JPS6096781A - Regeneration of potassium hydroxide electrolyte - Google Patents

Regeneration of potassium hydroxide electrolyte

Info

Publication number
JPS6096781A
JPS6096781A JP20370383A JP20370383A JPS6096781A JP S6096781 A JPS6096781 A JP S6096781A JP 20370383 A JP20370383 A JP 20370383A JP 20370383 A JP20370383 A JP 20370383A JP S6096781 A JPS6096781 A JP S6096781A
Authority
JP
Japan
Prior art keywords
potassium hydroxide
k2co3
diaphragm
electrolyte
potassium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20370383A
Other languages
Japanese (ja)
Inventor
Joji Watakabe
渡壁 城治
Takahiko Terada
隆彦 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP20370383A priority Critical patent/JPS6096781A/en
Publication of JPS6096781A publication Critical patent/JPS6096781A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To convert K2CO3 to KOH to regenerate the same, by concentrating KOH electrolyte high in content of K2CO3 as impurities while introducing the conc. electrolyte into a filtering electrolytic cell having a diaphragm to allow K2CO3 to be deposited to the diaphragm and adding water to said electrolyte to perform electrolysis. CONSTITUTION:In an aqueous KOH solution used as the electrolyte of an alkali fuel battery, K2CO3 is formed as an impurity byproduct through the reaction with CO2 in air during use. This aqueous KOH solution containing K2CO3 is introduced into a precipitation tank 18 from an alkali fuel battery 17 and subjected to evaporative concn. or receives the addition of a highly conc. aqueous KOH solution to precipitate K2CO3. The suspension containing precipitated K2CO3 is introduced into the anode chamber 5 of a filtering electrolytic cell 1 having an Ni-anode 2, an iron cathode 3 and an asbestos diaphragm 4. The aqueous KOH solution passes the diaphragm 4 to enter a cathode chamber 6 while K2CO3 forms a precipitation layer 7 on the diaphragm 4. The residual solutions in both chambers 5, 6 are withdrawn while water is introduced into both chambers and the diluted solution is electrolyzed by the electrodes 2, 3 to convert K2CO3 to KOH which is, in turn, reutilized as the electrolyte of the alkali fuel battery.

Description

【発明の詳細な説明】 本発明は、水酸化カリウム電解液の再生方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating potassium hydroxide electrolyte.

さらに詳しくは、アルカリ型燃料電池の電解液として用
いる水酸化カリウム水溶液中に、副生物として蓄積する
炭酸カリウムを分離除去し、それを水酸化カリウムへ転
化し、再利用する再生方法に関するものである。
More specifically, it relates to a regeneration method that separates and removes potassium carbonate that accumulates as a by-product from a potassium hydroxide aqueous solution used as an electrolyte in alkaline fuel cells, converts it into potassium hydroxide, and reuses it. .

水素および酸素含有ガスを燃料として用いる燃料電池、
中でも特にアルカリ型燃料電池は電力への変換効率が高
く9発電システムとして非常に望ましいものである。し
かし、唯一の欠点として。
fuel cells that use hydrogen and oxygen-containing gases as fuel;
Among these, alkaline fuel cells have particularly high conversion efficiency into electric power and are highly desirable as power generation systems. But as the only drawback.

燃料として用いる水素および酸素含有ガスに含有される
炭酸ガスが、水酸化カリウム電解液中に吸収され、炭酸
塩が生成し、水酸化カリウム電解液の性能を低下させる
ため、実用化の上で大きな問題意となっていた。
Carbon dioxide gas contained in the hydrogen and oxygen-containing gases used as fuel is absorbed into the potassium hydroxide electrolyte, producing carbonates and reducing the performance of the potassium hydroxide electrolyte, which is a major problem in practical use. It was becoming a problem.

従来、燃料として用いる水素および酸素含有ガス中の炭
酸ガスを殆んど完全に除去することが行われて来ている
が、このためには、それぞれの燃料ガスを精製するため
に、2系列の複雑且つ過大な装置およびエネルギーを使
用する必要がちシ。
Conventionally, carbon dioxide gas in hydrogen- and oxygen-containing gases used as fuel has been almost completely removed. They tend to require the use of complex and excessive amounts of equipment and energy.

経済性の面で実用化しにくかった。It was difficult to put it into practical use due to economic reasons.

本発明は、従来のこのよう々対策、処理法とは観点を変
え、使用済みの電解液を処理して、電解液に含まれる炭
酸カリウムを水酸化カリウムと水素に再生する方法を提
供するものである。
The present invention differs from the conventional measures and treatment methods and provides a method for treating a used electrolyte and regenerating potassium carbonate contained in the electrolyte into potassium hydroxide and hydrogen. It is.

