JPS6096590A - Tool for heat treatment - Google Patents

Tool for heat treatment

Info

Publication number
JPS6096590A
JPS6096590A JP20119983A JP20119983A JPS6096590A JP S6096590 A JPS6096590 A JP S6096590A JP 20119983 A JP20119983 A JP 20119983A JP 20119983 A JP20119983 A JP 20119983A JP S6096590 A JPS6096590 A JP S6096590A
Authority
JP
Japan
Prior art keywords
sic
heat treatment
base material
impurities
graphite base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20119983A
Other languages
Japanese (ja)
Inventor
誠 石井
宇津 威
梅森 道弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP20119983A priority Critical patent/JPS6096590A/en
Publication of JPS6096590A publication Critical patent/JPS6096590A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、半導体製造において使用されるルツボ、サセ
プター等の高純度が要求される熱処理用治具に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to heat treatment jigs that require high purity, such as crucibles and susceptors used in semiconductor manufacturing.

これらの熱処理用治具は、室温から1200℃までの急
熱、急冷、高温のHeI!ガスエツチング。
These heat treatment jigs are capable of rapid heating, rapid cooling, and high-temperature HeI! from room temperature to 1200℃. Gas etching.

表面に11着した不純物に対する硝弗酸による洗浄等の
雰囲気に充分針えうろことなどの特性が要求されるが、
さらに重要な特性として熱処理用治具は高純度のシリコ
ンウェハー等の製品に接触するため、製品を汚染しない
ということが要求される。
The atmosphere required for cleaning impurities deposited on the surface with nitrofluoric acid must have sufficient needle scale and other characteristics.
Another important characteristic is that heat treatment jigs come into contact with products such as high-purity silicon wafers, so they are required not to contaminate the products.

以上の特性を満足させるものとして従来から黒鉛基材表
面に高純度のSiC’tコーティングしたSiC被機被
鉛黒鉛材用されている。即ちSiCは化学的。
As a material that satisfies the above-mentioned characteristics, SiC-coated lead-covered graphite materials in which the surface of a graphite base material is coated with high-purity SiC't have been used. In other words, SiC is chemical.

熱的に安定した材質であシ、また黒鉛基材表面にSiC
をコーティングすることによって黒鉛基材からの不純物
の汚染を防ぐためである。しかしながら従来の黒鉛基材
にSiCをコーティングした熱処理用治具は、繰シ返し
の使用により、しばしば黒鉛基材からの不純物によシ製
品を汚染し、半導体の特性に悪影響を与えるという事態
が生じていた。
Made of thermally stable material, and SiC on the graphite base material surface.
This is to prevent contamination with impurities from the graphite base material by coating the graphite. However, with repeated use of conventional heat treatment jigs in which SiC is coated on a graphite base material, impurities from the graphite base material often contaminate the product and adversely affect the characteristics of the semiconductor. was.

この不純物の汚染を防ぐだめ黒鉛基材表面のSiCコー
ティング層を従来のものよシ厚くする方法が取られたが
、熱処理用治具としての寿命を若干長くするに過ぎず長
期間の使用によるシリコンウェハーなどの製品への汚染
を防ぐことは出来なかった。
In order to prevent this impurity contamination, a method was taken to make the SiC coating layer on the graphite substrate surface thicker than the conventional one, but this only slightly extended the life of the heat treatment jig, and the silicon It was not possible to prevent contamination of products such as wafers.

本発明は上記した欠点を解消1シ、繰)返しの使用が可
能な熱処理用治具を提供することを目的とする。
The object of the present invention is to solve the above-mentioned drawbacks and to provide a heat treatment jig that can be used repeatedly.

