 1990-03-23 1992-04-28 Hitachi, Ltd. Air-fuel ratio control apparatus
DE4112908A1 (en) * 1990-04-19 1991-10-31 Mitsubishi Electric Corp FUEL CONTROL UNIT FOR A COMBUSTION ENGINE
US5107814A (en) * 1990-04-19 1992-04-28 Mitsubishi Denki K.K. Fuel control apparatus for an internal combustion engine
US5123391A (en) * 1990-09-12 1992-06-23 Satoru Ohkubo Electronic control fuel injection device a for an internal combustion engine
DE4221091A1 (en) * 1991-06-26 1993-01-14 Fuji Heavy Ind Ltd SYSTEM FOR CONTROLLING FUEL INJECTION IN AN INTERNAL COMBUSTION ENGINE
US5222481A (en) * 1991-06-26 1993-06-29 Fuji Jukogyo Kabushiki Kaisha Fuel injection control system for an internal combustion engine
US5245969A (en) * 1991-11-06 1993-09-21 Mitsubishi Denki K.K. Engine control device and control method thereof
US5474045A (en) * 1993-06-28 1995-12-12 Mitsubishi Denki Kabushiki Kaisha Engine control device
WO2004048761A1 (en) * 2002-11-27 2004-06-10 Ricardo Uk Limited Improved engine management
EP1705352A1 (en) * 2005-03-04 2006-09-27 STMicroelectronics S.r.l. Method and relative device for sensing the air/fuel ratio of an internal combustion engine
US7251990B2 (en) 2005-03-04 2007-08-07 Stmicroelectronics S.R.L. Method and a relative device for diagnosing misfire or partial combustion conditions in an internal combustion engine
US7287525B2 (en) 2005-03-04 2007-10-30 Stmicroelectronics S.R.L. Method of feedforward controlling a multi-cylinder internal combustion engine and associated feedforward fuel injection control system
US7299123B2 (en) 2005-03-04 2007-11-20 Stmicroelectronics S.R.L. Method and device for estimating the inlet air flow in a combustion chamber of a cylinder of an internal combustion engine
US7440839B2 (en) 2005-03-04 2008-10-21 Stmicroelectronics S.R.L. Method and associated device for sensing the air/fuel ratio of an internal combustion engine
EP2275946A1 (en) * 2005-03-04 2011-01-19 STMicroelectronics S.r.l. Probabilistic neural network and relative training method
US7962272B2 (en) 2005-03-04 2011-06-14 Stmicroelectronics S.R.L. Method and associated device for sensing the air/fuel ratio of an internal combustion engine
US8131450B2 (en) 2005-03-04 2012-03-06 Stmicroelectronics S.R.L. Method and associated device for sensing the air/fuel ratio of an internal combustion engine
JP2018096293A (en) * 2016-12-14 2018-06-21 いすゞ自動車株式会社 Controller of internal combustion engine

Similar Documents

Publication Publication Date Title
JPS59221433A (en) Fuel injection controller for internal-combustion engine
JPH01253543A (en) Air-fuel ratio control device for engine
US6711490B2 (en) Intake air amount computing apparatus and method for the same, and intake pressure computing apparatus and method for the same
CA2048085A1 (en) Method and apparatus for inferring barometric pressure surrounding an internal combustion engine
US10697386B2 (en) Method and device for determining the air flow rate entering the intake manifold of a two-stroke engine
US4991554A (en) Device for controlling ignition timing of engine
JPH01100336A (en) Electronic control device for internal combustion engine
GB2168754A (en) Method of controlling fuel or air supply to an i c engine having a supercharger
JP2005069134A (en) Control device of internal combustion engine
JPS638296B2 (en)
JPH04121438A (en) Electronically controlled fuel injection device of internal combustion engine
CN102032066B (en) Method and apparatus for operating engine using equivalence ratio compensation factor
TW559640B (en) Device and method for detection of atmospheric pressure of engine
JP3985746B2 (en) Control device for internal combustion engine
US20050021215A1 (en) Method for determining an estimated value of a mass flow in the intake channel of an internal combustion engine
KR100428343B1 (en) Method of controlling air flow for gasoline vehicles
JP2011252785A (en) Air intake volume correction method for internal combustion engines
GB2168753A (en) Method of controlling supercharged i c engine fuel supply
US7231909B2 (en) Air intake apparatus and control apparatus for an internal combustion engine
JP2006132499A (en) Flow rate calculation device
JP4030166B2 (en) Intake air amount detection device for internal combustion engine
JPS62189333A (en) Air-fuel ratio control device for alcohol-gasoline mixed fuel
JPH09317568A (en) Abnormality detecting device for diesel engine
JPS63134845A (en) Exhaust gas recirculation control device
JP2006307697A (en) Control device of internal combustion engine