本発明は、水素および酸素含有ガスを燃料として用いる
アルカリ型燃料電池本体から、炭酸カリウムを含有する
水酸化カリウム水溶液の電解液を取り出し、その電解液
を蒸発濃縮するか、または。
The present invention involves extracting an electrolytic solution of an aqueous potassium hydroxide solution containing potassium carbonate from an alkaline fuel cell body that uses hydrogen and oxygen-containing gas as fuel, and evaporating and concentrating the electrolytic solution.

上記水溶液中の水酸化カリウムより高濃度の水酸化カリ
ウム水溶液を加えることによって、炭酸カリウム固体を
含有する水酸化カリウム水溶液を得る第一工程、および
a first step of obtaining an aqueous potassium hydroxide solution containing solid potassium carbonate by adding an aqueous potassium hydroxide solution having a higher concentration than the potassium hydroxide in the aqueous solution;

陽極および陰極を備え、かつ、液体を通すが。It has an anode and a cathode and is permeable to liquid.

気泡および炭酸カリウム固体を通さない隔膜で陽極室と
陰極室とに仕切られたr過電群槽において。
In an overcharged tank partitioned into an anode chamber and a cathode chamber by a diaphragm that does not allow air bubbles and potassium carbonate solids to pass through.

陽極室へ上記の炭酸カリウム固体を含有する水酸化カリ
ウム水溶液を導入し、水酸化カリウム水溶液を隔膜を通
して陰極室側へ浸出させることにより、隔膜の陽極室側
の表面上に、炭酸カリウム固体の沈積層を形成させた後
1両電極室の液を水で置換し両電極に直流電気を通じる
ことにより、陽極室側の隔膜表面に沈積した炭酸カリウ
ム固体を電解させる第二工程からなることを特徴とする
水酸化カリウム電解液の再生方法である。
By introducing the above potassium hydroxide aqueous solution containing the potassium carbonate solid into the anode chamber and leaching the potassium hydroxide aqueous solution through the diaphragm to the cathode chamber side, the potassium carbonate solid is precipitated on the surface of the diaphragm on the anode chamber side. After the lamination is formed, the second step consists of replacing the liquid in both electrode chambers with water and passing direct current to both electrodes to electrolyze the potassium carbonate solid deposited on the surface of the diaphragm on the anode chamber side. This is a method for regenerating potassium hydroxide electrolyte.

する場合にくらべて、下記のような優れた効果力奏され
る。
The following superior effects can be achieved compared to the case where

理にくらべて、1系列の処理でよい。Compared to theory, only one series of processing is required.

(2)万一処理システムが故障した場合、燃料ガスの処
理の場合、アルカリ型燃料電池本体を停止しなければな
らないが1本発明では本体は止めなくてもよく、タンク
等に貯蔵できる。
(2) In the event that the processing system malfunctions, the alkaline fuel cell main body must be stopped in the case of processing fuel gas, but in the present invention, the main body does not need to be stopped and can be stored in a tank or the like.

(3) ガス処理にくらべ、小容量の装置で処理できる
(3) Compared to gas processing, processing can be performed using small-capacity equipment.

次に1本発明についてさらに詳しく説明する。Next, one aspect of the present invention will be explained in more detail.

第1図は9本発明の水酸化カリウム電解液の再生工程の
概略図である。
FIG. 1 is a schematic diagram of the regeneration process of potassium hydroxide electrolyte according to the present invention.

まず第一工程について説明する。First, the first step will be explained.