この不純物による製品の汚染の機構について詳細に調べ
た結果、’SiC結晶の化学的に活性な粒界(エツチン
グなどの化学的処理によって検知されるもの)を不純物
が拡散によってSiCコーティング層を透過して行くこ
とを究明した。つまシ粒界が存在するよりなSiCコー
ティング層は本質的に不純物元素を拡散によって透過さ
せてしまうことがわかった。さらに黒鉛基材からSiC
コーティング層表面に不純物が透過する時間は不純物が
拡散して行く粒界の長さに関係し、また透過する不純物
の盆は粒界の量に関係するのである。繰シ返しの使用に
よシ製品の汚染を起こすような熱処理用治具のSiCコ
ーティング層を詳細に調査した結果。
A detailed investigation into the mechanism of contamination of products by these impurities revealed that impurities penetrate the SiC coating layer by diffusing through the chemically active grain boundaries of SiC crystals (detected by chemical treatments such as etching). I decided to go. It has been found that a thicker SiC coating layer in which grain boundaries are present essentially allows impurity elements to pass through by diffusion. Furthermore, from graphite base material to SiC
The time it takes for impurities to pass through the surface of the coating layer is related to the length of the grain boundaries through which the impurities diffuse, and the amount of impurities passing through is related to the amount of grain boundaries. The results of a detailed investigation of the SiC coating layer of heat treatment jigs, which can cause contamination of products due to repeated use.

SiCコーテイング面を鏡面ラップした後、700℃で
30分NaOH溶融エツチングして観察される粒子が小
さく、また8iCコ一テイング面のCuのにα線による
X線回折図形の回折ピーク値の比が1(200)/1(
111)=0.03,1(220)/1(111)=0
.10であった。このよりなSiCコーティング層は顕
微鏡で観察される粒子は大きいが、 NaOH溶融エツ
チングによって出現する比較的化学的活性な粒界によっ
て構成される粒子が小さく、またX線回折によって測定
されるSiC結晶の粒界の配向性が、特定の方向上に配
向していることが判明した。
After mirror-lapping the SiC coating surface, the particles observed by melt etching with NaOH at 700°C for 30 minutes were small, and the ratio of the diffraction peak value of the X-ray diffraction pattern due to α rays to that of Cu on the 8iC coating surface was small. 1(200)/1(
111)=0.03, 1(220)/1(111)=0
.. It was 10. This tight SiC coating layer has large grains observed under a microscope, but small grains constituted by relatively chemically active grain boundaries that appear by NaOH melt etching, and a small SiC crystal grain size measured by X-ray diffraction. It was found that the grain boundaries were oriented in a specific direction.

本発明者等は、コーティングされたSiCの粒界の量及
びその形態を規制することによって黒鉛基材の不純物が
拡散によってSiCコーティング層を透過する量を製品
の性能に影響しない程度まで押え得ることを見出した。
The present inventors have demonstrated that by regulating the amount and morphology of grain boundaries in coated SiC, it is possible to suppress the amount of impurities in the graphite base material passing through the SiC coating layer due to diffusion to an extent that does not affect the performance of the product. I found out.

本発明は、黒鉛基材の表面をSiCでコーティングした
熱処理用治具において、該SiC表面のアルカリ溶融エ
ツチング後におけるSiC粒子の大きさがlQIMn以
上のものを面積比で50−以上を占め、かつ該8iC表
面のX線回折における(200”)面および(222)
面の(111)面に対する回折ピーク値の比IC200
)/1(111)およびI (222)/I (111
)をそれぞれ0.05〜0.35及び0.4〜1.2と
した熱処理用治具に関する。
The present invention provides a heat treatment jig in which the surface of a graphite base material is coated with SiC, in which SiC particles having a size of lQIMn or more after alkali melt etching on the SiC surface occupy an area ratio of 50 or more, and (200”) plane and (222) plane in X-ray diffraction of the 8iC surface
Ratio of diffraction peak value to (111) plane IC200
)/1 (111) and I (222)/I (111
) is 0.05 to 0.35 and 0.4 to 1.2, respectively.

本発明においてSICの粒子の大きさは、炭素基材表面
のSiC層を鏡面ラップした後2例えば700℃で30
分Na OHで溶融エツチングして観察したときに粒界
によって構成される粒子の大きさである。またX線回折
における回折ピーク値はCuのにαで測定した値であり
、その測定条件の例を第1表に示す。
In the present invention, the size of the SIC particles is determined by mirror-lapping the SiC layer on the surface of the carbon substrate, for example, at 700°C for 30°C.
This is the size of grains constituted by grain boundaries when observed by melt etching with NaOH. Further, the diffraction peak value in X-ray diffraction is a value measured at α for Cu, and an example of the measurement conditions is shown in Table 1.

