JPS6098327A - Acoustic vibration type vacuum gauge - Google Patents

Acoustic vibration type vacuum gauge

Info

Publication number
JPS6098327A
JPS6098327A JP20665783A JP20665783A JPS6098327A JP S6098327 A JPS6098327 A JP S6098327A JP 20665783 A JP20665783 A JP 20665783A JP 20665783 A JP20665783 A JP 20665783A JP S6098327 A JPS6098327 A JP S6098327A
Authority
JP
Japan
Prior art keywords
transducer
sound
electric
signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20665783A
Other languages
Japanese (ja)
Inventor
Toshiro Oga
寿郎 大賀
Shokichiro Yoshikawa
吉川 昭吉郎
Tsutomu Yamashita
努 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20665783A priority Critical patent/JPS6098327A/en
Publication of JPS6098327A publication Critical patent/JPS6098327A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • G01L21/08Vacuum gauges by measuring variations in the transmission of acoustic waves through the medium, the pressure of which is to be measured

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To quicken response speed and to measure precisely a vacuum degree by detecting an acoustic impedance of a gas seen from a mechanical vibration part varying with the vacuum degree. CONSTITUTION:AC signal generated from an oscillator 21 is impressed to a transmitting transducer 11 existing in a space 1. Acoustic wave generated from the transducer 11 is attained to a receiving transducer 12. An output signal of the transducer 12 is amplified and detected by a synchronous amplifying detector 31 by an output of the oscillator 21 given through a phase controller 23. The detected output is given to an indicating meter 32, and the vacuum degree of the space 1 is read.

Description

【発明の詳細な説明】 この発明は音響振動現象を利用して10Torrから1
0Torr程度の真空度を高精度かつ高能率に測定する
真空計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention utilizes acoustic vibration phenomena to
The present invention relates to a vacuum gauge that measures a degree of vacuum of approximately 0 Torr with high precision and high efficiency.

〈従来技術〉 1□ q″orrから10 Torrの比較的低真空の
測定には従来シュルツゲージとビラニーゲージが使用さ
れてきている。シュルツゲージは第1図に示すように真
空度を測定すべき空間1においてフィラメント2の近傍
にアノード3とコレクター電極4とを配して、フィラメ
ント2から出る電子e−をアノード3の電位vIで吸引
加速し、移動する電子e−が空間1に存在する分子に衝
突したときに発生するイオンのを一位−Vcが印加され
ているコレクタ4で集め、これを電流計6で読むもので
ある。
<Prior art> Schulz gauges and Villany gauges have traditionally been used to measure relatively low vacuums from 1□ q''orr to 10 Torr.The Schulz gauge is used to measure the vacuum level in the space where the degree of vacuum is to be measured, as shown in Figure 1. In 1, an anode 3 and a collector electrode 4 are arranged near the filament 2, and electrons e- emitted from the filament 2 are attracted and accelerated by the potential vI of the anode 3, and the moving electrons e- are transferred to molecules existing in the space 1. Ions generated upon collision are collected by a collector 4 to which -Vc is applied, and are read by an ammeter 6.

低真窒でも動作しうるためにはフィラメント2とアノー
ド3及びコレクタ4との間は数団と短かくとる8袈があ
る。この真空計の問題点はフィラメント2を有するため
に寿命が短かいこと及びプラズマ中で使用するとプラズ
マのイオンの影ta =受けること、これらのためスパ
ッター装部、内などでは使用が難しいことである。
In order to be able to operate even in low nitrogen conditions, there are eight short lines between the filament 2, anode 3, and collector 4. The problem with this vacuum gauge is that it has a short life because it has a filament 2, and when it is used in plasma, it is affected by plasma ions, which makes it difficult to use it inside a sputter equipment. .