水酸化カリウム水溶液を電解液として用いるアルカリ型
燃料池17に2発電燃料として炭酸ガスを含有する粗水
素ガスをガス導管′50および同じく炭酸ガスを含有す
る酸素含有ガスをガス導管31よシ供給する。粗水素ガ
スの具体例としては、メタンのスチームリフォーミング
ガス、メタノールのスチームリフォーミングガスおよび
製鉄ガスが挙げられる。メタンまたはメタノールのスチ
ームリフォーミングガスの組成は+ ’H275〜80
VOt4co220〜25vot%である。これらのガ
スを、炭酸ガスの分離性は不完全であるが、エネルギー
消費の少ないことで知られている水素ガス分離膜を使用
した分離器19で、予め、粗水素ガス中の炭酸ガスの1
部分1例えば1/ろ和尚を除去して使用することもでき
る。まだ、後の電解工程で生成する副生水素ガスも使用
することができる。酸素含有ガスの具体例としては、空
気、純酸素が挙げられる。粗水素ガスおよび酸素含有ガ
スを燃料電池17に供給することによシ、アルカリ型燃
料電池17において、H2と02との反応による発電が
行われる。
Crude hydrogen gas containing carbon dioxide gas is supplied as power generation fuel to the alkaline fuel cell 17 using an aqueous potassium hydroxide solution as an electrolyte through gas conduit '50, and oxygen-containing gas also containing carbon dioxide gas is supplied through gas conduit 31. . Specific examples of crude hydrogen gas include methane steam reforming gas, methanol steam reforming gas, and iron manufacturing gas. The composition of methane or methanol steam reforming gas is +'H275~80
VOt4co220-25vot%. These gases are separated in advance by a separator 19 that uses a hydrogen gas separation membrane, which is known for its low energy consumption, although its ability to separate carbon dioxide gas is incomplete.
Part 1, for example, 1/ro Osho, can be removed and used. However, by-product hydrogen gas generated in the subsequent electrolytic process can also be used. Specific examples of the oxygen-containing gas include air and pure oxygen. By supplying crude hydrogen gas and oxygen-containing gas to the fuel cell 17, power generation is performed in the alkaline fuel cell 17 by the reaction between H2 and 02.

粗水素ガスおよび空気中の炭酸ガスは、電解液として使
用される水酸化カリウム水溶液に吸収されて炭酸カリウ
ムとなる。水酸化カリウム水溶液中の炭酸カリウムの含
有量が10重量係を越えると、アルカリ型燃料電池17
の発電機能を阻害するようになる。従って、電解液中の
炭酸カリウム濃度が上記濃度を超えないように、電解液
を連続的または間欠的に燃料電池17から排出し、排出
量に見合う量の水酸化カリウム水溶液を燃料電池17に
供給することが好ましい。新に供給する水酸化ナトリウ
ム水溶液としては、後述する第二工程で得られるものを
使用することが好ましい。燃料電池17から排出された
電解液は、晶出槽18に導入される。
Crude hydrogen gas and carbon dioxide gas in the air are absorbed into an aqueous potassium hydroxide solution used as an electrolyte to become potassium carbonate. When the content of potassium carbonate in the potassium hydroxide aqueous solution exceeds 10% by weight, the alkaline fuel cell
This will impede the power generation function of the Therefore, the electrolytic solution is continuously or intermittently discharged from the fuel cell 17 so that the potassium carbonate concentration in the electrolytic solution does not exceed the above concentration, and an amount of potassium hydroxide aqueous solution commensurate with the discharged amount is supplied to the fuel cell 17. It is preferable to do so. As the newly supplied sodium hydroxide aqueous solution, it is preferable to use one obtained in the second step described below. The electrolytic solution discharged from the fuel cell 17 is introduced into the crystallization tank 18.

含有する炭酸カリウムを晶出させる方法としては、蒸発
濃縮する方法、または、上記水溶液中の水酸化カリウム
よシ高濃度の水酸化カリウム水溶液を加える方法がある
Methods for crystallizing the potassium carbonate contained include a method of evaporation and concentration, or a method of adding a potassium hydroxide aqueous solution having a higher concentration than the potassium hydroxide in the above aqueous solution.

前者の方法としては2通常、工業操作において用いる加
熱蒸発濃縮法がある。このときの操作条件としては、特
に制約はないが、後工程のために。
The former method includes a heating evaporation concentration method usually used in industrial operations. There are no particular restrictions on the operating conditions at this time, but for the purpose of post-processing.

通常は、常圧ないし減圧下、100’C程度以下で行な
うのが適当である。
Usually, it is appropriate to carry out the reaction under normal pressure to reduced pressure and at about 100'C or less.

蒸発方式上しては、単−効用式でもよいが、加熱エネル
ギーの節約のためには、多重効用式で行なうのがよい。
As for the evaporation method, a single-effect type may be used, but in order to save heating energy, a multiple-effect type is preferable.

また、自己蒸気圧縮法、単一段または多段のフラッジ−
蒸発法、さらには、これらを回分式、半回分式または連
続式で行えるが、いずれが適当かは、主として、そのと
きの処理規模。
Also, self-vapor compression method, single stage or multi-stage flood
The evaporation method can be carried out in a batch, semi-batch or continuous manner, but which one is appropriate depends mainly on the scale of the treatment at the time.

を考慮して決める。Decide by considering.