第1表 本発明において、 8iC黒鉛層の粒子の大きさ。Table 1 In the present invention, the particle size of the 8iC graphite layer.

面積比およびX線回折における回折ピーク値の比が前記
した範囲からはずれるときは、 SiCコーティング層
断面の粒界が黒鉛基材から表面に向かって柱状に発達し
ているため、黒鉛基材の不純物が粒界を透過拡散してS
iCコーティング層の表面に出る量が多くなシ、熱処理
用治具と接触しているシリコンフェノ・−等の製品を汚
染して性能の低下をきたす。前記範囲内にあるとSiC
結晶の粒界が柱状に発達せず、互いに入り組み、黒鉛基
材から層の表面に直接達している粒界が極めて少ないの
で不純物の拡散量を少なく押えることができ、熱処理用
治具は繰り返しの使用に耐え得る。
When the area ratio and the ratio of diffraction peak values in X-ray diffraction deviate from the above ranges, the grain boundaries in the cross section of the SiC coating layer have developed in a columnar shape from the graphite base material toward the surface, so impurities in the graphite base material diffuses through the grain boundaries and S
A large amount of iC coating layer exposed to the surface contaminates products such as silicone phenol which are in contact with the heat treatment jig, resulting in a decrease in performance. Within the above range, SiC
The grain boundaries of the crystals do not develop into columnar shapes and are intertwined with each other, and there are extremely few grain boundaries that reach directly from the graphite base material to the surface of the layer, so the amount of diffusion of impurities can be kept to a low level, and the heat treatment jig can be repeatedly used. Can withstand use.

本発明のような特性を有するSiCを黒鉛基材にコーテ
ィングするには9例えば1300℃以上の温度で原料ガ
スを拡散律速条件下で気相反応させてSiCを析出させ
る。原料ガスは一分子中にSi及びCを含むCHsSi
Clsのような一成分系又はSiのみCのみをそれぞれ
含む8iC1a及びCC1a等の二成分系のいずれでも
よい。拡散律速条件を実現するためには原料ガス濃度が
キャリアーガスとして用いる2例えばIhガス11!に
ついてSi元素に換算して5 x l □−”mol!
以下であることが好ましい。
In order to coat a graphite substrate with SiC having the characteristics of the present invention, SiC is precipitated by causing a gas phase reaction of the raw material gas under diffusion controlled conditions at a temperature of 1300° C. or higher, for example. The raw material gas is CHsSi containing Si and C in one molecule.
Either a one-component system such as Cls or a two-component system such as 8iC1a and CC1a containing only Si and only C may be used. In order to realize the diffusion-limiting condition, the raw material gas concentration must be 2 used as a carrier gas, for example Ih gas 11! 5 x l □-”mol! in terms of Si element!
It is preferable that it is below.

また温度はエツチングによって観察される粒子の大きさ
が10μm以上のものが面積比で50%以上にするため
に1300℃以上にすることが好ましい。なお黒鉛基材
の加熱は高周波誘導加熱等による直接加熱よりも外部か
らの間接加熱の方が望ましいが、特に限定されるもので
はない。
Further, the temperature is preferably 1300° C. or higher so that the area ratio of particles observed by etching of 10 μm or more is 50% or more. Note that indirect heating from the outside is more preferable than direct heating such as high-frequency induction heating for heating the graphite base material, but this is not particularly limited.

以下に本発明の実施例について説明する。Examples of the present invention will be described below.

実施例 所属の形状に加工された黒鉛基材(見掛比重1.76.
400〜1000℃の平均熱膨張係数4、 s x l
o−’/℃)を高周波誘導加熱式の反応炉で1300℃
および1500℃の二条性にて加熱した。まだ反応炉に
導入する原料ガスはCH@5icesを用い、その濃度
をHJガス1!に対して5X10−”mop 、 1 
x 10−”moI!、 1 x 10−4mo/の三
条性とした。なおH2ガスの流量は2017分とした。
Graphite base material processed into the shape of Example (apparent specific gravity 1.76.
Average thermal expansion coefficient from 400 to 1000℃ 4, s x l
o-'/℃) to 1300℃ in a high-frequency induction heating reactor.
and heated in two rows at 1500°C. The raw material gas still introduced into the reactor is CH@5ices, and its concentration is HJ gas 1! for 5X10-”mop, 1
x 10-"moI!, 1 x 10-4mo/. The flow rate of H2 gas was 2017 minutes.