ビラニーゲージは第2図に示すように、+Ij’+驚柴
間1において抵抗111χ1尤のヒーター5に−にl、
i>、?几■を流してヒーター5を発熱状態としておく
。このヒーター5に衝突する空間1中の気体分子がヒー
ター5から熱を月叉シ去ることによってヒーター5の温
度Tが低下する1、この温度の1肘下はヒーター5の抵
抗値Rの変化をもたらす。この/こめにヒーター5の’
m圧Vを111圧計7で読み、V= RI ノlyl係
よりRを矧り、これより温度Tを知ることによって空間
1中の分子の数を知ることができ、よって真空度を測定
でさる。
As shown in Fig. 2, the Villany gauge is connected to the heater 5 with a resistance of 111χ1 at +Ij'+Koshiba 1, and l to -.
i>,? The heater 5 is kept in a heat generating state by flowing heat. The gas molecules in the space 1 that collide with the heater 5 remove heat from the heater 5, causing the temperature T of the heater 5 to decrease. bring. Heater 5'
By reading the m pressure V with the 111 pressure gauge 7, subtracting R from the equation V = RI, and knowing the temperature T from this, you can know the number of molecules in the space 1, and therefore, you can measure the degree of vacuum. .

この真空計の問題点は周囲温度の影臂を受け易く、精密
測定が容易でないことと、温度変化を用いるため応答速
度が余9速くならないことである。
The problems with this vacuum gauge are that it is easily affected by the ambient temperature, making precise measurement difficult, and because it uses temperature changes, the response speed is not very fast.

tだヒーター5は発熱状態のためにプラズマエツチング
装置内では活性ガスに侵され易い。
Since the heater 5 generates heat, it is easily attacked by active gas in the plasma etching apparatus.

一方、圧力計の分野では、圧力変化にょシ気体の音響伝
送特性が変化することを利用するものが例えば特公昭5
4−12834号公報、特公昭56−6500号公報、
特公昭56−41928号公報で知られている。これは
′1個または2個の電気音智または音響電気変換器を小
容積の気体室に総合体として配置し、その気体室内の気
体のスチフネスの気圧による変化に応じて前記変換器の
入出力信号間の位相が変化することを第1」用するもの
である。実際には前6己没侠器を含む電気的自励振回路
をbj bXし、気圧の変化を発振周波数の変化として
検出する方法をとっている。
On the other hand, in the field of pressure gauges, for example, there are pressure gauges that utilize the fact that the acoustic transmission characteristics of gas change with pressure changes.
Publication No. 4-12834, Japanese Patent Publication No. 56-6500,
It is known from Japanese Patent Publication No. 56-41928. This method involves arranging one or two electro-acoustic or acousto-electric transducers as a unit in a small volume gas chamber, and adjusting the input and output of the transducers according to changes in the stiffness of the gas in the gas chamber due to atmospheric pressure. The first use is that the phase between signals changes. In practice, a method is used in which an electrical self-oscillation circuit including a self-exciting device is used to detect changes in atmospheric pressure as changes in oscillation frequency.

この方法によれば、上記の従来形真空計の欠点は大幅に
解決される。しかし、この方法も外界と細い貴重たけ大
きな音響抵抗益で連結された小容積の室を要し、また寛
気回路糸が複雑であるという欠点をもつものである。
According to this method, the above-mentioned drawbacks of conventional vacuum gauges are largely solved. However, this method also has the disadvantages of requiring a small volume chamber connected to the outside world through a narrow and preciously large acoustic resistance, and of having a complicated air circuit.

〈発明の植装〉 この発明は今回対象としている10〜1O−4Torr
の真空度の範囲では気体の音智伝送特性に大幅な変化が
生ずることを積極的に利用し、上記の従来の真空計、圧
力フ1の欠点を解決して、寿命が長くプラズマや周囲温
1梵の影響がなく、応答速度の速い精密な音書振史υ形
真空計を提供するものである。
<Installation of the invention> This invention is aimed at 10 to 1 O-4 Torr.
By actively utilizing the fact that the acoustic transmission characteristics of gas significantly change in the vacuum range of The present invention provides a precise υ-type vacuum gauge that is free from the effects of 1st pressure and has a fast response speed.

すなわち、この発明の要点は真空度の変化によシミ気合
響変換器(トランスデユーサ)の機械振動部から見た気
体の音響インピーダンス(気体の′g度等による)が変
化すると共に、そのトランスデユーサから気体中に放射
される音波の勢力か変化することを利用する点にある。
In other words, the key point of this invention is that the acoustic impedance of the gas (depending on the degree of gas, etc.) as seen from the mechanical vibration part of the transducer changes as the degree of vacuum changes, and the transducer changes. The point is that it takes advantage of the fact that the force of the sound waves emitted from the deuser into the gas changes.

〈実施例〉 以下実施例によってこの発明の詳細な説明する。<Example> The present invention will be described in detail below with reference to Examples.