後者の方法としては、炭酸カリウムを含有する水酸化カ
リウム水溶液に、炭酸カリウム−水酸化カリウム、−水
系における水酸化カリウムの溶解度より大きくなるよう
に水酸化カリウム水溶液を加える方法を採用することが
できる。加える高濃度水酸化カリウム水溶液の量が多い
ほど、炭酸カリウムの沈殿が多く生成する。
As the latter method, a method can be adopted in which an aqueous potassium hydroxide solution is added to an aqueous potassium hydroxide solution containing potassium carbonate so that the solubility of potassium hydroxide is greater than the solubility of potassium hydroxide in a potassium carbonate-potassium hydroxide-water system. . The greater the amount of high concentration potassium hydroxide aqueous solution added, the more potassium carbonate precipitates are generated.

このようにして、含有する炭酸カリウムの60〜95重
量係を晶出して得られる懸濁液は、90°C以下、好ま
しくは80’C以下に徐冷され、教導管8を経て、第二
工程へ送られる。
In this way, the suspension obtained by crystallizing 60 to 95 weight percent of the potassium carbonate contained is slowly cooled to 90°C or less, preferably 80'C or less, passes through the teaching tube 8, and is passed through the second tube. Sent to the process.

第二工程においてヒ、同一装置で、2段階の操作で処理
されて、炭酸カリウム固体を水酸化カリウムへ転化する
。す彦わち、前段階の炭酸カリウム固体の濾過分離操作
と、後段階の炭酸カリウムの電解操作を行う。
In the second step, the potassium carbonate solid is converted to potassium hydroxide, which is treated in a two-stage operation in the same equipment. In other words, the filtration and separation operation of solid potassium carbonate in the former stage and the electrolytic operation of potassium carbonate in the latter stage are carried out.

本発明において、用いられる陽極2の材料の具体例とし
ては、鉛、ニッケル、ニッケルめっき鉄板、9%Ni鋼
、5%Nl鋼、および18−8ステンレス鋼が挙げられ
る。これらの中でもニッケルが好ましく用いられる。
In the present invention, specific examples of the material of the anode 2 used include lead, nickel, nickel-plated iron plate, 9% Ni steel, 5% Nl steel, and 18-8 stainless steel. Among these, nickel is preferably used.

また、用いられる陰、極6の材料の具体例としては、鉛
または鉄が挙げられる。
Further, specific examples of the materials used for the cathode and electrode 6 include lead and iron.

本発明において用いられる隔膜4は、水酸化カリウム水
溶液を通すが、水素、炭酸ガスおよび酸素の気泡、およ
び炭酸カリウム固体を通さないものであ見かつ、下記の
ような要件を満たすものでなければなら彦い。すなわち
、1Titアルカリ性。
The diaphragm 4 used in the present invention must be one that allows the potassium hydroxide aqueous solution to pass through, but does not allow hydrogen, carbon dioxide gas, and oxygen bubbles, and potassium carbonate solids to pass therethrough, and must meet the following requirements. Narahiko. That is, 1Tit alkaline.

耐酸性、耐還元性、耐酸化性であること;陽極室5、陰
極室6間のo、1Kg/ctA以上の差圧に耐えられる
強度を有すること;90〜100°Cに耐え得る耐熱性
を有するとと;目の大きさが1刑以上50μm以下であ
るとと;および沈積層7の付着保持性がよいことである
Acid resistance, reduction resistance, and oxidation resistance; strength that can withstand a pressure difference of 1 Kg/ctA or more between the anode chamber 5 and cathode chamber 6; heat resistance that can withstand 90 to 100°C The size of the eyes is 1 μm or more and 50 μm or less; and the deposited layer 7 has good adhesion retention.

このような要件をみたす隔膜4の材料の具体例としては
、アスベスト、ポリテトラフルオロエチレン、ポリ塩化
ビニル、ポリ塩化ビニリデン、ポリアクリロニトリルな
どの高分子材料、およびこれらの高分子材料を基材とし
てアスベストをプリコートしたものが挙げられる。
Specific examples of materials for the diaphragm 4 that meet these requirements include polymeric materials such as asbestos, polytetrafluoroethylene, polyvinyl chloride, polyvinylidene chloride, and polyacrylonitrile, and asbestos using these polymeric materials as a base material. Examples include those pre-coated with

濾過電解槽1の両端部にそれぞれ、陽極2および陰極6
が備えられている。濾過電解槽1は・中央部に隔膜4が
設置されて、陽極室5と陰極室6とに仕切られている。
An anode 2 and a cathode 6 are provided at both ends of the filtration electrolytic cell 1, respectively.
is provided. The filtration electrolytic cell 1 is partitioned into an anode chamber 5 and a cathode chamber 6 by a diaphragm 4 installed in the center.