以上の条件を組合せてSiCコーティング層厚みを約1
00 amとして粒子の大きさとその面積比および第1
表の測定条件にょるXIIIN回折の回折ピーク値の比
が前記範囲内のものをjg2表に示すように6種類製作
した。比較例として涼科カス磯度I X 1 (1””
1ooJ 、温度1200℃+7)条件にて実施例と同
じ反応炉、1i1ガス流量でSiCt−熱鉛基材にコー
ティングし前記範囲外のものを第2表に示すように31
1(類製作した。
By combining the above conditions, the thickness of the SiC coating layer is approximately 1
The particle size and its area ratio and the first
As shown in the jg2 table, six types were manufactured in which the ratio of the diffraction peak values of XIIIN diffraction under the measurement conditions shown in the table was within the above range. As a comparative example, Suzoshikasu Isodo I X 1 (1”)
1ooJ, temperature 1200℃ + 7) conditions, in the same reaction furnace as in the example, and 1i1 gas flow rate, SiCt-hot lead substrate was coated, and those outside the above range were coated as shown in Table 2.
1 (I made a similar one.

第2表の実施例A20試料および比較例A2の試料につ
いて9表面を鏡面ラップ後、pJBQHで700℃30
分溶融エツチングしたものの組織写真を第1図(実施例
)及び第2図(比較例)に示す。図から明らかなように
、実施例のSiC粒子径は比較例よりもはるかに大きい
After mirror-lapping the 9 surfaces of Example A20 sample and Comparative Example A2 sample in Table 2, 700℃ 30 at pJBQH
Photographs of the structure of the melt-etched material are shown in FIG. 1 (Example) and FIG. 2 (Comparative Example). As is clear from the figure, the SiC particle diameter of the example is much larger than that of the comparative example.

実施例および比較例よシ得られた熱処理用治具を用いて
シリコンウェハー上に100μmのシリコンエピタキャ
ル層を生成させる工程を201m行なった。この20回
目のエピタキシャル層の拡が少抵抗を測定して不純物濃
度をめた結果を第2表に示す。
Using the heat treatment jig obtained in Examples and Comparative Examples, a 201 m process of forming a 100 μm silicon epitaxial layer on a silicon wafer was carried out. Table 2 shows the results of measuring the resistance of the 20th expansion of the epitaxial layer and calculating the impurity concentration.

第2表より明らかなように本発明のSiCをコーティン
グした熱処理用治具は従来のものと比較して不純物の汚
染の影畳が少なく繰り返しの使用に充分耐えつるもので
ある。それに対し従来のものは繰り返しの使用により黒
鉛基材の不純物がSiCリ コーティング層を多量に透過してしまい7メコンウエハ
ーの性能に着しく悪影響を与えるほど汚染してしまった
As is clear from Table 2, the heat treatment jig coated with SiC of the present invention is less susceptible to contamination by impurities than the conventional jig, and is sufficiently durable for repeated use. In contrast, in the conventional wafer, a large amount of impurities in the graphite base material permeated the SiC recoating layer due to repeated use, resulting in contamination to the extent that the performance of the 7 Mekong wafer was adversely affected.

本発明の熱処理用治具は、使用される製品に対して黒鉛
基材の不純物による汚染を防ぎ、繰シ返しの使用に耐え
うるなどの顕著な効果を有する。
The heat treatment jig of the present invention has remarkable effects such as preventing contamination of the graphite base material by impurities on the products used and being able to withstand repeated use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の熱処理用治具表面の組織写真。 第2図は比較例の熱処理用治具表面の組織写真である。 FIG. 1 is a photograph of the structure of the surface of the heat treatment jig in Example. FIG. 2 is a photograph of the structure of the surface of a heat treatment jig in a comparative example.