第3図はこの発明の第1の実施例を示し、発振器21か
らの周波数fの交流化刊は、空間Iの中にある送信用ト
ランスデユーサ11に印加される。。
FIG. 3 shows a first embodiment of the invention, in which an alternating current of frequency f from an oscillator 21 is applied to a transmitting transducer 11 located in space I. In FIG. .

これにより送信用トランスデユーサ11は音波を光生し
、その音波は低真窒の空間1中を減艮1−ながら伝播し
て受信用トランスデユーサ−12に達する。受信用トラ
ンスデユーサ12はこれに比例した大きさの交流出力信
号を発生し、その出力信号は、位相調整器23を通じて
与えられた発振器21の出力により同期増幅検波器31
で増幅検波される。この検波出力が指示計器32によシ
読みとられる。つまり送信用トランスデユーサ11、受
信用トランスデユーサ12の各機械振動部から空間1を
見た気体の音書インピーダンスが空間1の真空度の変化
により変化し、送信用トランスデユーサ11から空間1
に放射される音波の努力が変化し、かつ受信用トランス
デユーサ12で受波される音波の出力も変化し、しかも
空間1の伝播減衰も真空度に応じて変化し、指示計器3
2で空間1の真空度を読みとることができる。
As a result, the transmitting transducer 11 generates a sound wave, which propagates through the low-density space 1 with a reduced amount of noise and reaches the receiving transducer 12. The reception transducer 12 generates an AC output signal with a magnitude proportional to this, and the output signal is sent to the synchronous amplification detector 31 by the output of the oscillator 21 given through the phase adjuster 23.
The signal is amplified and detected. This detection output is read by the indicator 32. In other words, the acoustic impedance of the gas viewed from the mechanical vibration parts of the transmitting transducer 11 and the receiving transducer 12 changes as the vacuum degree of the space 1 changes, and from the transmitting transducer 11 to the space 1
The effort of the sound waves emitted to the receiving transducer 12 changes, the output of the sound waves received by the receiving transducer 12 also changes, and the propagation attenuation in the space 1 also changes depending on the degree of vacuum.
2 allows you to read the degree of vacuum in space 1.

空間1中の分子の数が少ない程、音波は伝ばんし難くな
るから、受信用トランスデユーサ12の出力は真空度が
高い程少なくなる。従って受信用トランスデユーサ12
の出力の大きさを読むことにより墾間1の真空度を測定
することができる。
The smaller the number of molecules in the space 1, the more difficult it is for sound waves to propagate, so the output of the reception transducer 12 decreases as the degree of vacuum increases. Therefore, the receiving transducer 12
The degree of vacuum in the space 1 can be measured by reading the magnitude of the output.

第4図は上記実施例をパルス信号により動作させるよう
にしだ実施例を示す。発振器21からのflなる周波数
の父流信号を、発振器22からのf2の周波数のパルス
でケート回路25を用いてパルス変調し、その変調出力
をトランスデユーサ11に印加する。これにより発生し
た音波が空間1中を、気体分子の数が少ない程減衰しな
がら伝播し、反射板13で反射されて4Jjびトランス
デユーサ11に達し、父流信号に袈換されて増幅検波器
31の入力となる。増幅検波ぺべ31には、位相調啜器
23で位相調整されだf2のに照信号に同期してトラン
スデユーサ11の出力信号r増幅検波し、この出力が指
示計器32により読みとられる。トランスデユーサ11
、ゲート回路25及び同期増幅検波器31の接続点14
0信号はトランスデユーサ11の入力、出力両信号を含
み第5図Aに示すような波形となる。入力(送信)信号
16と出力(受信)信号17とが交互に生じ、谷侶号の
JN MはT=]/l’2である。これに対し、位相調
整器23を用いて垢幅検波器31の同期信号の位相を訃
A整し、増1pム′IイIJS波器31及び指示計器3
2の接続点15においては第5図Bに示すように出力信
号のみが選択された波形を得る。この場合もトランスデ
ユーサ11の真空開に応じた音薔インピーダンスの変化
と、伝播減衰の変化とによシ真空度が測定される。
FIG. 4 shows an embodiment in which the above embodiment is operated by a pulse signal. A gate signal having a frequency fl from the oscillator 21 is pulse-modulated with a pulse having a frequency f2 from the oscillator 22 using a gate circuit 25, and the modulated output is applied to the transducer 11. The sound waves generated thereby propagate through the space 1 while being attenuated as the number of gas molecules decreases, and are reflected by the reflection plate 13 and reach the transducer 11, where they are converted into a passive signal and amplified and detected. This becomes the input to the device 31. The amplification/detection panel 31 amplifies and detects the output signal r of the transducer 11 in synchronization with the reference signal f2 whose phase is adjusted by a phase adjuster 23, and this output is read by an indicator 32. Transducer 11
, a connection point 14 between the gate circuit 25 and the synchronous amplification detector 31
The 0 signal includes both the input and output signals of the transducer 11 and has a waveform as shown in FIG. 5A. The input (transmission) signal 16 and the output (reception) signal 17 occur alternately, and the JNM of the valley train is T=]/l'2. On the other hand, the phase of the synchronizing signal of the width detector 31 is adjusted by using the phase adjuster 23, and the phase of the synchronizing signal of the width detector 31 is adjusted.
At the connection point 15 of No. 2, only the output signal has a selected waveform as shown in FIG. 5B. In this case as well, the degree of vacuum is measured based on the change in the acoustic impedance and the change in propagation attenuation in response to the vacuum opening of the transducer 11.