濾過電解槽1の陰極室6の教導管9を閉じ、陽極室5の
教導管8よシ、炭酸カリウム固体を含有する水酸化カリ
ウム水溶液の懸濁液を送入する。
The teaching pipe 9 of the cathode chamber 6 of the filtering electrolytic cell 1 is closed, and a suspension of an aqueous potassium hydroxide solution containing solid potassium carbonate is introduced through the teaching pipe 8 of the anode chamber 5.

陽極室5へ送入された懸濁液の液成分は、隔膜4の細孔
を通って陰極室6へ浸出する。この場合。
The liquid components of the suspension sent to the anode chamber 5 leak into the cathode chamber 6 through the pores of the diaphragm 4 . in this case.

陽極室5のガス排出管10は閉じ、陰極室乙のガス排出
管11は開いておく。懸濁状態を均一に保つために、陽
極室5の陽極室側循環ライン12で。
The gas exhaust pipe 10 of the anode chamber 5 is closed, and the gas exhaust pipe 11 of the cathode chamber B is left open. In order to maintain a uniform suspension state, in the anode chamber side circulation line 12 of the anode chamber 5.

陽極室5の懸濁液を循環することもできる。It is also possible to circulate the suspension in the anode chamber 5.

陰極室6へ浸出しだ液成分は、陰極側循環ライン13あ
るいは教導管9よシ循環ライン13を経て水酸化カリウ
ム水溶液の貯蔵タンク14へ送られる。この際、懸濁液
中の炭酸カリウム固体は隔膜4の陽極室側表面に付着さ
れ、沈積層7を形成する。このときの陽極室5への懸濁
液の送入圧は1 atmないし数atmが適当である。
The leachate component leached into the cathode chamber 6 is sent to a storage tank 14 for an aqueous potassium hydroxide solution via a cathode side circulation line 13 or a teaching pipe 9 and a second circulation line 13. At this time, the solid potassium carbonate in the suspension adheres to the surface of the diaphragm 4 on the anode chamber side, forming a deposited layer 7. At this time, the appropriate pressure for feeding the suspension into the anode chamber 5 is 1 atm to several atm.

陰極室6の圧力は1a’tmまたは、減圧にされる。温
度は1通常常温ないし90°C程度である。
The pressure in the cathode chamber 6 is set to 1 a'tm or reduced pressure. The temperature is usually room temperature to about 90°C.

このような操作のもとに、炭酸カリウム固体の隔膜4の
陽極室5側表面上での沈積層7の厚さが0.5岬・以上
10mm以下、好ましくは0.5M以上5朋以下になる
まで、液導管8よシ、懸濁液を送入する。
Under such operations, the thickness of the deposited layer 7 on the surface of the potassium carbonate solid diaphragm 4 on the anode chamber 5 side is 0.5 mm or more and 10 mm or less, preferably 0.5 mm or more and 5 mm or less. The suspension is fed through the liquid conduit 8 until the

沈積層7を形成した後、陰極室6側の水酸化カリウム液
は、液導管9よシ抜き取って、水酸化カリウム水溶液の
貯蔵タンク14へ移す。
After forming the deposited layer 7, the potassium hydroxide solution on the cathode chamber 6 side is extracted through the liquid conduit 9 and transferred to the storage tank 14 for potassium hydroxide aqueous solution.

一方、陽極室5および陽極側循環ライン12の懸濁液は
、ガス排出管10を開いて液導管20よシ、抜き取る。
On the other hand, the suspension in the anode chamber 5 and the anode side circulation line 12 is removed through the liquid conduit 20 by opening the gas discharge pipe 10.

次いで、陽極室5および陰極室6にそれぞれ。Then, into the anode chamber 5 and the cathode chamber 6, respectively.

純水を液導管20および液導管21よシ送入する。Pure water is fed through liquid conduit 20 and liquid conduit 21.

液の逆流をふせぐため、陽極室5の液面は陰極室6の液
面よシも10■以上高くなるように、純水を液導管20
よシ送入する。
To prevent backflow of the liquid, pure water is passed through the liquid conduit 20 so that the liquid level in the anode chamber 5 is at least 10 cm higher than the liquid level in the cathode chamber 6.
I will send it in.

このような準備を整えた後2両電極2,3に直流電気を
通して電解を開始する。
After making these preparations, electrolysis is started by passing direct current electricity through the two electrodes 2 and 3.

直流電気は、電圧2.0〜265■が適当である。For DC electricity, a voltage of 2.0 to 265 cm is appropriate.

電流密度は3〜40A/dm2.特に、5〜20A/d
m2であることが好ましい。
The current density is 3-40A/dm2. In particular, 5 to 20 A/d
Preferably, it is m2.