Claims (1)

【特許請求の範囲】[Claims] 1、黒鉛基材の表面をSiCでコーティングした熱処理
用治具において、該SiC表面のアルカリ溶融エツチン
グ後におけるSiC粒子の大きさが10μm以上のもの
を面積比で50%以上を占め、かつ該SiC表面のX線
回折における(200)面および(222)面の(11
1)面に対する回折ピーク値の比1(200)/I(1
11)およびI(222)/I (111)をそれぞれ
0605〜0.35及び0.4〜1.2とした熱処理用
治具。
1. In a heat treatment jig in which the surface of a graphite base material is coated with SiC, the size of SiC particles after alkali melt etching on the SiC surface accounts for 50% or more in terms of area ratio, and the SiC (11) of (200) plane and (222) plane in surface X-ray diffraction
1) Ratio of diffraction peak value to plane 1(200)/I(1
11) and a heat treatment jig in which I(222)/I(111) is 0605 to 0.35 and 0.4 to 1.2, respectively.
JP20119983A 1983-10-27 1983-10-27 Tool for heat treatment Pending JPS6096590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20119983A JPS6096590A (en) 1983-10-27 1983-10-27 Tool for heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20119983A JPS6096590A (en) 1983-10-27 1983-10-27 Tool for heat treatment

Publications (1)

Publication Number Publication Date
JPS6096590A true JPS6096590A (en) 1985-05-30

Family

ID=16436986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20119983A Pending JPS6096590A (en) 1983-10-27 1983-10-27 Tool for heat treatment

Country Status (1)

Country Link
JP (1) JPS6096590A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259431A (en) * 1986-05-02 1987-11-11 Mitsui Eng & Shipbuild Co Ltd Structural material with sic film
JPS62261120A (en) * 1986-05-07 1987-11-13 Mitsui Eng & Shipbuild Co Ltd Structural material with sic film
US6562183B1 (en) * 1999-04-07 2003-05-13 Ngk Insulators, Ltd. Anti-corrosive parts for etching apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259431A (en) * 1986-05-02 1987-11-11 Mitsui Eng & Shipbuild Co Ltd Structural material with sic film
JPH0670977B2 (en) * 1986-05-02 1994-09-07 三井造船株式会社 Structural material with SiC coating
JPS62261120A (en) * 1986-05-07 1987-11-13 Mitsui Eng & Shipbuild Co Ltd Structural material with sic film
JPH0682624B2 (en) * 1986-05-07 1994-10-19 三井造船株式会社 Structural material with SiC coating
US6562183B1 (en) * 1999-04-07 2003-05-13 Ngk Insulators, Ltd. Anti-corrosive parts for etching apparatus

Similar Documents

Publication Publication Date Title
US6245647B1 (en) Method for fabrication of thin film
EP0935013B1 (en) SiC product and manufacturing method thereof
JP3494554B2 (en) Jig for semiconductor and manufacturing method thereof
JPS582296A (en) Epitaxial single crystal and manufacture
JPH07335572A (en) Susceptor for heat treatment of semiconductor wafer and its manufacture
US4624735A (en) Constituent members of a semiconductor element-manufacturing apparatus and a reaction furnace for making said constituent members
JPS6096590A (en) Tool for heat treatment
GB2278014A (en) A diamond heat dissipating film
JP3094312B2 (en) Susceptor
Oh et al. The effect of input gas ratio on the growth behavior of chemical vapor deposited SiC films
JP2000302576A (en) Graphite material coated with silicon carbide
JPS62189726A (en) Susceptor for vapor growth of semiconductor
JP2011074436A (en) Silicon carbide material
TW200933706A (en) Epitaxial wafer
JP3297571B2 (en) Electrostatic chuck
JP2018043891A (en) Production method of gallium nitride laminate
JPS61236672A (en) Pyrolytic boron nitride coated products and manufacture
Takahashi et al. Formation of tantalum oxide by chemical vapor deposition
JP6143019B2 (en) Wafer mounting susceptor manufacturing method and wafer mounting susceptor
JP2000119064A (en) SiC FORM AND ITS PRODUCTION
US3740261A (en) Modified czochralski grown spinel substrate by solid state diffusion
JP2520421B2 (en) Pyrolytic boron nitride plate
JPH01153513A (en) Structure
JPS61268029A (en) Jig for heat treatment
JP2569321B2 (en) Tray for vapor phase growth and vapor phase growth method