次に第6図に別の実施例を示す。この実施例はトランス
デユーサの表面から低興空中に放出される音波が真空度
が高くなる程少なくなり、従ってトランスデユーサの電
気端子に着目すれば、反射が増加することに着目し、そ
の増加を抗み取ることにより真空度を測定するものであ
る。
Next, FIG. 6 shows another embodiment. This embodiment focuses on the fact that the higher the degree of vacuum, the less sound waves are emitted from the surface of the transducer into the air, and therefore the reflection increases when focusing on the electrical terminals of the transducer. The degree of vacuum is measured by resisting the increase.

周波数fの交流の入力短気信号を発振器21からトラン
スデユーサ11に加えると、これにより電気信号はトラ
ンスデユーサ11により音波に変換されて空間1を栴成
している容器8中に放出される。容器8の中が大気圧に
近けれはトランスデユーサ11の音幇放射部と空気の材
積インピーダンスとは整合条件に近く保たれるため、ト
ランステユーザ11の電気4.’、子に流した電気信号
は効率J:<音替イh号に変換されて空気中に放出され
、その結果、前記電気端子における反射は少い。しかし
ながら、容器8中のJノ、柴度が上るに従い、トランス
デユーサ11から容器8中に放出される音書信号が減少
し、その結果、前記′電気端子に流入しだ気気1g号の
多くの部分は、この端子において反射されることになる
An input short signal of alternating current of frequency f is applied from the oscillator 21 to the transducer 11, whereby the electrical signal is converted into a sound wave by the transducer 11 and emitted into the container 8 defining the space 1. . When the pressure inside the container 8 is close to atmospheric pressure, the volumetric impedance of the sound emitting part of the transducer 11 and the air are kept close to matching conditions. ', the electrical signal sent to the terminal is converted into an efficient J:<note change A h and emitted into the air, and as a result, there is little reflection at the electrical terminal. However, as the degree of J in the container 8 increases, the sound signal emitted from the transducer 11 into the container 8 decreases, and as a result, 1 g of air flows into the electrical terminal. A large portion will be reflected at this terminal.

いまトランスデユーサ11として圧電袈俣器を用いた場
合を例にとってより詳しく説明する。第7図は第6図に
おけるトランスデユーサ11の詳細を示す。圧電トラン
スデユーサ本体18の両面に゛h極19.20が形成さ
れ、電極20が形成されてない部分が送受波面とされて
いる。このトランスデユーサ11にfなる周波数の電気
信号が加わると、例えば厚み振幅により弾性波aがトシ
ンスデューサ本体18内に発生し、これが音波すとなっ
て循気中に放出される。しかし、典空度か上昇スるに従
い、トランスデユーサ11と突気の境界面における音智
インピーダンスの不整合が増加するため、弾性波aの一
部は反射欣Cとなって再び電極に表われる。
A case in which a piezoelectric kenmata device is used as the transducer 11 will now be explained in more detail, taking as an example. FIG. 7 shows details of the transducer 11 in FIG. 6. H poles 19 and 20 are formed on both sides of the piezoelectric transducer main body 18, and the portion where the electrodes 20 are not formed is used as a wave transmitting/receiving surface. When an electric signal with a frequency f is applied to the transducer 11, an elastic wave a is generated in the transducer body 18 due to the thickness amplitude, for example, and this becomes a sound wave and is emitted into the circulation. However, as the sky level rises, the mismatch in acoustic impedance at the interface between the transducer 11 and the air rush increases, so a part of the elastic wave a becomes a reflected wave C and appears on the electrode again. be exposed.