陰極室乙には、電解により次第に、炭酸カリウム固体の
沈積層7の炭酸カリウムが溶解分解され水酸化カリウム
へ転化されてにイオンが蓄積されてくる。また、陰極室
乙のガス排出口11から。
In the cathode chamber B, potassium carbonate in the potassium carbonate solid deposit layer 7 is gradually dissolved and decomposed by electrolysis and converted into potassium hydroxide, and ions are accumulated therein. Also, from the gas outlet 11 of the cathode chamber B.

生成するH2ガスが排出されてくる。The generated H2 gas is exhausted.

陰極室6は1次第に水酸化カリウム成分が増加して来る
。水酸化カリウム水溶液の濃度は、60重量係以下、好
ましくは15重量%以上に調節するように陰極室乙に純
水を液導管21よシ送入し。
In the cathode chamber 6, the potassium hydroxide component gradually increases. Pure water is fed into the cathode chamber B through the liquid conduit 21 so that the concentration of the potassium hydroxide aqueous solution is adjusted to 60% by weight or less, preferably 15% by weight or more.

かつ、陰極室6の水酸化カリウム水溶液は、所定液面を
保持するようにしながら貯蔵タンク14へ抜き取る。
Further, the potassium hydroxide aqueous solution in the cathode chamber 6 is drained to the storage tank 14 while maintaining a predetermined liquid level.

抜き出された水酸化カリウム水溶液は、適度に濃度調製
されて、液導管63を経てアルカリ型燃料電池17に循
環される。通常は、電解で再生されて得られる水酸化カ
リウムの水溶液の濃度は。
The extracted potassium hydroxide aqueous solution is adjusted to an appropriate concentration and is circulated to the alkaline fuel cell 17 via the liquid conduit 63. Normally, the concentration of an aqueous solution of potassium hydroxide obtained by regeneration by electrolysis is:

30重量%以上の希薄溶液であシ、また。前段階の濾過
段階で得ら、れる濾過液は、30重量%以上の濃度溶液
であるので2両者を適度に混合調整することによシ、ア
ルカリ型燃料電池17の所定濃度に調製されて、液導管
6ろよジアルカリ型燃料電池17に循環される。
A dilute solution of 30% by weight or more is also required. The filtrate obtained in the previous filtration step is a solution with a concentration of 30% by weight or more, so by appropriately mixing and adjusting the two, it is adjusted to a predetermined concentration for the alkaline fuel cell 17. The liquid is circulated through the liquid conduit 6 to the dialkali fuel cell 17.

両電極室5.乙の液は、適宜、循環ライン12.13を
通して循環し、電極室5,6内の液温は常温〜90°C
2好ましくは、40〜80゛Cの範囲で一定に保持する
Both electrode chambers5. The liquid B is appropriately circulated through the circulation line 12.13, and the liquid temperature in the electrode chambers 5 and 6 is between room temperature and 90°C.
2 Preferably, the temperature is kept constant in the range of 40 to 80°C.

電解工程に使用される純水としては、第一工程で加熱蒸
発濃縮法を採用する場合は、その蒸発水分を凝縮して使
用することも可能である。
As the pure water used in the electrolysis step, when a heating evaporation concentration method is employed in the first step, it is also possible to condense the evaporated water and use it.

電解段階では、陽極室5のガス排出管10よシ炭酸ガス
および酸素ガスの混合ガスが大気に放出される。また、
陰極室乙のガス排出管11より水素ガスが放出されるが
、これは、アルカリ型燃料電池17の燃料として使用可
能である。
In the electrolysis stage, a mixed gas of carbon dioxide and oxygen gas is discharged to the atmosphere through the gas discharge pipe 10 of the anode chamber 5. Also,
Hydrogen gas is released from the gas exhaust pipe 11 in the cathode chamber B, and can be used as fuel for the alkaline fuel cell 17.

次に実施例を示す。Next, examples will be shown.

実施例1 アルカリ型燃料電池17から取り出した水酸化カリウム
己0重量%、炭酸カリウム10重量%より成る水溶液1
tを晶出槽18にて、95〜100°Cに加熱し、水分
を蒸発させて、水酸化カリウム濃度が50重量係、炭酸
カリウム濃度が17重量係の水溶液0.6 tになるま
で濃縮し、50°Cに冷却して炭酸カリウム固体を含有
する水酸化カリウム水溶液の懸濁液を得f?L。
Example 1 Aqueous solution 1 containing 0% by weight of potassium hydroxide and 10% by weight of potassium carbonate taken out from an alkaline fuel cell 17
t is heated to 95 to 100°C in a crystallization tank 18, water is evaporated, and concentrated to 0.6 t of an aqueous solution with a potassium hydroxide concentration of 50 parts by weight and a potassium carbonate concentration of 17 parts by weight. and cooled to 50°C to obtain a suspension of aqueous potassium hydroxide solution containing solid potassium carbonate. L.