第6図の回路について動作原理を説明する。周波数fの
電気信号はトランスデユーサ11に供給されるが、トラ
ンスデユーサ11からの反射波は和回路26に入れられ
る。一方、発振器21がらの周波数fの電気信号は位相
調整器23を独で和回路26に加えられ、トランスデユ
ーサ11からの信号のうち、入力電気信号を打ち消して
反射信号のみが和回路26からの出力となる。この出力
は発振器21の出力が第二の位相調壓器24で位相脚整
された参照信号を用いて同期増幅検波器31により検出
され、この検出出力は指示計器32によシ読み取られる
The operating principle of the circuit shown in FIG. 6 will be explained. The electrical signal of frequency f is supplied to the transducer 11, and the reflected wave from the transducer 11 is input to the summation circuit 26. On the other hand, the electrical signal of frequency f from the oscillator 21 is applied to the summation circuit 26 through the phase adjuster 23, and among the signals from the transducer 11, the input electrical signal is canceled and only the reflected signal is sent from the summation circuit 26. The output is This output is detected by a synchronous amplification detector 31 using a reference signal obtained by adjusting the phase of the output of the oscillator 21 by a second phase adjuster 24, and this detection output is read by an indicator 32.

第8図は上記原理の他の実施例を示すものである。トラ
ンスデユーサ11の電気端子からみて電気インピーダン
スZfはトランスデユーサ11が音波を放出しない状態
での制止インピーダンスZ1と首汲を放射することによ
る反作用としての動インピーダンスZmとの和として表
わすことができる。
FIG. 8 shows another embodiment of the above principle. The electrical impedance Zf seen from the electrical terminal of the transducer 11 can be expressed as the sum of the stopping impedance Z1 when the transducer 11 does not emit sound waves and the dynamic impedance Zm as a reaction due to the sound wave being emitted. .

たソし、ZO:媒刊の8丼インピーダンスZ1ニドラン
スデユーサIJの機械インピーダンス A:力係数(トランスデユーサ11 Kよって決丹る定
数) と表わされる。
ZO: Mechanical impedance of the transducer IJ, Z1, and mechanical impedance of the transducer IJ.

トランステユーザ11の共振周波数近傍においては、 たソし、r、m及びSはそれぞれトランスデユーサ11
の天動損失、実効質量及び実効スチフネス、 となる。
In the vicinity of the resonant frequency of the transducer 11, r, m, and S are
The natural motion loss, effective mass and effective stiffness of

との製インピーダンスZmの絶対値の周波数特性は第9
図に示すように、気圧の減少に従って曲線33から曲線
34のように変化する。従って同図中の上下方向の矢印
35によ、!lll明らかなように、ある周波数fOに
おいてル山インピーダンスZmヲよむことによシ、容器
8中の空気の音響インピーダンスZOを知ることができ
る。そして空気の音響インピーダンスzOは真空度の変
化を示すことから、真空開をめることができる。
The frequency characteristic of the absolute value of the manufactured impedance Zm is the 9th
As shown in the figure, the curve changes from curve 33 to curve 34 as the atmospheric pressure decreases. Therefore, according to the vertical arrow 35 in the figure,! As is clear, the acoustic impedance ZO of the air in the container 8 can be found by reading the peak impedance Zm at a certain frequency fO. Since the acoustic impedance zO of air indicates a change in the degree of vacuum, it is possible to determine the degree of vacuum opening.

この方法においては、共振周波数における損失rの1ば
か空気の音響インピーダンスZoに近いものを用い、共
振周波数において測定することにより制い精度を得るこ
とができる。
In this method, control accuracy can be obtained by using a loss r at the resonant frequency that is close to the acoustic impedance Zo of air, and by measuring at the resonant frequency.

く効 果〉 以上詳述したように、この発明は廿箒振動現象を積極的
に用いて、10〜IQ’l’orrの真空度の範囲内に
おける高精度、高安定の真空計を実挽するものであシ、
従来の真空計に比ベヒーターやフィラメントのような発
熱部分を持たないだめに活性プラズマ中でも極めて持合
が長く、イオンの影線を受けないで動作し、全て電子的
動作機構を用いているために、熱的動作を用いるものに
比して応答速度が速い精密な真空計を得ることができる
Effects> As detailed above, this invention actively utilizes the vibration phenomenon to create a highly accurate and highly stable vacuum gauge within the vacuum degree range of 10 to IQ'l'orr. It's something to do,
Compared to conventional vacuum gauges, it does not have heat generating parts such as heaters or filaments, so it has an extremely long hold time even in active plasma, operates without being affected by ion shadows, and uses an all-electronic operating mechanism. , it is possible to obtain a precise vacuum gauge with faster response speed than those using thermal operation.

また、従来の「v@鉤を用いた気圧計に比べ、細貴重た
は大きな音む枳抗により外界に連絡された小気体室を必
要とせず、まだ−短周波数の交流信号の振幅によシ真η
t1す゛を面截じでき、スパッター製油、プラズマエツ
チング装置、など比較的低冥空を用いるプラズマ装置ん
]の真空度の?Mi+足に最適である。
In addition, compared to the conventional barometer using a v@hook, it does not require a small gas chamber connected to the outside world by a small or loud receptacle, and it still uses the amplitude of a short-frequency alternating current signal. True η
What is the vacuum level of plasma equipment that can reduce the surface area of t1 and uses a relatively low atmosphere, such as sputter oil refining and plasma etching equipment? Ideal for Mi+ feet.

【図面の簡単な説明】[Brief explanation of drawings]

翫1図Aは従来のシュルツゲージを示す徊成図、第1図
Bはその′酸一部分の拡大図、紀2図は従来のビラニー
ゲージを示す4内戚図、$31ン]幻この発明の第1実
施例を示ず俳成図、第4図はこの発明の第2実施例を示
すh¥成;図、第5図は第4図の実施例の動作を説明す
るノこめの阪形図、第6図はこの発明の第3実施例を示
ず構成図、第7図は第6図中のトランスデユーサ11の
一部拡大IIji血1ン1、第8図はこの発明の第4笑
施例を示す栢J戊図、19図はトランスデユーサの動イ
ンピーダンスのJ、41波数特性図である。 に真空を測定すべき空間、2:フィラメント、3ニアノ
ード、4:コレクタ、5:ヒーター、6:丸1.流計、
7 : %圧計、11及び12:電気音144 寸たけ
音輪′眠気変換器(トランスデユーサ)、13:反射体
、21及び22:発振器、23及び24:位相調整器、
25:ゲート、26:和回路、31:同期増幅検波器、
32:出力指示計器。 特許出願人 日本電信電話公社 代理人 早計 卑 71′71 図 A 9 芳 3 図 1j Jl 31 井7 ス フ 9図
Figure 1A is a diagram showing the conventional Schulz gauge, Figure 1B is an enlarged view of its 'acid part', Figure 2 is a diagram showing the conventional Villaney gauge, $31n] The illusion of this invention. Figure 4 shows the second embodiment of the invention without showing the first embodiment, Figure 5 shows the operation of the embodiment of Figure 4. 6 is a block diagram of the third embodiment of the present invention, FIG. 7 is a partially enlarged view of the transducer 11 in FIG. 6, and FIG. Figure 19 is a diagram showing the dynamic impedance of the transducer and the wave number characteristic diagram. The space in which the vacuum should be measured, 2: filament, 3 near node, 4: collector, 5: heater, 6: circle 1. flowmeter,
7: % pressure gauge, 11 and 12: electric sound 144 scale sound ring' drowsiness transducer (transducer), 13: reflector, 21 and 22: oscillator, 23 and 24: phase adjuster,
25: Gate, 26: Sum circuit, 31: Synchronous amplification detector,
32: Output indicating instrument. Patent Applicant Agent of Nippon Telegraph and Telephone Public Corporation Hasty Bei 71'71 Figure A 9 Yoshi 3 Figure 1j Jl 31 I 7 Suf 9 Figure

Claims (5)