材質がニッケルからなる陽極2および鉄からなる陰極5
を備え、かつ、アスベストを材料とする有効面積10c
mX 10Cmの隔膜4で陽極室5と陰極室6とに仕切
られた容量150CCの濾過電解槽1を使用した。上記
懸濁液を陽極室5へ全量導入した。水酸化カリウムを主
成分とする液成分を。
Anode 2 made of nickel and cathode 5 made of iron.
and effective area 10c made of asbestos.
A filtration electrolytic cell 1 with a capacity of 150 CC was used, which was partitioned into an anode chamber 5 and a cathode chamber 6 by a diaphragm 4 of m×10 Cm. The entire amount of the above suspension was introduced into the anode chamber 5. A liquid component whose main component is potassium hydroxide.

隔膜4を通して陰極室6へ浸出させ、炭酸カリウム固体
を隔膜4の陽極室5側に沈積させた。′このときの厚さ
は4籠程度となった。こののち2両極室5.6から、そ
れぞれ液導管20.液導管9を通じて残液を抜き取った
。次に、陽極室5および陰極室6に純水を、液導管20
および液導管21よシ導入し、それぞれ循環ライン12
.13を通して循環させた。陽極室5の液面を陰極室乙
の液面よシ10rnm高く保った。次に9両電極2.乙
に直流電気2.5 V、5 A/drr?で通電し、電
解反応を起こさせた。約10時間後、陽極室5から炭酸
ガスの発生が減少い炭酸カリウムの固体の大部分が電解
された。
The potassium carbonate solid was leached through the diaphragm 4 into the cathode chamber 6 and deposited on the anode chamber 5 side of the diaphragm 4. 'The thickness at this time was about 4 baskets. After this, two bipolar chambers 5.6 are connected to liquid conduits 20. The remaining liquid was drained through the liquid conduit 9. Next, pure water is poured into the anode chamber 5 and the cathode chamber 6 through the liquid conduit 20.
and the liquid conduit 21, respectively, and the circulation line 12.
.. It was circulated through 13. The liquid level in the anode chamber 5 was kept 10 nm higher than the liquid level in the cathode chamber B. Next, 9 double electrodes 2. DC electricity 2.5 V, 5 A/drr? energized to cause an electrolytic reaction. After about 10 hours, the generation of carbon dioxide gas from the anode chamber 5 decreased and most of the solid potassium carbonate was electrolyzed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2本発明の水酸化カリウム電解液の再生工程の
概略図である。 1・・・濾過電解槽、2・・・陽極、3・・・陰極。 4・・・隔膜、5・・・陽極室、6・・・陰極室、7・
・・沈積層、17・・・アルカリ型燃料電池、18・・
・晶出槽、19・・・膜分離型 特許出願人 宇部興産株式会社
FIG. 1 is a schematic diagram of the regeneration process of potassium hydroxide electrolyte according to the present invention. 1... Filtering electrolytic cell, 2... Anode, 3... Cathode. 4...Diaphragm, 5...Anode chamber, 6...Cathode chamber, 7.
...Sedimentary layer, 17...Alkaline fuel cell, 18...
・Crystallization tank, 19...Membrane separation type patent applicant Ube Industries, Ltd.

Claims (1)