【特許請求の範囲】[Claims] (1) 測定すべさ空−1に目上された電気音4!父疾
手段と、その電気音譬変侯手段に交流電気信号を印加す
る%m梅と、上記空間の真空度に応じて変化する上記電
気音赫駕挨手段の1パ械振動都から見た気体の音4イン
ピーダンスを、上記箪気晋書変俟手段から上記交流電気
信号と同一周波数の交流1百号のfd帆として検出する
検出子段とを具備する音響振動形具窒ツ」。
(1) The electric sound 4 that was raised to the sky-1 that should be measured! Viewed from the mechanical vibration center of the main transport means, the electric sound transmission means that applies an alternating current electric signal to the electric sound transmission means, and the electric sound that changes depending on the degree of vacuum of the space. and a detector stage for detecting the sound impedance of the gas as an AC No. 100 fd signal having the same frequency as the AC electric signal from the above-mentioned electric current changing means.
(2)前記電気音ぜ変侠手段は肖す記交流衛気信号によ
シ埴動される′屯気合勧斐侠器と、その′中、気合へ(
φ亥侯器より放射された音吻4 (’Q号を受音する音
筈゛申1気変換器とよりなり、前記検出子段lはiiJ
記′〜、気合省変快器へ91:給されるダ流′眠気袷号
と前記音昧゛屹気変恨器の出力との振幅の相違を恢出す
る手段でめることを俵イ1〕とする鳴許ΔII木の範囲
第1ノ身記載の音響振りω形真空制。
(2) The electric sound changing means is a device that is activated by an alternating current air signal, and during that time, the electric sound is changed to (
The sound proboscis 4 ('Q) emitted from the φ Pig detector consists of a 1 Q transducer, and the detector stage 1 is iiJ.
91: To the Kiaisho Transformer 91: It is to be determined by means of calculating the difference in amplitude between the output of the sound energy transformer and the output of the sound energy transformer. 1] Acoustic swing ω-type vacuum system as described in the first body of the range of the ΔII tree.
(3) 前記′雛気合智亥侠牛段b、前記父bji電気
18号が供給される可逆′ル、気合候鉄換器と、その−
iJ辿筏気気合変挾器とλ・j向して設けられ、その変
快器から放射されて到来した音波をその変侠器イlll
+へ反射する廿波反躬体とよりなり、前記検出手段は前
記可逆ζ気追イ1.畏・417.L器へ供柘される父b
11、−気信号と、前記音波反射体より反射されて前屹
司逆′市、気晋瞥変挨器で受音された出力との勃・幅の
相違を検出する手段であることケ特做とする特許請求の
範囲第1す1記載の音暗伽勅形爽りぞ言」。
(3) The above-mentioned ``Hina Ki Aichi Aiki Kyogyu Stage B, the reversible line to which the above-mentioned Father Bji Electric No. 18 is supplied, the Ki Ai Weather Iron Exchanger, and the -
The iJ raft is installed facing λ/j from the transducer, and the sonic wave radiated from the transducer and arrived is transmitted to the transducer.
The detecting means consists of a high-frequency reflector that reflects to Awe・417. Father b offered to L vessel
11. - It is a means for detecting the difference in amplitude and width between the air signal and the output reflected from the sound wave reflector and received by the sound transducer. ``On-an-kyoku-gata-sho-ri-zo-no-go'' as set forth in claim 1(1).
(4) 前記電気音硼二変換手段は前6己父θ11、叶
1.気(6号が供給される可逆電気措引′亥俟器であっ
て、ii+I記4莢出手段は前記b]逆屯気7iG・七
2刃・、・J器へ供給される父九′屯気侶号と、その可
逆「(・、気廿伸変侠然の壁面と前記空間との」f−1
界て反射Bi′Lそのシー1工・螺1.。 から出力される′1Ll−偲+ 1.:i シーjとの
振11シのイ1」1精を使用する手段であることを!1
9似とする慣許)ir・)((の1!・(」1札第1砂
・1jlI hj、、の鴇p(−ゲ振動形央梨計。
(4) The electric sound converting means has the former 6 self-direction θ11, and the first 6-power conversion means. The reversible electric pressure device to which air (No. 6 is supplied, ii + I, 4, and the means for discharging it is mentioned above) Tun Qishogo and its reversible "(・, between the wall surface of Qi Qian Chang Qiann and the space" f-1
The reflection Bi'L that sea 1 construction, screw 1. . '1Ll-偲+1. :i It is a means to use the 1st spirit of the 11th shi of the shi j! 1
9 similar conventions) ir・) ((の1!・("1 bill 1st sand・1jlI hj,,,'s 魇p(-ge vibration form orashi meter.
(5) 前記電気音、;゛りVづシ・1]一段は前t4
e交Df ′iJ、l、気悟シjカ・供給される2 i
’ij:、子]ト:J戎の電気8コ笹変快器であり、前
記検出手段は前記電気音善愛換器の電気インピーダンス
を前記交流電気信号の振幅によシ検出する手段であるこ
とを特徴とする特許請求の範囲第1項記載の音嚇振動形
真空計。
(5) The electric sound;
e exchange Df ′iJ, l, Kigoshika・supplied 2 i
'ij:, child] ト:J Ebisu's electric 8-piece bamboo converter, and the detection means is a means for detecting the electrical impedance of the electric sound converter based on the amplitude of the alternating current electric signal. An acoustic warning vibration type vacuum gauge according to claim 1, characterized in that:
JP20665783A 1983-11-02 1983-11-02 Acoustic vibration type vacuum gauge Pending JPS6098327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20665783A JPS6098327A (en) 1983-11-02 1983-11-02 Acoustic vibration type vacuum gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20665783A JPS6098327A (en) 1983-11-02 1983-11-02 Acoustic vibration type vacuum gauge