【特許請求の範囲】 水素および酸素含有ガスを燃料として用いるアルカリ型
燃料電池本体から、炭酸カリウムを含有する水酸化カリ
ウム水溶液の電解液を取シ出し。 その電解液を蒸発濃縮するか、または、上記水溶液中の
水酸化カリウムよシ高濃度の水酸化カリウム水溶液を加
えることによって、炭酸カリウム固体を含有する水酸化
カリウム水溶液を得る第一工程、および。 陽極および陰極を備え、かつ、液体を通すが。 気泡および炭酸カリウム固体を通さない隔膜で陽極室と
陰極室とに仕切られた濾過電解槽において。 陽極室へ第1工程で得られる炭酸カリウム固体を含有す
る水酸化カリウム水溶液を導入し、水酸化カリウム水溶
液を隔膜を通して陰極室側へ浸出させることにより、隔
膜の陽極室側の表面上に、炭酸カリウム固体の沈積層を
形成させた後9両電極室の液を水で置換し両電極に直流
電気を通じることによシ、陽極室側の隔膜表面に沈積し
た炭酸カリウム固体を電解させる第二工程からなること
を特徴とする水酸化カリウム電解液の再生方法。
[Claims] An electrolytic solution of an aqueous potassium hydroxide solution containing potassium carbonate is extracted from an alkaline fuel cell body that uses hydrogen and oxygen-containing gas as fuel. A first step of obtaining an aqueous potassium hydroxide solution containing solid potassium carbonate by evaporating and concentrating the electrolyte or adding an aqueous potassium hydroxide solution having a higher concentration than the potassium hydroxide in the aqueous solution, and It has an anode and a cathode and is permeable to liquid. In a filtered electrolytic cell separated into an anode chamber and a cathode chamber by a diaphragm that does not allow air bubbles and potassium carbonate solids to pass through. The potassium hydroxide aqueous solution containing the potassium carbonate solid obtained in the first step is introduced into the anode chamber, and the potassium hydroxide aqueous solution is leached through the diaphragm to the cathode chamber side, so that carbonate is formed on the surface of the diaphragm on the anode chamber side. After forming a deposited layer of potassium solids, the liquid in both electrode chambers is replaced with water, and direct current is passed through both electrodes to electrolyze the potassium carbonate solids deposited on the surface of the diaphragm on the anode chamber side. A method for regenerating a potassium hydroxide electrolyte, comprising the steps of:
JP20370383A 1983-11-01 1983-11-01 Regeneration of potassium hydroxide electrolyte Pending JPS6096781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20370383A JPS6096781A (en) 1983-11-01 1983-11-01 Regeneration of potassium hydroxide electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20370383A JPS6096781A (en) 1983-11-01 1983-11-01 Regeneration of potassium hydroxide electrolyte

Publications (1)

Publication Number Publication Date
JPS6096781A true JPS6096781A (en) 1985-05-30

Family

ID=16478449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20370383A Pending JPS6096781A (en) 1983-11-01 1983-11-01 Regeneration of potassium hydroxide electrolyte

Country Status (1)

Country Link
JP (1) JPS6096781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8475874B2 (en) 2004-12-20 2013-07-02 Atotech Deutschland Gmbh Method for continuously operating acid or alkaline zinc or zinc alloy baths

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8475874B2 (en) 2004-12-20 2013-07-02 Atotech Deutschland Gmbh Method for continuously operating acid or alkaline zinc or zinc alloy baths

Similar Documents

Publication Publication Date Title
JP2001508925A (en) Lithium recovery and purification
US3401100A (en) Electrolytic process for concentrating carbon dioxide
US4273628A (en) Production of chromic acid using two-compartment and three-compartment cells
CN110616438B (en) Device and method for electrochemically preparing high-purity battery-grade lithium hydroxide
US4435257A (en) Process for the electrochemical production of sodium ferrate [Fe(VI)]
CN111268771A (en) Electrochemical method for dechlorinating and removing heavy metals from incineration fly ash water washing liquid
CN114481161A (en) Water electrolysis hydrogen production system and oxygen production subsystem
JPH08512099A (en) Production of polysulfide by electrolysis of white liquor containing sulfide
JP2012200666A (en) Li SOLUTION RECOVERY APPARATUS AND Li SOLUTION RECOVERY METHOD
WO2020038383A1 (en) Method and device for purifying electrolyte solution of flow battery
US4305793A (en) Method of concentrating alkali metal hydroxide in hybrid cells having cation selective membranes
CN117626353A (en) Water electrolysis hydrogen production system
CN112281180A (en) Method for preparing chlorine by electrolyzing concentrated seawater through bipolar membrane
US4310396A (en) Method for desalination of water, in particular sea water
US4246078A (en) Method of concentrating alkali metal hydroxide in hybrid cells having cation selective membranes
US4415413A (en) Method of concentrating alkali metal hydroxide in a cascade of hybrid cells
US4299673A (en) Method of concentrating alkali metal hydroxide in hybrid cells having cation selective diffusion barriers
JPS6096781A (en) Regeneration of potassium hydroxide electrolyte
CN116443893A (en) Method and system for preparing ammonium persulfate by using byproduct ammonium sulfate for treating ferric phosphate wastewater
US4322270A (en) Process for depleting an impurity by electrolysis and recovering electrical energy from its decomposition products
US4268366A (en) Method of concentrating alkali hydroxide in three compartment hybrid cells
EP0771759B1 (en) Process for the electrolytic separation of oxygen from its mixtures and equipment for implementing such process
CN212077164U (en) Electric energy supply type electrochemical reactor
CA1155487A (en) Method of concentrating alkali metal hydroxide in hybrid cells
CN217780824U (en) Magnesium air sea water desalination battery device and grid-connected equipment