Publications (1)

Publication Number Publication Date
JPS6098327A true JPS6098327A (en) 1985-06-01

Family

ID=16526976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20665783A Pending JPS6098327A (en) 1983-11-02 1983-11-02 Acoustic vibration type vacuum gauge

Country Status (1)

Country Link
JP (1) JPS6098327A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073058A3 (en) * 2002-02-27 2003-10-16 Univ Strathclyde Pressure gauge
JP2009510438A (en) * 2005-09-30 2009-03-12 ジェニングス テクノロジー Method and apparatus for detecting sound waves in a high pressure state in a vacuum switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073058A3 (en) * 2002-02-27 2003-10-16 Univ Strathclyde Pressure gauge
JP2009510438A (en) * 2005-09-30 2009-03-12 ジェニングス テクノロジー Method and apparatus for detecting sound waves in a high pressure state in a vacuum switch

Similar Documents

Publication Publication Date Title
EP0544859B1 (en) A system for measuring the transfer time of a sound-wave
JP3022623B2 (en) Electrical measuring device for measuring signal propagation time
US9080906B2 (en) Ultrasonic flow meter with zero impedance measuring electronics
RU2000125676A (en) SENDING AND RECEIVING CIRCUIT FOR ULTRASONIC FLOW METER
EA006792B1 (en) Ultrasonic method for measuring a flow rate of liquid and/or gaseous media and device for carrying out said method
CN114111928B (en) High-frequency ultrasonic sensor suitable for gas flow detection
JPH0791997A (en) Method and device for measuring flow rate or flow speed of liquid
US6457371B1 (en) Ultrasonic flow sensor with error detection and compensation
US6370963B1 (en) Ultrasonic transit time flow sensor and method
US6366675B1 (en) Sound pressure detecting system
JPS6098327A (en) Acoustic vibration type vacuum gauge
CN112964319A (en) Multi-frequency array ultrasonic flowmeter
CN111586546A (en) Method and system for measuring resonance point transmission response of low-frequency transducer
KR102193234B1 (en) Device for increasing the detection distance of ultrasonic sensors of vehicle and method thereof
JPH0894594A (en) Ultrasonic humidity sensor and ultrasonic temperature/ humidity sensor
JP2017223596A (en) Azimuth measurement system
CN214011532U (en) Sound collection device for pipeline positioning system
CN211061694U (en) Continuous modulation ultrasonic precise distance measuring system
CN210181219U (en) Distance measuring device based on mechanical waves
SU1451743A1 (en) Method and device for correcting readout signal frequency
JPH1010143A (en) Flow-velocity measuring device
WO2020191804A1 (en) High-precision long-distance underwater acoustic ranging method based on low-frequency continuous sound wave peak capture
JP2962535B2 (en) Ultrasonic liquid level gauge
JPH0348498Y2 (en)
SU1043489A1 (en) Ultrasonic device for measuring distances in gaseous atmosphere